Properties

Label 1352.2.f.d.337.3
Level $1352$
Weight $2$
Character 1352.337
Analytic conductor $10.796$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1352,2,Mod(337,1352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1352.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1352.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,0,0,0,0,6,0,0,0,0,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7957743533\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.3
Root \(-2.56155i\) of defining polynomial
Character \(\chi\) \(=\) 1352.337
Dual form 1352.2.f.d.337.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.56155 q^{3} -3.56155i q^{5} +2.56155i q^{7} +3.56155 q^{9} -2.56155i q^{11} -9.12311i q^{15} +5.00000 q^{17} -2.56155i q^{19} +6.56155i q^{21} +3.68466 q^{23} -7.68466 q^{25} +1.43845 q^{27} -5.00000 q^{29} -8.00000i q^{31} -6.56155i q^{33} +9.12311 q^{35} +1.00000i q^{37} +9.24621i q^{41} +6.56155 q^{43} -12.6847i q^{45} -4.00000i q^{47} +0.438447 q^{49} +12.8078 q^{51} +4.43845 q^{53} -9.12311 q^{55} -6.56155i q^{57} +2.56155i q^{59} -7.24621 q^{61} +9.12311i q^{63} -9.43845i q^{67} +9.43845 q^{69} +7.68466i q^{71} +1.31534i q^{73} -19.6847 q^{75} +6.56155 q^{77} -4.00000 q^{79} -7.00000 q^{81} +2.24621i q^{83} -17.8078i q^{85} -12.8078 q^{87} +9.68466i q^{89} -20.4924i q^{93} -9.12311 q^{95} +2.80776i q^{97} -9.12311i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 6 q^{9} + 20 q^{17} - 10 q^{23} - 6 q^{25} + 14 q^{27} - 20 q^{29} + 20 q^{35} + 18 q^{43} + 10 q^{49} + 10 q^{51} + 26 q^{53} - 20 q^{55} + 4 q^{61} + 46 q^{69} - 54 q^{75} + 18 q^{77}+ \cdots - 20 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1185\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.56155 1.47891 0.739457 0.673204i \(-0.235083\pi\)
0.739457 + 0.673204i \(0.235083\pi\)
\(4\) 0 0
\(5\) − 3.56155i − 1.59277i −0.604787 0.796387i \(-0.706742\pi\)
0.604787 0.796387i \(-0.293258\pi\)
\(6\) 0 0
\(7\) 2.56155i 0.968176i 0.875019 + 0.484088i \(0.160849\pi\)
−0.875019 + 0.484088i \(0.839151\pi\)
\(8\) 0 0
\(9\) 3.56155 1.18718
\(10\) 0 0
\(11\) − 2.56155i − 0.772337i −0.922428 0.386169i \(-0.873798\pi\)
0.922428 0.386169i \(-0.126202\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) − 9.12311i − 2.35558i
\(16\) 0 0
\(17\) 5.00000 1.21268 0.606339 0.795206i \(-0.292637\pi\)
0.606339 + 0.795206i \(0.292637\pi\)
\(18\) 0 0
\(19\) − 2.56155i − 0.587661i −0.955858 0.293830i \(-0.905070\pi\)
0.955858 0.293830i \(-0.0949300\pi\)
\(20\) 0 0
\(21\) 6.56155i 1.43185i
\(22\) 0 0
\(23\) 3.68466 0.768304 0.384152 0.923270i \(-0.374494\pi\)
0.384152 + 0.923270i \(0.374494\pi\)
\(24\) 0 0
\(25\) −7.68466 −1.53693
\(26\) 0 0
\(27\) 1.43845 0.276829
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) − 8.00000i − 1.43684i −0.695608 0.718421i \(-0.744865\pi\)
0.695608 0.718421i \(-0.255135\pi\)
\(32\) 0 0
\(33\) − 6.56155i − 1.14222i
\(34\) 0 0
\(35\) 9.12311 1.54209
\(36\) 0 0
\(37\) 1.00000i 0.164399i 0.996616 + 0.0821995i \(0.0261945\pi\)
−0.996616 + 0.0821995i \(0.973806\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.24621i 1.44402i 0.691885 + 0.722008i \(0.256781\pi\)
−0.691885 + 0.722008i \(0.743219\pi\)
\(42\) 0 0
\(43\) 6.56155 1.00063 0.500314 0.865844i \(-0.333218\pi\)
0.500314 + 0.865844i \(0.333218\pi\)
\(44\) 0 0
\(45\) − 12.6847i − 1.89092i
\(46\) 0 0
\(47\) − 4.00000i − 0.583460i −0.956501 0.291730i \(-0.905769\pi\)
0.956501 0.291730i \(-0.0942309\pi\)
\(48\) 0 0
\(49\) 0.438447 0.0626353
\(50\) 0 0
\(51\) 12.8078 1.79345
\(52\) 0 0
\(53\) 4.43845 0.609668 0.304834 0.952406i \(-0.401399\pi\)
0.304834 + 0.952406i \(0.401399\pi\)
\(54\) 0 0
\(55\) −9.12311 −1.23016
\(56\) 0 0
\(57\) − 6.56155i − 0.869099i
\(58\) 0 0
\(59\) 2.56155i 0.333486i 0.986000 + 0.166743i \(0.0533250\pi\)
−0.986000 + 0.166743i \(0.946675\pi\)
\(60\) 0 0
\(61\) −7.24621 −0.927782 −0.463891 0.885892i \(-0.653547\pi\)
−0.463891 + 0.885892i \(0.653547\pi\)
\(62\) 0 0
\(63\) 9.12311i 1.14940i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 9.43845i − 1.15309i −0.817065 0.576545i \(-0.804401\pi\)
0.817065 0.576545i \(-0.195599\pi\)
\(68\) 0 0
\(69\) 9.43845 1.13626
\(70\) 0 0
\(71\) 7.68466i 0.912001i 0.889979 + 0.456001i \(0.150719\pi\)
−0.889979 + 0.456001i \(0.849281\pi\)
\(72\) 0 0
\(73\) 1.31534i 0.153949i 0.997033 + 0.0769745i \(0.0245260\pi\)
