Properties

Label 1352.2.o.c.361.1
Level $1352$
Weight $2$
Character 1352.361
Analytic conductor $10.796$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1352,2,Mod(361,1352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1352, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1352.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1352.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2,0,0,0,0,0,-6,0,0,0,0,0,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7957743533\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.1731891456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 9x^{6} + 65x^{4} - 144x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.1
Root \(-2.21837 - 1.28078i\) of defining polynomial
Character \(\chi\) \(=\) 1352.361
Dual form 1352.2.o.c.1161.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28078 - 2.21837i) q^{3} -3.56155i q^{5} +(-2.21837 - 1.28078i) q^{7} +(-1.78078 + 3.08440i) q^{9} +(-2.21837 + 1.28078i) q^{11} +(-7.90084 + 4.56155i) q^{15} +(-2.50000 + 4.33013i) q^{17} +(2.21837 + 1.28078i) q^{19} +6.56155i q^{21} +(-1.84233 - 3.19101i) q^{23} -7.68466 q^{25} +1.43845 q^{27} +(2.50000 + 4.33013i) q^{29} -8.00000i q^{31} +(5.68247 + 3.28078i) q^{33} +(-4.56155 + 7.90084i) q^{35} +(0.866025 - 0.500000i) q^{37} +(8.00745 - 4.62311i) q^{41} +(-3.28078 + 5.68247i) q^{43} +(10.9852 + 6.34233i) q^{45} -4.00000i q^{47} +(-0.219224 - 0.379706i) q^{49} +12.8078 q^{51} +4.43845 q^{53} +(4.56155 + 7.90084i) q^{55} -6.56155i q^{57} +(-2.21837 - 1.28078i) q^{59} +(3.62311 - 6.27540i) q^{61} +(7.90084 - 4.56155i) q^{63} +(-8.17394 + 4.71922i) q^{67} +(-4.71922 + 8.17394i) q^{69} +(-6.65511 - 3.84233i) q^{71} +1.31534i q^{73} +(9.84233 + 17.0474i) q^{75} +6.56155 q^{77} -4.00000 q^{79} +(3.50000 + 6.06218i) q^{81} +2.24621i q^{83} +(15.4220 + 8.90388i) q^{85} +(6.40388 - 11.0918i) q^{87} +(8.38716 - 4.84233i) q^{89} +(-17.7470 + 10.2462i) q^{93} +(4.56155 - 7.90084i) q^{95} +(-2.43160 - 1.40388i) q^{97} -9.12311i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} - 6 q^{9} - 20 q^{17} + 10 q^{23} - 12 q^{25} + 28 q^{27} + 20 q^{29} - 20 q^{35} - 18 q^{43} - 10 q^{49} + 20 q^{51} + 52 q^{53} + 20 q^{55} - 4 q^{61} - 46 q^{69} + 54 q^{75} + 36 q^{77}+ \cdots + 20 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1185\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.28078 2.21837i −0.739457 1.28078i −0.952740 0.303786i \(-0.901749\pi\)
0.213284 0.976990i \(-0.431584\pi\)
\(4\) 0 0
\(5\) 3.56155i 1.59277i −0.604787 0.796387i \(-0.706742\pi\)
0.604787 0.796387i \(-0.293258\pi\)