−0.997033 + 0.0769745i \(0.975474\pi\)
\(74\) 0 0
\(75\) −19.6847 −2.27299
\(76\) 0 0
\(77\) 6.56155 0.747758
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) 2.24621i 0.246554i 0.992372 + 0.123277i \(0.0393403\pi\)
−0.992372 + 0.123277i \(0.960660\pi\)
\(84\) 0 0
\(85\) − 17.8078i − 1.93152i
\(86\) 0 0
\(87\) −12.8078 −1.37314
\(88\) 0 0
\(89\) 9.68466i 1.02657i 0.858218 + 0.513286i \(0.171572\pi\)
−0.858218 + 0.513286i \(0.828428\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 20.4924i − 2.12497i
\(94\) 0 0
\(95\) −9.12311 −0.936011
\(96\) 0 0
\(97\) 2.80776i 0.285085i 0.989789 + 0.142543i \(0.0455278\pi\)
−0.989789 + 0.142543i \(0.954472\pi\)
\(98\) 0 0
\(99\) − 9.12311i − 0.916907i
\(100\) 0 0
\(101\) −5.24621 −0.522018 −0.261009 0.965336i \(-0.584055\pi\)
−0.261009 + 0.965336i \(0.584055\pi\)
\(102\) 0 0
\(103\) −14.2462 −1.40372 −0.701860 0.712314i \(-0.747647\pi\)
−0.701860 + 0.712314i \(0.747647\pi\)
\(104\) 0 0
\(105\) 23.3693 2.28061
\(106\) 0 0
\(107\) −3.68466 −0.356209 −0.178105 0.984012i \(-0.556997\pi\)
−0.178105 + 0.984012i \(0.556997\pi\)
\(108\) 0 0
\(109\) 8.24621i 0.789844i 0.918715 + 0.394922i \(0.129228\pi\)
−0.918715 + 0.394922i \(0.870772\pi\)
\(110\) 0 0
\(111\) 2.56155i 0.243132i
\(112\) 0 0
\(113\) 9.24621 0.869810 0.434905 0.900476i \(-0.356782\pi\)
0.434905 + 0.900476i \(0.356782\pi\)
\(114\) 0 0
\(115\) − 13.1231i − 1.22374i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12.8078i 1.17409i
\(120\) 0 0
\(121\) 4.43845 0.403495
\(122\) 0 0
\(123\) 23.6847i 2.13557i
\(124\) 0 0
\(125\) 9.56155i 0.855211i
\(126\) 0 0
\(127\) −12.8078 −1.13651 −0.568253 0.822854i \(-0.692380\pi\)
−0.568253 + 0.822854i \(0.692380\pi\)
\(128\) 0 0
\(129\) 16.8078 1.47984
\(130\) 0 0
\(131\) 18.2462 1.59418 0.797089 0.603861i \(-0.206372\pi\)
0.797089 + 0.603861i \(0.206372\pi\)
\(132\) 0 0
\(133\) 6.56155 0.568959
\(134\) 0 0
\(135\) − 5.12311i − 0.440927i
\(136\) 0 0
\(137\) 21.4924i 1.83622i 0.396324 + 0.918111i \(0.370286\pi\)
−0.396324 + 0.918111i \(0.629714\pi\)
\(138\) 0 0
\(139\) 19.6847 1.66963 0.834815 0.550530i \(-0.185574\pi\)
0.834815 + 0.550530i \(0.185574\pi\)
\(140\) 0 0
\(141\) − 10.2462i − 0.862887i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 17.8078i 1.47885i
\(146\) 0 0
\(147\) 1.12311 0.0926322
\(148\) 0 0
\(149\) 13.2462i 1.08517i 0.840000 + 0.542586i \(0.182555\pi\)
−0.840000 + 0.542586i \(0.817445\pi\)
\(150\) 0 0
\(151\) 12.4924i 1.01662i 0.861174 + 0.508309i \(0.169729\pi\)
−0.861174 + 0.508309i \(0.830271\pi\)
\(152\) 0 0
\(153\) 17.8078 1.43967
\(154\) 0 0
\(155\) −28.4924 −2.28857
\(156\) 0 0
\(157\) −17.8078 −1.42121 −0.710607 0.703589i \(-0.751580\pi\)
−0.710607 + 0.703589i \(0.751580\pi\)
\(158\) 0 0
\(159\) 11.3693 0.901645
\(160\) 0 0
\(161\) 9.43845i 0.743854i
\(162\) 0 0
\(163\) − 5.93087i − 0.464542i −0.972651 0.232271i \(-0.925384\pi\)
0.972651 0.232271i \(-0.0746156\pi\)
\(164\) 0 0
\(165\) −23.3693 −1.81930
\(166\) 0 0
\(167\) 5.43845i 0.420840i 0.977611 + 0.210420i \(0.0674831\pi\)
−0.977611 + 0.210420i \(0.932517\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) − 9.12311i − 0.697661i
\(172\) 0 0
\(173\) 15.9309 1.21120 0.605601 0.795769i \(-0.292933\pi\)
0.605601 + 0.795769i \(0.292933\pi\)
\(174\) 0 0
\(175\) − 19.6847i − 1.48802i
\(176\) 0 0
\(177\) 6.56155i 0.493197i
\(178\) 0 0
\(179\) −4.31534 −0.322544 −0.161272 0.986910i \(-0.551560\pi\)
−0.161272 + 0.986910i \(0.551560\pi\)
\(180\) 0 0
\(181\) 9.80776 0.729005 0.364503 0.931202i \(-0.381239\pi\)
0.364503 + 0.931202i \(0.381239\pi\)
\(182\) 0 0
\(183\) −18.5616 −1.37211
\(184\) 0 0
\(185\) 3.56155 0.261851
\(186\) 0 0
\(187\) − 12.8078i − 0.936596i
\(188\) 0 0
\(189\) 3.68466i 0.268019i
\(190\) 0 0
\(191\) −4.31534 −0.312247 −0.156124 0.987738i \(-0.549900\pi\)
−0.156124 + 0.987738i \(0.549900\pi\)
\(192\) 0 0
\(193\) − 3.00000i − 0.215945i −0.994154 0.107972i \(-0.965564\pi\)
0.994154 0.107972i \(-0.0344358\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.31534i 0.164961i 0.996593 + 0.0824806i \(0.0262843\pi\)
−0.996593 + 0.0824806i \(0.973716\pi\)
\(198\) 0 0
\(199\) −9.43845 −0.669074 −0.334537 0.942383i \(-0.608580\pi\)
−0.334537 + 0.942383i \(0.608580\pi\)
\(200\) 0 0
\(201\) − 24.1771i − 1.70532i
\(202\) 0 0
\(203\) − 12.8078i − 0.898929i
\(204\) 0 0
\(205\) 32.9309 2.29999
\(206\) 0 0
\(207\) 13.1231 0.912119
\(208\) 0 0
\(209\) −6.56155 −0.453872
\(210\) 0 0
\(211\) 12.3153 0.847823 0.423912 0.905704i \(-0.360657\pi\)
0.423912 + 0.905704i \(0.360657\pi\)
\(212\) 0 0
\(213\) 19.6847i 1.34877i
\(214\) 0 0
\(215\) − 23.3693i − 1.59377i
\(216\) 0 0
\(217\) 20.4924 1.39112
\(218\) 0 0
\(219\) 3.36932i 0.227677i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 3.68466i − 0.246743i −0.992361 0.123371i \(-0.960629\pi\)
0.992361 0.123371i \(-0.0393707\pi\)
\(224\) 0 0
\(225\) −27.3693 −1.82462
\(226\) 0 0
\(227\) − 7.05398i − 0.468189i −0.972214 0.234094i \(-0.924788\pi\)
0.972214 0.234094i \(-0.0752125\pi\)
\(228\) 0 0
\(229\) 4.24621i 0.280598i 0.990109 + 0.140299i \(0.0448063\pi\)
−0.990109 + 0.140299i \(0.955194\pi\)
\(230\) 0 0
\(231\) 16.8078 1.10587
\(232\) 0 0
\(233\) −4.24621 −0.278179 −0.139089 0.990280i \(-0.544417\pi\)
−0.139089 + 0.990280i \(0.544417\pi\)
\(234\) 0 0
\(235\) −14.2462 −0.929320
\(236\) 0 0
\(237\) −10.2462 −0.665563
\(238\) 0 0
\(239\) 1.75379i 0.113443i 0.998390 + 0.0567216i \(0.0180647\pi\)
−0.998390 + 0.0567216i \(0.981935\pi\)
\(240\) 0 0
\(241\) 25.4924i 1.64211i 0.570848 + 0.821056i \(0.306614\pi\)
−0.570848 + 0.821056i \(0.693386\pi\)
\(242\) 0 0
\(243\) −22.2462 −1.42710
\(244\) 0 0
\(245\) − 1.56155i − 0.0997639i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 5.75379i 0.364632i
\(250\) 0 0
\(251\) −29.9309 −1.88922 −0.944610 0.328195i \(-0.893560\pi\)
−0.944610 + 0.328195i \(0.893560\pi\)
\(252\) 0 0
\(253\) − 9.43845i − 0.593390i
\(254\) 0 0
\(255\) − 45.6155i − 2.85656i
\(256\) 0 0
\(257\) 11.2462 0.701519 0.350760 0.936466i \(-0.385923\pi\)
0.350760 + 0.936466i \(0.385923\pi\)
\(258\) 0 0
\(259\) −2.56155 −0.159167
\(260\) 0 0
\(261\) −17.8078 −1.10227
\(262\) 0 0
\(263\) 8.80776 0.543110 0.271555 0.962423i \(-0.412462\pi\)
0.271555 + 0.962423i \(0.412462\pi\)
\(264\) 0 0
\(265\) − 15.8078i − 0.971063i
\(266\) 0 0
\(267\) 24.8078i 1.51821i
\(268\) 0 0
\(269\) 14.8078 0.902845 0.451423 0.892310i \(-0.350917\pi\)
0.451423 + 0.892310i \(0.350917\pi\)
\(270\) 0 0
\(271\) 5.43845i 0.330362i 0.986263 + 0.165181i \(0.0528209\pi\)
−0.986263 + 0.165181i \(0.947179\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 19.6847i 1.18703i
\(276\) 0 0
\(277\) −11.0000 −0.660926 −0.330463 0.943819i \(-0.607205\pi\)
−0.330463 + 0.943819i \(0.607205\pi\)
\(278\) 0 0
\(279\) − 28.4924i − 1.70580i
\(280\) 0 0
\(281\) − 14.6847i − 0.876013i −0.898972 0.438007i \(-0.855685\pi\)
0.898972 0.438007i \(-0.144315\pi\)
\(282\) 0 0
\(283\) 21.4384 1.27438 0.637192 0.770705i \(-0.280096\pi\)
0.637192 + 0.770705i \(0.280096\pi\)
\(284\) 0 0
\(285\) −23.3693 −1.38428
\(286\) 0 0
\(287\) −23.6847 −1.39806
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 7.19224i 0.421616i
\(292\) 0 0
\(293\) − 11.4924i − 0.671394i −0.941970 0.335697i \(-0.891028\pi\)
0.941970 0.335697i \(-0.108972\pi\)
\(294\) 0 0
\(295\) 9.12311 0.531168
\(296\) 0 0
\(297\) − 3.68466i − 0.213806i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 16.8078i 0.968783i
\(302\) 0 0
\(303\) −13.4384 −0.772019
\(304\) 0 0
\(305\) 25.8078i 1.47775i
\(306\) 0 0
\(307\) 26.2462i 1.49795i 0.662598 + 0.748975i \(0.269454\pi\)
−0.662598 + 0.748975i \(0.730546\pi\)
\(308\) 0 0
\(309\) −36.4924 −2.07598
\(310\) 0 0
\(311\) 14.2462 0.807829 0.403914 0.914797i \(-0.367649\pi\)
0.403914 + 0.914797i \(0.367649\pi\)
\(312\) 0 0
\(313\) −32.2462 −1.82266 −0.911332 0.411673i \(-0.864945\pi\)
−0.911332 + 0.411673i \(0.864945\pi\)
\(314\) 0 0
\(315\) 32.4924 1.83074
\(316\) 0 0
\(317\) 16.4384i 0.923275i 0.887069 + 0.461638i \(0.152738\pi\)
−0.887069 + 0.461638i \(0.847262\pi\)
\(318\) 0 0
\(319\) 12.8078i 0.717097i
\(320\) 0 0
\(321\) −9.43845 −0.526803
\(322\) 0 0
\(323\) − 12.8078i − 0.712643i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 21.1231i 1.16811i
\(328\) 0 0
\(329\) 10.2462 0.564892
\(330\) 0 0
\(331\) 21.9309i 1.20543i 0.797957 + 0.602715i \(0.205914\pi\)
−0.797957 + 0.602715i \(0.794086\pi\)
\(332\) 0 0
\(333\) 3.56155i 0.195172i
\(334\) 0 0
\(335\) −33.6155 −1.83661
\(336\) 0 0
\(337\) −16.4384 −0.895459 −0.447730 0.894169i \(-0.647767\pi\)
−0.447730 + 0.894169i \(0.647767\pi\)
\(338\) 0 0
\(339\) 23.6847 1.28637
\(340\) 0 0
\(341\) −20.4924 −1.10973
\(342\) 0 0
\(343\) 19.0540i 1.02882i
\(344\) 0 0
\(345\) − 33.6155i − 1.80980i
\(346\) 0 0