\(6\) 0 0
\(7\) −2.21837 1.28078i −0.838465 0.484088i 0.0182772 0.999833i \(-0.494182\pi\)
−0.856742 + 0.515745i \(0.827515\pi\)
\(8\) 0 0
\(9\) −1.78078 + 3.08440i −0.593592 + 1.02813i
\(10\) 0 0
\(11\) −2.21837 + 1.28078i −0.668864 + 0.386169i −0.795646 0.605762i \(-0.792868\pi\)
0.126782 + 0.991931i \(0.459535\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −7.90084 + 4.56155i −2.03999 + 1.17779i
\(16\) 0 0
\(17\) −2.50000 + 4.33013i −0.606339 + 1.05021i 0.385499 + 0.922708i \(0.374029\pi\)
−0.991838 + 0.127502i \(0.959304\pi\)
\(18\) 0 0
\(19\) 2.21837 + 1.28078i 0.508929 + 0.293830i 0.732393 0.680882i \(-0.238403\pi\)
−0.223464 + 0.974712i \(0.571737\pi\)
\(20\) 0 0
\(21\) 6.56155i 1.43185i
\(22\) 0 0
\(23\) −1.84233 3.19101i −0.384152 0.665371i 0.607499 0.794320i \(-0.292173\pi\)
−0.991651 + 0.128949i \(0.958840\pi\)
\(24\) 0 0
\(25\) −7.68466 −1.53693
\(26\) 0 0
\(27\) 1.43845 0.276829
\(28\) 0 0
\(29\) 2.50000 + 4.33013i 0.464238 + 0.804084i 0.999167 0.0408130i \(-0.0129948\pi\)
−0.534928 + 0.844897i \(0.679661\pi\)
\(30\) 0 0
\(31\) 8.00000i 1.43684i −0.695608 0.718421i \(-0.744865\pi\)
0.695608 0.718421i \(-0.255135\pi\)
\(32\) 0 0
\(33\) 5.68247 + 3.28078i 0.989191 + 0.571110i
\(34\) 0 0
\(35\) −4.56155 + 7.90084i −0.771043 + 1.33549i
\(36\) 0 0
\(37\) 0.866025 0.500000i 0.142374 0.0821995i −0.427121 0.904194i \(-0.640472\pi\)
0.569495 + 0.821995i \(0.307139\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.00745 4.62311i 1.25055 0.722008i 0.279335 0.960194i \(-0.409886\pi\)
0.971220 + 0.238186i \(0.0765528\pi\)
\(42\) 0 0
\(43\) −3.28078 + 5.68247i −0.500314 + 0.866569i 0.499686 + 0.866206i \(0.333449\pi\)
−1.00000 0.000362281i \(0.999885\pi\)
\(44\) 0 0
\(45\) 10.9852 + 6.34233i 1.63758 + 0.945459i
\(46\) 0 0
\(47\) 4.00000i 0.583460i −0.956501 0.291730i \(-0.905769\pi\)
0.956501 0.291730i \(-0.0942309\pi\)
\(48\) 0 0
\(49\) −0.219224 0.379706i −0.0313177 0.0542438i
\(50\) 0 0
\(51\) 12.8078 1.79345
\(52\) 0 0
\(53\) 4.43845 0.609668 0.304834 0.952406i \(-0.401399\pi\)
0.304834 + 0.952406i \(0.401399\pi\)
\(54\) 0 0
\(55\) 4.56155 + 7.90084i 0.615080 + 1.06535i
\(56\) 0 0
\(57\) 6.56155i 0.869099i
\(58\) 0 0
\(59\) −2.21837 1.28078i −0.288807 0.166743i 0.348597 0.937273i \(-0.386658\pi\)
−0.637404 + 0.770530i \(0.719992\pi\)
\(60\) 0 0
\(61\) 3.62311 6.27540i 0.463891 0.803483i −0.535260 0.844688i \(-0.679786\pi\)
0.999151 + 0.0412046i \(0.0131195\pi\)
\(62\) 0 0
\(63\) 7.90084 4.56155i 0.995412 0.574702i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −8.17394 + 4.71922i −0.998605 + 0.576545i −0.907835 0.419327i \(-0.862266\pi\)
−0.0907698 + 0.995872i \(0.528933\pi\)
\(68\) 0 0
\(69\) −4.71922 + 8.17394i −0.568128 + 0.984026i
\(70\) 0 0
\(71\) −6.65511 3.84233i −0.789816 0.456001i 0.0500816 0.998745i \(-0.484052\pi\)
−0.839898 + 0.542745i \(0.817385\pi\)
\(72\) 0 0
\(73\) 1.31534i 0.153949i 0.997033 + 0.0769745i \(0.0245260\pi\)
−0.997033 + 0.0769745i \(0.975474\pi\)
\(74\) 0 0
\(75\) 9.84233 + 17.0474i 1.13649 + 1.96847i
\(76\) 0 0
\(77\) 6.56155 0.747758
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 3.50000 + 6.06218i 0.388889 + 0.673575i
\(82\) 0 0
\(83\) 2.24621i 0.246554i 0.992372 + 0.123277i \(0.0393403\pi\)
−0.992372 + 0.123277i \(0.960660\pi\)
\(84\) 0 0
\(85\) 15.4220 + 8.90388i 1.67275 + 0.965762i
\(86\) 0 0
\(87\) 6.40388 11.0918i 0.686568 1.18917i
\(88\) 0 0
\(89\) 8.38716 4.84233i 0.889037 0.513286i 0.0154098 0.999881i \(-0.495095\pi\)
0.873627 + 0.486595i \(0.161761\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −17.7470 + 10.2462i −1.84027 + 1.06248i
\(94\) 0 0
\(95\) 4.56155 7.90084i 0.468005 0.810609i
\(96\) 0 0
\(97\) −2.43160 1.40388i −0.246891 0.142543i 0.371449 0.928453i \(-0.378861\pi\)
−0.618340 + 0.785911i \(0.712194\pi\)
\(98\) 0 0
\(99\) 9.12311i 0.916907i
\(100\) 0 0
\(101\) 2.62311 + 4.54335i 0.261009 + 0.452080i 0.966510 0.256628i \(-0.0826115\pi\)
−0.705501 + 0.708708i \(0.749278\pi\)
\(102\) 0 0
\(103\) −14.2462 −1.40372 −0.701860 0.712314i \(-0.747647\pi\)
−0.701860 + 0.712314i \(0.747647\pi\)
\(104\) 0 0
\(105\) 23.3693 2.28061
\(106\) 0 0
\(107\) 1.84233 + 3.19101i 0.178105 + 0.308486i 0.941231 0.337763i \(-0.109670\pi\)
−0.763127 + 0.646249i \(0.776337\pi\)
\(108\) 0 0
\(109\) 8.24621i 0.789844i 0.918715 + 0.394922i \(0.129228\pi\)
−0.918715 + 0.394922i \(0.870772\pi\)
\(110\) 0 0
\(111\) −2.21837 1.28078i −0.210558 0.121566i
\(112\) 0 0
\(113\) −4.62311 + 8.00745i −0.434905 + 0.753278i −0.997288 0.0735992i \(-0.976551\pi\)
0.562383 + 0.826877i \(0.309885\pi\)
\(114\) 0 0
\(115\) −11.3649 + 6.56155i −1.05979 + 0.611868i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 11.0918 6.40388i 1.01679 0.587043i
\(120\) 0 0
\(121\) −2.21922 + 3.84381i −0.201748 + 0.349437i
\(122\) 0 0
\(123\) −20.5115 11.8423i −1.84946 1.06779i
\(124\) 0 0
\(125\) 9.56155i 0.855211i
\(126\) 0 0
\(127\) 6.40388 + 11.0918i 0.568253 + 0.984242i 0.996739 + 0.0806942i \(0.0257137\pi\)
−0.428486 + 0.903548i \(0.640953\pi\)
\(128\) 0 0
\(129\) 16.8078 1.47984
\(130\) 0 0
\(131\) 18.2462 1.59418 0.797089 0.603861i \(-0.206372\pi\)
0.797089 + 0.603861i \(0.206372\pi\)
\(132\) 0 0
\(133\) −3.28078 5.68247i −0.284479 0.492733i