\(347\) −35.0540 −1.88180 −0.940898 0.338690i \(-0.890016\pi\)
−0.940898 + 0.338690i \(0.890016\pi\)
\(348\) 0 0
\(349\) − 20.5616i − 1.10063i −0.834956 0.550317i \(-0.814507\pi\)
0.834956 0.550317i \(-0.185493\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 9.00000i − 0.479022i −0.970894 0.239511i \(-0.923013\pi\)
0.970894 0.239511i \(-0.0769871\pi\)
\(354\) 0 0
\(355\) 27.3693 1.45261
\(356\) 0 0
\(357\) 32.8078i 1.73637i
\(358\) 0 0
\(359\) 4.49242i 0.237101i 0.992948 + 0.118550i \(0.0378247\pi\)
−0.992948 + 0.118550i \(0.962175\pi\)
\(360\) 0 0
\(361\) 12.4384 0.654655
\(362\) 0 0
\(363\) 11.3693 0.596734
\(364\) 0 0
\(365\) 4.68466 0.245206
\(366\) 0 0
\(367\) −32.1771 −1.67963 −0.839815 0.542873i \(-0.817337\pi\)
−0.839815 + 0.542873i \(0.817337\pi\)
\(368\) 0 0
\(369\) 32.9309i 1.71431i
\(370\) 0 0
\(371\) 11.3693i 0.590266i
\(372\) 0 0
\(373\) −11.2462 −0.582307 −0.291153 0.956676i \(-0.594039\pi\)
−0.291153 + 0.956676i \(0.594039\pi\)
\(374\) 0 0
\(375\) 24.4924i 1.26478i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 25.9309i − 1.33198i −0.745961 0.665990i \(-0.768009\pi\)
0.745961 0.665990i \(-0.231991\pi\)
\(380\) 0 0
\(381\) −32.8078 −1.68079
\(382\) 0 0
\(383\) 16.1771i 0.826610i 0.910593 + 0.413305i \(0.135626\pi\)
−0.910593 + 0.413305i \(0.864374\pi\)
\(384\) 0 0
\(385\) − 23.3693i − 1.19101i
\(386\) 0 0
\(387\) 23.3693 1.18793
\(388\) 0 0
\(389\) 17.3153 0.877923 0.438961 0.898506i \(-0.355347\pi\)
0.438961 + 0.898506i \(0.355347\pi\)
\(390\) 0 0
\(391\) 18.4233 0.931706
\(392\) 0 0
\(393\) 46.7386 2.35765
\(394\) 0 0
\(395\) 14.2462i 0.716805i
\(396\) 0 0
\(397\) 21.6847i 1.08832i 0.838981 + 0.544161i \(0.183152\pi\)
−0.838981 + 0.544161i \(0.816848\pi\)
\(398\) 0 0
\(399\) 16.8078 0.841441
\(400\) 0 0
\(401\) 9.49242i 0.474029i 0.971506 + 0.237014i \(0.0761689\pi\)
−0.971506 + 0.237014i \(0.923831\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 24.9309i 1.23882i
\(406\) 0 0
\(407\) 2.56155 0.126971
\(408\) 0 0
\(409\) 1.24621i 0.0616212i 0.999525 + 0.0308106i \(0.00980887\pi\)
−0.999525 + 0.0308106i \(0.990191\pi\)
\(410\) 0 0
\(411\) 55.0540i 2.71561i
\(412\) 0 0
\(413\) −6.56155 −0.322873
\(414\) 0 0
\(415\) 8.00000 0.392705
\(416\) 0 0
\(417\) 50.4233 2.46924
\(418\) 0 0
\(419\) −13.9309 −0.680568 −0.340284 0.940323i \(-0.610523\pi\)
−0.340284 + 0.940323i \(0.610523\pi\)
\(420\) 0 0
\(421\) − 21.3153i − 1.03885i −0.854517 0.519423i \(-0.826147\pi\)
0.854517 0.519423i \(-0.173853\pi\)
\(422\) 0 0
\(423\) − 14.2462i − 0.692674i
\(424\) 0 0
\(425\) −38.4233 −1.86380
\(426\) 0 0
\(427\) − 18.5616i − 0.898256i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.06913i 0.0996665i 0.998758 + 0.0498333i \(0.0158690\pi\)
−0.998758 + 0.0498333i \(0.984131\pi\)
\(432\) 0 0
\(433\) 1.49242 0.0717212 0.0358606 0.999357i \(-0.488583\pi\)
0.0358606 + 0.999357i \(0.488583\pi\)
\(434\) 0 0
\(435\) 45.6155i 2.18710i
\(436\) 0 0
\(437\) − 9.43845i − 0.451502i
\(438\) 0 0
\(439\) 37.9309 1.81034 0.905171 0.425048i \(-0.139743\pi\)
0.905171 + 0.425048i \(0.139743\pi\)
\(440\) 0 0
\(441\) 1.56155 0.0743597
\(442\) 0 0
\(443\) 21.7538 1.03355 0.516777 0.856120i \(-0.327132\pi\)
0.516777 + 0.856120i \(0.327132\pi\)
\(444\) 0 0
\(445\) 34.4924 1.63510
\(446\) 0 0
\(447\) 33.9309i 1.60488i
\(448\) 0 0
\(449\) − 13.0540i − 0.616055i −0.951377 0.308028i \(-0.900331\pi\)
0.951377 0.308028i \(-0.0996689\pi\)
\(450\) 0 0
\(451\) 23.6847 1.11527
\(452\) 0 0
\(453\) 32.0000i 1.50349i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 9.00000i − 0.421002i −0.977594 0.210501i \(-0.932490\pi\)
0.977594 0.210501i \(-0.0675096\pi\)
\(458\) 0 0
\(459\) 7.19224 0.335705
\(460\) 0 0
\(461\) − 9.49242i − 0.442106i −0.975262 0.221053i \(-0.929051\pi\)
0.975262 0.221053i \(-0.0709494\pi\)
\(462\) 0 0
\(463\) − 32.9848i − 1.53294i −0.642283 0.766468i \(-0.722012\pi\)
0.642283 0.766468i \(-0.277988\pi\)
\(464\) 0 0
\(465\) −72.9848 −3.38459
\(466\) 0 0
\(467\) −9.75379 −0.451352 −0.225676 0.974202i \(-0.572459\pi\)
−0.225676 + 0.974202i \(0.572459\pi\)
\(468\) 0 0
\(469\) 24.1771 1.11639
\(470\) 0 0
\(471\) −45.6155 −2.10185
\(472\) 0 0
\(473\) − 16.8078i − 0.772822i
\(474\) 0 0
\(475\) 19.6847i 0.903194i
\(476\) 0 0
\(477\) 15.8078 0.723788
\(478\) 0 0
\(479\) − 33.3002i − 1.52152i −0.649031 0.760762i \(-0.724825\pi\)