\(134\) 0 0
\(135\) 5.12311i 0.440927i
\(136\) 0 0
\(137\) −18.6130 10.7462i −1.59021 0.918111i −0.993269 0.115829i \(-0.963048\pi\)
−0.596945 0.802282i \(-0.703619\pi\)
\(138\) 0 0
\(139\) −9.84233 + 17.0474i −0.834815 + 1.44594i 0.0593651 + 0.998236i \(0.481092\pi\)
−0.894181 + 0.447706i \(0.852241\pi\)
\(140\) 0 0
\(141\) −8.87348 + 5.12311i −0.747282 + 0.431443i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 15.4220 8.90388i 1.28073 0.739427i
\(146\) 0 0
\(147\) −0.561553 + 0.972638i −0.0463161 + 0.0802218i
\(148\) 0 0
\(149\) −11.4716 6.62311i −0.939786 0.542586i −0.0498931 0.998755i \(-0.515888\pi\)
−0.889893 + 0.456169i \(0.849221\pi\)
\(150\) 0 0
\(151\) 12.4924i 1.01662i 0.861174 + 0.508309i \(0.169729\pi\)
−0.861174 + 0.508309i \(0.830271\pi\)
\(152\) 0 0
\(153\) −8.90388 15.4220i −0.719836 1.24679i
\(154\) 0 0
\(155\) −28.4924 −2.28857
\(156\) 0 0
\(157\) −17.8078 −1.42121 −0.710607 0.703589i \(-0.751580\pi\)
−0.710607 + 0.703589i \(0.751580\pi\)
\(158\) 0 0
\(159\) −5.68466 9.84612i −0.450823 0.780848i
\(160\) 0 0
\(161\) 9.43845i 0.743854i
\(162\) 0 0
\(163\) 5.13628 + 2.96543i 0.402305 + 0.232271i 0.687478 0.726205i \(-0.258718\pi\)
−0.285173 + 0.958476i \(0.592051\pi\)
\(164\) 0 0
\(165\) 11.6847 20.2384i 0.909649 1.57556i
\(166\) 0 0
\(167\) 4.70983 2.71922i 0.364458 0.210420i −0.306577 0.951846i \(-0.599184\pi\)
0.671034 + 0.741426i \(0.265850\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −7.90084 + 4.56155i −0.604192 + 0.348831i
\(172\) 0 0
\(173\) −7.96543 + 13.7965i −0.605601 + 1.04893i 0.386355 + 0.922350i \(0.373734\pi\)
−0.991956 + 0.126581i \(0.959600\pi\)
\(174\) 0 0
\(175\) 17.0474 + 9.84233i 1.28866 + 0.744010i
\(176\) 0 0
\(177\) 6.56155i 0.493197i
\(178\) 0 0
\(179\) 2.15767 + 3.73720i 0.161272 + 0.279331i 0.935325 0.353789i \(-0.115107\pi\)
−0.774053 + 0.633121i \(0.781774\pi\)
\(180\) 0 0
\(181\) 9.80776 0.729005 0.364503 0.931202i \(-0.381239\pi\)
0.364503 + 0.931202i \(0.381239\pi\)
\(182\) 0 0
\(183\) −18.5616 −1.37211
\(184\) 0 0
\(185\) −1.78078 3.08440i −0.130925 0.226769i
\(186\) 0 0
\(187\) 12.8078i 0.936596i
\(188\) 0 0
\(189\) −3.19101 1.84233i −0.232112 0.134010i
\(190\) 0 0
\(191\) 2.15767 3.73720i 0.156124 0.270414i −0.777344 0.629076i \(-0.783434\pi\)
0.933468 + 0.358662i \(0.116767\pi\)
\(192\) 0 0
\(193\) −2.59808 + 1.50000i −0.187014 + 0.107972i −0.590584 0.806976i \(-0.701102\pi\)
0.403570 + 0.914949i \(0.367769\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.00514 1.15767i 0.142861 0.0824806i −0.426866 0.904315i \(-0.640382\pi\)
0.569727 + 0.821834i \(0.307049\pi\)