0.649031 0.760762i \(-0.275175\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 24.1771i 1.10010i
\(484\) 0 0
\(485\) 10.0000 0.454077
\(486\) 0 0
\(487\) − 38.5616i − 1.74739i −0.486473 0.873695i \(-0.661717\pi\)
0.486473 0.873695i \(-0.338283\pi\)
\(488\) 0 0
\(489\) − 15.1922i − 0.687017i
\(490\) 0 0
\(491\) −35.0540 −1.58196 −0.790982 0.611840i \(-0.790430\pi\)
−0.790982 + 0.611840i \(0.790430\pi\)
\(492\) 0 0
\(493\) −25.0000 −1.12594
\(494\) 0 0
\(495\) −32.4924 −1.46043
\(496\) 0 0
\(497\) −19.6847 −0.882978
\(498\) 0 0
\(499\) 16.4924i 0.738302i 0.929369 + 0.369151i \(0.120352\pi\)
−0.929369 + 0.369151i \(0.879648\pi\)
\(500\) 0 0
\(501\) 13.9309i 0.622385i
\(502\) 0 0
\(503\) −20.3153 −0.905816 −0.452908 0.891557i \(-0.649613\pi\)
−0.452908 + 0.891557i \(0.649613\pi\)
\(504\) 0 0
\(505\) 18.6847i 0.831456i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 33.0000i − 1.46270i −0.682003 0.731350i \(-0.738891\pi\)
0.682003 0.731350i \(-0.261109\pi\)
\(510\) 0 0
\(511\) −3.36932 −0.149050
\(512\) 0 0
\(513\) − 3.68466i − 0.162682i
\(514\) 0 0
\(515\) 50.7386i 2.23581i
\(516\) 0 0
\(517\) −10.2462 −0.450628
\(518\) 0 0
\(519\) 40.8078 1.79126
\(520\) 0 0
\(521\) −28.0540 −1.22907 −0.614533 0.788891i \(-0.710656\pi\)
−0.614533 + 0.788891i \(0.710656\pi\)
\(522\) 0 0
\(523\) 41.3002 1.80593 0.902966 0.429713i \(-0.141385\pi\)
0.902966 + 0.429713i \(0.141385\pi\)
\(524\) 0 0
\(525\) − 50.4233i − 2.20065i
\(526\) 0 0
\(527\) − 40.0000i − 1.74243i
\(528\) 0 0
\(529\) −9.42329 −0.409708
\(530\) 0 0
\(531\) 9.12311i 0.395909i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 13.1231i 0.567361i
\(536\) 0 0
\(537\) −11.0540 −0.477014
\(538\) 0 0
\(539\) − 1.12311i − 0.0483756i
\(540\) 0 0
\(541\) − 6.68466i − 0.287396i −0.989622 0.143698i \(-0.954101\pi\)
0.989622 0.143698i \(-0.0458994\pi\)
\(542\) 0 0
\(543\) 25.1231 1.07814
\(544\) 0 0
\(545\) 29.3693 1.25804
\(546\) 0 0
\(547\) −16.4924 −0.705165 −0.352583 0.935781i \(-0.614696\pi\)
−0.352583 + 0.935781i \(0.614696\pi\)
\(548\) 0 0
\(549\) −25.8078 −1.10145
\(550\) 0 0
\(551\) 12.8078i 0.545629i
\(552\) 0 0
\(553\) − 10.2462i − 0.435713i
\(554\) 0 0
\(555\) 9.12311 0.387254
\(556\) 0 0
\(557\) 1.49242i 0.0632360i 0.999500 + 0.0316180i \(0.0100660\pi\)
−0.999500 + 0.0316180i \(0.989934\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) − 32.8078i − 1.38514i
\(562\) 0 0
\(563\) 31.0540 1.30877 0.654385 0.756162i \(-0.272928\pi\)
0.654385 + 0.756162i \(0.272928\pi\)
\(564\) 0 0
\(565\) − 32.9309i − 1.38541i
\(566\) 0 0
\(567\) − 17.9309i − 0.753026i
\(568\) 0 0
\(569\) −6.31534 −0.264753 −0.132376 0.991200i \(-0.542261\pi\)
−0.132376 + 0.991200i \(0.542261\pi\)
\(570\) 0 0
\(571\) −24.4924 −1.02498 −0.512488 0.858694i \(-0.671276\pi\)
−0.512488 + 0.858694i \(0.671276\pi\)
\(572\) 0 0
\(573\) −11.0540 −0.461786
\(574\) 0 0
\(575\) −28.3153 −1.18083
\(576\) 0 0
\(577\) − 31.5616i − 1.31392i −0.753923 0.656962i \(-0.771841\pi\)
0.753923 0.656962i \(-0.228159\pi\)
\(578\) 0 0
\(579\) − 7.68466i − 0.319364i
\(580\) 0 0
\(581\) −5.75379 −0.238707
\(582\) 0 0
\(583\) − 11.3693i − 0.470869i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 13.9309i − 0.574989i −0.957782 0.287494i \(-0.907178\pi\)
0.957782 0.287494i \(-0.0928222\pi\)
\(588\) 0 0
\(589\) −20.4924 −0.844376
\(590\) 0 0
\(591\) 5.93087i 0.243963i
\(592\) 0 0
\(593\) 23.5616i 0.967557i 0.875190 + 0.483779i \(0.160736\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(594\) 0 0
\(595\) 45.6155 1.87005
\(596\) 0 0
\(597\) −24.1771 −0.989502
\(598\) 0 0
\(599\) −22.7386 −0.929075 −0.464538 0.885553i \(-0.653779\pi\)
−0.464538 + 0.885553i \(0.653779\pi\)
\(600\) 0 0
\(601\) −37.9848 −1.54943 −0.774717 0.632308i \(-0.782108\pi\)
−0.774717 + 0.632308i \(0.782108\pi\)
\(602\) 0 0
\(603\) − 33.6155i − 1.36893i
\(604\) 0 0
\(605\) − 15.8078i − 0.642677i
\(606\) 0 0
\(607\) 31.6847 1.28604 0.643020 0.765849i \(-0.277681\pi\)
0.643020 + 0.765849i \(0.277681\pi\)
\(608\) 0 0
\(609\) − 32.8078i − 1.32944i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 9.00000i − 0.363507i −0.983344 0.181753i \(-0.941823\pi\)
0.983344 0.181753i \(-0.0581772\pi\)
\(614\) 0 0
\(615\) 84.3542 3.40149
\(616\) 0 0
\(617\) 8.75379i 0.352414i 0.984353 + 0.176207i \(0.0563829\pi\)
−0.984353 + 0.176207i \(0.943617\pi\)
\(618\) 0 0
\(619\) − 36.9848i − 1.48655i −0.668988 0.743273i \(-0.733272\pi\)