\(198\) 0 0
\(199\) 4.71922 8.17394i 0.334537 0.579435i −0.648859 0.760909i \(-0.724753\pi\)
0.983396 + 0.181474i \(0.0580868\pi\)
\(200\) 0 0
\(201\) 20.9380 + 12.0885i 1.47685 + 0.852660i
\(202\) 0 0
\(203\) 12.8078i 0.898929i
\(204\) 0 0
\(205\) −16.4654 28.5190i −1.15000 1.99185i
\(206\) 0 0
\(207\) 13.1231 0.912119
\(208\) 0 0
\(209\) −6.56155 −0.453872
\(210\) 0 0
\(211\) −6.15767 10.6654i −0.423912 0.734236i 0.572407 0.819970i \(-0.306010\pi\)
−0.996318 + 0.0857336i \(0.972677\pi\)
\(212\) 0 0
\(213\) 19.6847i 1.34877i
\(214\) 0 0
\(215\) 20.2384 + 11.6847i 1.38025 + 0.796887i
\(216\) 0 0
\(217\) −10.2462 + 17.7470i −0.695558 + 1.20474i
\(218\) 0 0
\(219\) 2.91791 1.68466i 0.197174 0.113839i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −3.19101 + 1.84233i −0.213686 + 0.123371i −0.603023 0.797724i \(-0.706037\pi\)
0.389337 + 0.921095i \(0.372704\pi\)
\(224\) 0 0
\(225\) 13.6847 23.7025i 0.912311 1.58017i
\(226\) 0 0
\(227\) 6.10892 + 3.52699i 0.405463 + 0.234094i 0.688839 0.724915i \(-0.258121\pi\)
−0.283375 + 0.959009i \(0.591454\pi\)
\(228\) 0 0
\(229\) 4.24621i 0.280598i 0.990109 + 0.140299i \(0.0448063\pi\)
−0.990109 + 0.140299i \(0.955194\pi\)
\(230\) 0 0
\(231\) −8.40388 14.5560i −0.552935 0.957711i
\(232\) 0 0
\(233\) −4.24621 −0.278179 −0.139089 0.990280i \(-0.544417\pi\)
−0.139089 + 0.990280i \(0.544417\pi\)
\(234\) 0 0
\(235\) −14.2462 −0.929320
\(236\) 0 0
\(237\) 5.12311 + 8.87348i 0.332781 + 0.576394i
\(238\) 0 0
\(239\) 1.75379i 0.113443i 0.998390 + 0.0567216i \(0.0180647\pi\)
−0.998390 + 0.0567216i \(0.981935\pi\)
\(240\) 0 0
\(241\) −22.0771 12.7462i −1.42211 0.821056i −0.425631 0.904897i \(-0.639948\pi\)
−0.996479 + 0.0838412i \(0.973281\pi\)
\(242\) 0 0
\(243\) 11.1231 19.2658i 0.713548 1.23590i
\(244\) 0 0
\(245\) −1.35234 + 0.780776i −0.0863981 + 0.0498820i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 4.98293 2.87689i 0.315780 0.182316i
\(250\) 0 0
\(251\) 14.9654 25.9209i 0.944610 1.63611i 0.188079 0.982154i \(-0.439774\pi\)
0.756530 0.653958i \(-0.226893\pi\)
\(252\) 0 0
\(253\) 8.17394 + 4.71922i 0.513891 + 0.296695i
\(254\) 0 0
\(255\) 45.6155i 2.85656i
\(256\) 0 0
\(257\) −5.62311 9.73950i −0.350760 0.607534i 0.635623 0.772000i \(-0.280743\pi\)
−0.986383 + 0.164466i \(0.947410\pi\)
\(258\) 0 0
\(259\) −2.56155 −0.159167
\(260\) 0 0
\(261\) −17.8078 −1.10227
\(262\) 0 0
\(263\) −4.40388 7.62775i −0.271555 0.470347i 0.697705 0.716385i \(-0.254205\pi\)
−0.969260 + 0.246038i \(0.920871\pi\)
\(264\) 0 0
\(265\) 15.8078i 0.971063i
\(266\) 0 0
\(267\) −21.4842 12.4039i −1.31481 0.759105i