0.668988 0.743273i \(-0.266728\pi\)
\(620\) 0 0
\(621\) 5.30019 0.212689
\(622\) 0 0
\(623\) −24.8078 −0.993902
\(624\) 0 0
\(625\) −4.36932 −0.174773
\(626\) 0 0
\(627\) −16.8078 −0.671237
\(628\) 0 0
\(629\) 5.00000i 0.199363i
\(630\) 0 0
\(631\) 27.0540i 1.07700i 0.842625 + 0.538501i \(0.181009\pi\)
−0.842625 + 0.538501i \(0.818991\pi\)
\(632\) 0 0
\(633\) 31.5464 1.25386
\(634\) 0 0
\(635\) 45.6155i 1.81020i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 27.3693i 1.08271i
\(640\) 0 0
\(641\) −31.4924 −1.24388 −0.621938 0.783067i \(-0.713654\pi\)
−0.621938 + 0.783067i \(0.713654\pi\)
\(642\) 0 0
\(643\) − 33.3002i − 1.31323i −0.754225 0.656616i \(-0.771987\pi\)
0.754225 0.656616i \(-0.228013\pi\)
\(644\) 0 0
\(645\) − 59.8617i − 2.35705i
\(646\) 0 0
\(647\) 5.93087 0.233167 0.116583 0.993181i \(-0.462806\pi\)
0.116583 + 0.993181i \(0.462806\pi\)
\(648\) 0 0
\(649\) 6.56155 0.257563
\(650\) 0 0
\(651\) 52.4924 2.05734
\(652\) 0 0
\(653\) 45.5464 1.78237 0.891184 0.453642i \(-0.149875\pi\)
0.891184 + 0.453642i \(0.149875\pi\)
\(654\) 0 0
\(655\) − 64.9848i − 2.53917i
\(656\) 0 0
\(657\) 4.68466i 0.182766i
\(658\) 0 0
\(659\) 17.4384 0.679305 0.339653 0.940551i \(-0.389690\pi\)
0.339653 + 0.940551i \(0.389690\pi\)
\(660\) 0 0
\(661\) 43.7386i 1.70124i 0.525784 + 0.850618i \(0.323772\pi\)
−0.525784 + 0.850618i \(0.676228\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 23.3693i − 0.906223i
\(666\) 0 0
\(667\) −18.4233 −0.713353
\(668\) 0 0
\(669\) − 9.43845i − 0.364911i
\(670\) 0 0
\(671\) 18.5616i 0.716561i
\(672\) 0 0
\(673\) −0.753789 −0.0290564 −0.0145282 0.999894i \(-0.504625\pi\)
−0.0145282 + 0.999894i \(0.504625\pi\)
\(674\) 0 0
\(675\) −11.0540 −0.425468
\(676\) 0 0
\(677\) 20.7386 0.797050 0.398525 0.917157i \(-0.369522\pi\)
0.398525 + 0.917157i \(0.369522\pi\)
\(678\) 0 0
\(679\) −7.19224 −0.276013
\(680\) 0 0
\(681\) − 18.0691i − 0.692411i
\(682\) 0 0
\(683\) − 19.6847i − 0.753213i −0.926373 0.376606i \(-0.877091\pi\)
0.926373 0.376606i \(-0.122909\pi\)
\(684\) 0 0
\(685\) 76.5464 2.92469
\(686\) 0 0
\(687\) 10.8769i 0.414979i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 21.4384i − 0.815557i −0.913081 0.407778i \(-0.866304\pi\)
0.913081 0.407778i \(-0.133696\pi\)
\(692\) 0 0
\(693\) 23.3693 0.887727
\(694\) 0 0
\(695\) − 70.1080i − 2.65935i
\(696\) 0 0
\(697\) 46.2311i 1.75113i
\(698\) 0 0
\(699\) −10.8769 −0.411402
\(700\) 0 0
\(701\) 16.7386 0.632209 0.316105 0.948724i \(-0.397625\pi\)
0.316105 + 0.948724i \(0.397625\pi\)
\(702\) 0 0
\(703\) 2.56155 0.0966108
\(704\) 0 0
\(705\) −36.4924 −1.37438
\(706\) 0 0
\(707\) − 13.4384i − 0.505405i
\(708\) 0 0
\(709\) 15.7386i 0.591077i 0.955331 + 0.295538i \(0.0954990\pi\)
−0.955331 + 0.295538i \(0.904501\pi\)
\(710\) 0 0
\(711\) −14.2462 −0.534275
\(712\) 0 0
\(713\) − 29.4773i − 1.10393i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.49242i 0.167773i
\(718\) 0 0
\(719\) 14.0691 0.524690 0.262345 0.964974i \(-0.415504\pi\)
0.262345 + 0.964974i \(0.415504\pi\)
\(720\) 0 0
\(721\) − 36.4924i − 1.35905i
\(722\) 0 0
\(723\) 65.3002i 2.42854i
\(724\) 0 0
\(725\) 38.4233 1.42701
\(726\) 0 0
\(727\) 42.7386 1.58509 0.792544 0.609815i \(-0.208756\pi\)
0.792544 + 0.609815i \(0.208756\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) 32.8078 1.21344
\(732\) 0 0
\(733\) − 21.8078i − 0.805488i −0.915313 0.402744i \(-0.868056\pi\)
0.915313 0.402744i \(-0.131944\pi\)
\(734\) 0 0
\(735\) − 4.00000i − 0.147542i
\(736\) 0 0
\(737\) −24.1771 −0.890574
\(738\) 0 0
\(739\) − 18.0691i − 0.664684i −0.943159 0.332342i \(-0.892161\pi\)
0.943159 0.332342i \(-0.107839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 37.9309i − 1.39155i −0.718260 0.695774i \(-0.755061\pi\)
0.718260 0.695774i \(-0.244939\pi\)
\(744\) 0 0
\(745\) 47.1771 1.72843
\(746\) 0 0
\(747\) 8.00000i 0.292705i
\(748\) 0 0
\(749\) − 9.43845i − 0.344873i
\(750\) 0 0
\(751\) −5.30019 −0.193407 −0.0967033 0.995313i \(-0.530830\pi\)
−0.0967033 + 0.995313i \(0.530830\pi\)
\(752\) 0 0
\(753\) −76.6695 −2.79399
\(754\) 0 0
\(755\) 44.4924 1.61925
\(756\) 0 0
\(757\) 53.5464 1.94618 0.973088 0.230432i \(-0.0740139\pi\)
0.973088 + 0.230432i \(0.0740139\pi\)
\(758\) 0 0
\(759\) − 24.1771i − 0.877572i
\(760\) 0 0
\(761\) 51.9309i 1.88249i 0.337721 + 0.941246i \(0.390344\pi\)
−0.337721 + 0.941246i \(0.609656\pi\)
\(762\) 0 0
\(763\) −21.1231 −0.764708
\(764\) 0 0
\(765\) − 63.4233i − 2.29307i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) − 27.9309i − 1.00721i −0.863933 0.503606i \(-0.832006\pi\)
0.863933 0.503606i \(-0.167994\pi\)
\(770\) 0 0
\(771\) 28.8078 1.03749
\(772\) 0 0
\(773\) 54.8078i 1.97130i 0.168807 + 0.985649i \(0.446009\pi\)
−0.168807 + 0.985649i \(0.553991\pi\)
\(774\) 0 0
\(775\) 61.4773i 2.20833i
\(776\) 0 0
\(777\) −6.56155 −0.235394
\(778\) 0 0
\(779\) 23.6847 0.848591
\(780\) 0 0
\(781\) 19.6847 0.704372
\(782\) 0 0
\(783\) −7.19224 −0.257030
\(784\) 0 0
\(785\) 63.4233i 2.26367i
\(786\) 0 0
\(787\) − 34.4233i − 1.22706i −0.789672 0.613529i \(-0.789749\pi\)
0.789672 0.613529i \(-0.210251\pi\)
\(788\) 0 0
\(789\) 22.5616 0.803213
\(790\) 0 0
\(791\) 23.6847i 0.842130i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 40.4924i − 1.43612i
\(796\) 0 0
\(797\) 15.9309 0.564300 0.282150 0.959370i \(-0.408952\pi\)
0.282150 + 0.959370i \(0.408952\pi\)
\(798\) 0 0
\(799\) − 20.0000i − 0.707549i
\(800\) 0 0
\(801\) 34.4924i 1.21873i
\(802\) 0 0
\(803\) 3.36932 0.118901
\(804\) 0 0
\(805\) 33.6155 1.18479
\(806\) 0 0
\(807\) 37.9309 1.33523
\(808\) 0 0
\(809\) −6.75379 −0.237451 −0.118725 0.992927i \(-0.537881\pi\)
−0.118725 + 0.992927i \(0.537881\pi\)
\(810\) 0 0
\(811\) 8.00000i 0.280918i 0.990086 + 0.140459i \(0.0448578\pi\)
−0.990086 + 0.140459i \(0.955142\pi\)
\(812\) 0 0
\(813\) 13.9309i 0.488577i
\(814\) 0 0
\(815\) −21.1231 −0.739910
\(816\) 0 0
\(817\) − 16.8078i − 0.588029i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.80776i 0.237593i 0.992919 + 0.118796i \(0.0379035\pi\)
−0.992919 + 0.118796i \(0.962096\pi\)
\(822\) 0 0
\(823\) −44.1771 −1.53992 −0.769958 0.638094i \(-0.779723\pi\)
−0.769958 + 0.638094i \(0.779723\pi\)
\(824\) 0 0
\(825\) 50.4233i 1.75551i
\(826\) 0 0
\(827\) − 28.9848i − 1.00790i −0.863732 0.503951i \(-0.831879\pi\)
0.863732 0.503951i \(-0.168121\pi\)
\(828\) 0 0
\(829\) −39.4924 −1.37163 −0.685814 0.727777i \(-0.740554\pi\)
−0.685814 + 0.727777i \(0.740554\pi\)
\(830\) 0 0
\(831\) −28.1771 −0.977452
\(832\) 0 0
\(833\) 2.19224 0.0759565
\(834\) 0 0
\(835\) 19.3693 0.670303
\(836\) 0 0
\(837\) − 11.5076i − 0.397760i
\(838\) 0 0
\(839\) − 39.6847i − 1.37007i −0.728512 0.685033i \(-0.759788\pi\)
0.728512 0.685033i \(-0.240212\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 0 0
\(843\) − 37.6155i − 1.29555i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 11.3693i 0.390654i
\(848\) 0 0
\(849\) 54.9157 1.88470
\(850\) 0 0
\(851\) 3.68466i 0.126308i
\(852\) 0 0
\(853\) − 13.4233i − 0.459605i −0.973237 0.229802i \(-0.926192\pi\)
0.973237 0.229802i \(-0.0738080\pi\)
\(854\) 0 0
\(855\) −32.4924 −1.11122
\(856\) 0 0
\(857\) 52.0540 1.77813 0.889065 0.457781i \(-0.151356\pi\)
0.889065 + 0.457781i \(0.151356\pi\)
\(858\) 0 0
\(859\) −5.75379 −0.196317 −0.0981584 0.995171i \(-0.531295\pi\)
−0.0981584 + 0.995171i \(0.531295\pi\)
\(860\) 0 0
\(861\) −60.6695 −2.06761
\(862\) 0 0
\(863\) − 38.2462i − 1.30192i −0.759114 0.650958i \(-0.774367\pi\)
0.759114 0.650958i \(-0.225633\pi\)
\(864\) 0 0
\(865\) − 56.7386i − 1.92917i
\(866\) 0 0
\(867\) 20.4924 0.695959
\(868\) 0 0
\(869\) 10.2462i 0.347579i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 10.0000i 0.338449i
\(874\) 0 0
\(875\) −24.4924 −0.827995
\(876\) 0 0
\(877\) 9.73863i 0.328850i 0.986390 + 0.164425i \(0.0525769\pi\)
−0.986390 + 0.164425i \(0.947423\pi\)
\(878\) 0 0
\(879\) − 29.4384i − 0.992934i
\(880\) 0 0
\(881\) −1.24621 −0.0419859 −0.0209930 0.999780i \(-0.506683\pi\)
−0.0209930 + 0.999780i \(0.506683\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 23.3693 0.785551
\(886\) 0 0
\(887\) 8.31534 0.279202 0.139601 0.990208i \(-0.455418\pi\)
0.139601 + 0.990208i \(0.455418\pi\)
\(888\) 0 0
\(889\) − 32.8078i − 1.10034i
\(890\) 0 0
\(891\) 17.9309i 0.600707i
\(892\) 0 0
\(893\) −10.2462 −0.342876
\(894\) 0 0
\(895\) 15.3693i 0.513740i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 40.0000i 1.33407i
\(900\) 0 0
\(901\) 22.1922 0.739331
\(902\) 0 0
\(903\) 43.0540i 1.43275i
\(904\) 0 0
\(905\) − 34.9309i − 1.16114i
\(906\) 0 0
\(907\) −13.3002 −0.441625 −0.220813 0.975316i \(-0.570871\pi\)
−0.220813 + 0.975316i \(0.570871\pi\)
\(908\) 0 0
\(909\) −18.6847 −0.619731
\(910\) 0 0
\(911\) 18.7386 0.620839 0.310419 0.950600i \(-0.399531\pi\)