\(268\) 0 0
\(269\) −7.40388 + 12.8239i −0.451423 + 0.781887i −0.998475 0.0552116i \(-0.982417\pi\)
0.547052 + 0.837099i \(0.315750\pi\)
\(270\) 0 0
\(271\) 4.70983 2.71922i 0.286102 0.165181i −0.350081 0.936720i \(-0.613846\pi\)
0.636183 + 0.771539i \(0.280512\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 17.0474 9.84233i 1.02800 0.593515i
\(276\) 0 0
\(277\) 5.50000 9.52628i 0.330463 0.572379i −0.652140 0.758099i \(-0.726128\pi\)
0.982603 + 0.185720i \(0.0594618\pi\)
\(278\) 0 0
\(279\) 24.6752 + 14.2462i 1.47726 + 0.852898i
\(280\) 0 0
\(281\) 14.6847i 0.876013i −0.898972 0.438007i \(-0.855685\pi\)
0.898972 0.438007i \(-0.144315\pi\)
\(282\) 0 0
\(283\) −10.7192 18.5662i −0.637192 1.10365i −0.986046 0.166472i \(-0.946763\pi\)
0.348855 0.937177i \(-0.386571\pi\)
\(284\) 0 0
\(285\) −23.3693 −1.38428
\(286\) 0 0
\(287\) −23.6847 −1.39806
\(288\) 0 0
\(289\) −4.00000 6.92820i −0.235294 0.407541i
\(290\) 0 0
\(291\) 7.19224i 0.421616i
\(292\) 0 0
\(293\) 9.95273 + 5.74621i 0.581445 + 0.335697i 0.761707 0.647921i \(-0.224361\pi\)
−0.180263 + 0.983619i \(0.557695\pi\)
\(294\) 0 0
\(295\) −4.56155 + 7.90084i −0.265584 + 0.460005i
\(296\) 0 0
\(297\) −3.19101 + 1.84233i −0.185161 + 0.106903i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 14.5560 8.40388i 0.838991 0.484392i
\(302\) 0 0
\(303\) 6.71922 11.6380i 0.386009 0.668588i
\(304\) 0 0
\(305\) −22.3502 12.9039i −1.27977 0.738874i
\(306\) 0 0
\(307\) 26.2462i 1.49795i 0.662598 + 0.748975i \(0.269454\pi\)
−0.662598 + 0.748975i \(0.730546\pi\)
\(308\) 0 0
\(309\) 18.2462 + 31.6034i 1.03799 + 1.79785i
\(310\) 0 0
\(311\) 14.2462 0.807829 0.403914 0.914797i \(-0.367649\pi\)
0.403914 + 0.914797i \(0.367649\pi\)
\(312\) 0 0
\(313\) −32.2462 −1.82266 −0.911332 0.411673i \(-0.864945\pi\)
−0.911332 + 0.411673i \(0.864945\pi\)
\(314\) 0 0
\(315\) −16.2462 28.1393i −0.915370 1.58547i
\(316\) 0 0
\(317\) 16.4384i 0.923275i 0.887069 + 0.461638i \(0.152738\pi\)
−0.887069 + 0.461638i \(0.847262\pi\)
\(318\) 0 0
\(319\) −11.0918 6.40388i −0.621024 0.358549i
\(320\) 0 0
\(321\) 4.71922 8.17394i 0.263401 0.456225i
\(322\) 0 0
\(323\) −11.0918 + 6.40388i −0.617167 + 0.356322i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 18.2931 10.5616i 1.01161 0.584055i
\(328\) 0 0
\(329\) −5.12311 + 8.87348i −0.282446 + 0.489211i
\(330\) 0 0
\(331\) −18.9927 10.9654i −1.04393 0.602715i −0.122988 0.992408i \(-0.539248\pi\)
−0.920945 + 0.389693i \(0.872581\pi\)
\(332\) 0 0
\(333\) 3.56155i 0.195172i
\(334\) 0 0
\(335\) 16.8078 + 29.1119i 0.918306 + 1.59055i
\(336\) 0 0
\(337\) −16.4384 −0.895459 −0.447730 0.894169i \(-0.647767\pi\)
−0.447730 + 0.894169i \(0.647767\pi\)
\(338\) 0 0
\(339\) 23.6847 1.28637
\(340\) 0 0
\(341\) 10.2462 + 17.7470i 0.554863 + 0.961052i
\(342\) 0 0
\(343\) 19.0540i 1.02882i
\(344\) 0 0
\(345\) 29.1119 + 16.8078i 1.56733 + 0.904900i
\(346\) 0 0
\(347\) 17.5270 30.3576i 0.940898 1.62968i 0.177135 0.984187i \(-0.443317\pi\)
0.763763 0.645497i \(-0.223350\pi\)
\(348\) 0 0
\(349\) −17.8068 + 10.2808i −0.953178 + 0.550317i −0.894067 0.447934i \(-0.852160\pi\)
−0.0591110 + 0.998251i \(0.518827\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.79423 + 4.50000i −0.414845 + 0.239511i −0.692869 0.721063i \(-0.743654\pi\)
0.278024 + 0.960574i \(0.410320\pi\)
\(354\) 0 0
\(355\) −13.6847 + 23.7025i −0.726306 + 1.25800i
\(356\) 0 0
\(357\) −28.4124 16.4039i −1.50374 0.868186i
\(358\) 0 0
\(359\) 4.49242i 0.237101i 0.992948 + 0.118550i \(0.0378247\pi\)
−0.992948 + 0.118550i \(0.962175\pi\)
\(360\) 0 0
\(361\) −6.21922 10.7720i −0.327328 0.566948i
\(362\) 0 0
\(363\) 11.3693 0.596734
\(364\) 0 0
\(365\) 4.68466 0.245206
\(366\) 0 0
\(367\) 16.0885 + 27.8662i 0.839815 + 1.45460i 0.890049 + 0.455865i \(0.150670\pi\)
−0.0502341 + 0.998737i \(0.515997\pi\)
\(368\) 0 0
\(369\) 32.9309i 1.71431i
\(370\) 0 0
\(371\) −9.84612 5.68466i −0.511185 0.295133i
\(372\) 0 0
\(373\) 5.62311 9.73950i 0.291153 0.504292i −0.682929 0.730484i \(-0.739294\pi\)
0.974083 + 0.226192i \(0.0726277\pi\)
\(374\) 0 0
\(375\) 21.2111 12.2462i 1.09533 0.632392i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −22.4568 + 12.9654i −1.15353 + 0.665990i −0.949744 0.313026i \(-0.898657\pi\)
−0.203783 + 0.979016i \(0.565324\pi\)
\(380\) 0 0
\(381\) 16.4039 28.4124i 0.840396 1.45561i
\(382\) 0 0
\(383\) −14.0098 8.08854i −0.715865 0.413305i 0.0973636 0.995249i \(-0.468959\pi\)
−0.813229 + 0.581944i \(0.802292\pi\)
\(384\) 0 0
\(385\) 23.3693i 1.19101i
\(386\) 0 0
\(387\) −11.6847 20.2384i −0.593965 1.02878i
\(388\) 0 0
\(389\) 17.3153 0.877923 0.438961 0.898506i \(-0.355347\pi\)
0.438961 + 0.898506i \(0.355347\pi\)
\(390\) 0 0
\(391\) 18.4233 0.931706
\(392\) 0 0
\(393\) −23.3693 40.4768i −1.17883 2.04179i
\(394\) 0 0
\(395\) 14.2462i 0.716805i
\(396\) 0 0
\(397\) −18.7795 10.8423i −0.942514 0.544161i −0.0517667 0.998659i \(-0.516485\pi\)
−0.890748 + 0.454498i \(0.849819\pi\)
\(398\) 0 0
\(399\) −8.40388 + 14.5560i −0.420720 + 0.728709i
\(400\) 0 0
\(401\) 8.22068 4.74621i 0.410521 0.237014i −0.280492 0.959856i \(-0.590498\pi\)
0.691014 + 0.722842i \(0.257164\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 21.5908 12.4654i 1.07285 0.619412i