0.310419 + 0.950600i \(0.399531\pi\)
\(912\) 0 0
\(913\) 5.75379 0.190423
\(914\) 0 0
\(915\) 66.1080i 2.18546i
\(916\) 0 0
\(917\) 46.7386i 1.54345i
\(918\) 0 0
\(919\) −11.5464 −0.380881 −0.190440 0.981699i \(-0.560992\pi\)
−0.190440 + 0.981699i \(0.560992\pi\)
\(920\) 0 0
\(921\) 67.2311i 2.21534i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 7.68466i − 0.252670i
\(926\) 0 0
\(927\) −50.7386 −1.66648
\(928\) 0 0
\(929\) 27.9848i 0.918153i 0.888397 + 0.459076i \(0.151820\pi\)
−0.888397 + 0.459076i \(0.848180\pi\)
\(930\) 0 0
\(931\) − 1.12311i − 0.0368083i
\(932\) 0 0
\(933\) 36.4924 1.19471
\(934\) 0 0
\(935\) −45.6155 −1.49179
\(936\) 0 0
\(937\) −1.31534 −0.0429703 −0.0214852 0.999769i \(-0.506839\pi\)
−0.0214852 + 0.999769i \(0.506839\pi\)
\(938\) 0 0
\(939\) −82.6004 −2.69556
\(940\) 0 0
\(941\) 14.0000i 0.456387i 0.973616 + 0.228193i \(0.0732819\pi\)
−0.973616 + 0.228193i \(0.926718\pi\)
\(942\) 0 0
\(943\) 34.0691i 1.10944i
\(944\) 0 0
\(945\) 13.1231 0.426895
\(946\) 0 0
\(947\) 46.4233i 1.50855i 0.656556 + 0.754277i \(0.272012\pi\)
−0.656556 + 0.754277i \(0.727988\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 42.1080i 1.36544i
\(952\) 0 0
\(953\) 5.19224 0.168193 0.0840965 0.996458i \(-0.473200\pi\)
0.0840965 + 0.996458i \(0.473200\pi\)
\(954\) 0 0
\(955\) 15.3693i 0.497339i
\(956\) 0 0
\(957\) 32.8078i 1.06052i
\(958\) 0 0
\(959\) −55.0540 −1.77779
\(960\) 0 0
\(961\) −33.0000 −1.06452
\(962\) 0 0
\(963\) −13.1231 −0.422886
\(964\) 0 0
\(965\) −10.6847 −0.343951
\(966\) 0 0
\(967\) 22.2462i 0.715390i 0.933838 + 0.357695i \(0.116437\pi\)
−0.933838 + 0.357695i \(0.883563\pi\)
\(968\) 0 0
\(969\) − 32.8078i − 1.05394i
\(970\) 0 0
\(971\) 31.6847 1.01681 0.508405 0.861118i \(-0.330235\pi\)
0.508405 + 0.861118i \(0.330235\pi\)
\(972\) 0 0
\(973\) 50.4233i 1.61650i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 15.2462i − 0.487770i −0.969804 0.243885i \(-0.921578\pi\)
0.969804 0.243885i \(-0.0784219\pi\)
\(978\) 0 0
\(979\) 24.8078 0.792860
\(980\) 0 0
\(981\) 29.3693i 0.937690i
\(982\) 0 0
\(983\) − 40.9848i − 1.30721i −0.756834 0.653607i \(-0.773255\pi\)
0.756834 0.653607i \(-0.226745\pi\)
\(984\) 0 0
\(985\) 8.24621 0.262746
\(986\) 0 0
\(987\) 26.2462 0.835426
\(988\) 0 0
\(989\) 24.1771 0.768786
\(990\) 0 0
\(991\) 57.3002 1.82020 0.910100 0.414388i \(-0.136004\pi\)
0.910100 + 0.414388i \(0.136004\pi\)
\(992\) 0 0
\(993\) 56.1771i 1.78273i
\(994\) 0 0
\(995\) 33.6155i 1.06568i
\(996\) 0 0
\(997\) −26.7538 −0.847301 −0.423650 0.905826i \(-0.639252\pi\)
−0.423650 + 0.905826i \(0.639252\pi\)
\(998\) 0 0
\(999\) 1.43845i 0.0455105i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1352.2.f.d.337.3 4
4.3 odd 2 2704.2.f.l.337.1 4
13.2 odd 12 104.2.i.b.9.1 4
13.3 even 3 1352.2.o.c.1161.1 8
13.4 even 6 1352.2.o.c.361.2 8
13.5 odd 4 1352.2.a.f.1.2 2
13.6 odd 12 104.2.i.b.81.1 yes 4
13.7 odd 12 1352.2.i.e.1329.1 4
13.8 odd 4 1352.2.a.h.1.2 2
13.9 even 3 1352.2.o.c.361.1 8
13.10 even 6 1352.2.o.c.1161.2 8
13.11 odd 12 1352.2.i.e.529.1 4
13.12 even 2 inner 1352.2.f.d.337.4 4
39.2 even 12 936.2.t.f.217.2 4
39.32 even 12 936.2.t.f.289.2 4
52.15 even 12 208.2.i.e.113.2 4
52.19 even 12 208.2.i.e.81.2 4
52.31 even 4 2704.2.a.q.1.1 2
52.47 even 4 2704.2.a.r.1.1 2
52.51 odd 2 2704.2.f.l.337.2 4
104.19 even 12 832.2.i.l.705.1 4
104.45 odd 12 832.2.i.o.705.2 4
104.67 even 12 832.2.i.l.321.1 4
104.93 odd 12 832.2.i.o.321.2 4
156.71 odd 12 1872.2.t.s.289.2 4
156.119 odd 12 1872.2.t.s.1153.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.i.b.9.1 4 13.2 odd 12
104.2.i.b.81.1 yes 4 13.6 odd 12
208.2.i.e.81.2 4 52.19 even 12
208.2.i.e.113.2 4 52.15 even 12
832.2.i.l.321.1 4 104.67 even 12
832.2.i.l.705.1 4 104.19 even 12
832.2.i.o.321.2 4 104.93 odd 12
832.2.i.o.705.2 4 104.45 odd 12
936.2.t.f.217.2 4 39.2 even 12
936.2.t.f.289.2 4 39.32 even 12
1352.2.a.f.1.2 2 13.5 odd 4
1352.2.a.h.1.2 2 13.8 odd 4
1352.2.f.d.337.3 4 1.1 even 1 trivial
1352.2.f.d.337.4 4 13.12 even 2 inner
1352.2.i.e.529.1 4 13.11 odd 12
1352.2.i.e.1329.1 4 13.7 odd 12
1352.2.o.c.361.1 8 13.9 even 3
1352.2.o.c.361.2 8 13.4 even 6
1352.2.o.c.1161.1 8 13.3 even 3
1352.2.o.c.1161.2 8 13.10 even 6
1872.2.t.s.289.2 4 156.71 odd 12
1872.2.t.s.1153.2 4 156.119 odd 12
2704.2.a.q.1.1 2 52.31 even 4
2704.2.a.r.1.1 2 52.47 even 4
2704.2.f.l.337.1 4 4.3 odd 2
2704.2.f.l.337.2 4 52.51 odd 2