\(406\) 0 0
\(407\) −1.28078 + 2.21837i −0.0634857 + 0.109961i
\(408\) 0 0
\(409\) −1.07925 0.623106i −0.0533655 0.0308106i 0.473080 0.881020i \(-0.343142\pi\)
−0.526445 + 0.850209i \(0.676476\pi\)
\(410\) 0 0
\(411\) 55.0540i 2.71561i
\(412\) 0 0
\(413\) 3.28078 + 5.68247i 0.161436 + 0.279616i
\(414\) 0 0
\(415\) 8.00000 0.392705
\(416\) 0 0
\(417\) 50.4233 2.46924
\(418\) 0 0
\(419\) 6.96543 + 12.0645i 0.340284 + 0.589389i 0.984485 0.175467i \(-0.0561435\pi\)
−0.644202 + 0.764856i \(0.722810\pi\)
\(420\) 0 0
\(421\) 21.3153i 1.03885i −0.854517 0.519423i \(-0.826147\pi\)
0.854517 0.519423i \(-0.173853\pi\)
\(422\) 0 0
\(423\) 12.3376 + 7.12311i 0.599874 + 0.346337i
\(424\) 0 0
\(425\) 19.2116 33.2755i 0.931902 1.61410i
\(426\) 0 0
\(427\) −16.0748 + 9.28078i −0.777913 + 0.449128i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.79192 1.03457i 0.0863137 0.0498333i −0.456222 0.889866i \(-0.650798\pi\)
0.542536 + 0.840033i \(0.317464\pi\)
\(432\) 0 0
\(433\) −0.746211 + 1.29248i −0.0358606 + 0.0621124i −0.883399 0.468622i \(-0.844751\pi\)
0.847538 + 0.530735i \(0.178084\pi\)
\(434\) 0 0
\(435\) −39.5042 22.8078i −1.89408 1.09355i
\(436\) 0 0
\(437\) 9.43845i 0.451502i
\(438\) 0 0
\(439\) −18.9654 32.8491i −0.905171 1.56780i −0.820688 0.571377i \(-0.806409\pi\)
−0.0844831 0.996425i \(-0.526924\pi\)
\(440\) 0 0
\(441\) 1.56155 0.0743597
\(442\) 0 0
\(443\) 21.7538 1.03355 0.516777 0.856120i \(-0.327132\pi\)
0.516777 + 0.856120i \(0.327132\pi\)
\(444\) 0 0
\(445\) −17.2462 29.8713i −0.817549 1.41604i
\(446\) 0 0
\(447\) 33.9309i 1.60488i
\(448\) 0 0
\(449\) 11.3051 + 6.52699i 0.533519 + 0.308028i 0.742448 0.669903i \(-0.233664\pi\)
−0.208929 + 0.977931i \(0.566998\pi\)
\(450\) 0 0
\(451\) −11.8423 + 20.5115i −0.557634 + 0.965850i
\(452\) 0 0
\(453\) 27.7128 16.0000i 1.30206 0.751746i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.79423 + 4.50000i −0.364599 + 0.210501i −0.671096 0.741370i \(-0.734176\pi\)
0.306497 + 0.951871i \(0.400843\pi\)
\(458\) 0 0
\(459\) −3.59612 + 6.22866i −0.167852 + 0.290729i
\(460\) 0 0
\(461\) 8.22068 + 4.74621i 0.382875 + 0.221053i 0.679068 0.734075i \(-0.262384\pi\)
−0.296193 + 0.955128i \(0.595717\pi\)
\(462\) 0 0
\(463\) 32.9848i 1.53294i −0.642283 0.766468i \(-0.722012\pi\)
0.642283 0.766468i \(-0.277988\pi\)
\(464\) 0 0
\(465\) 36.4924 + 63.2067i 1.69230 + 2.93114i
\(466\) 0 0
\(467\) −9.75379 −0.451352 −0.225676 0.974202i \(-0.572459\pi\)
−0.225676 + 0.974202i \(0.572459\pi\)
\(468\) 0 0
\(469\) 24.1771 1.11639
\(470\) 0 0
\(471\) 22.8078 + 39.5042i 1.05093 + 1.82026i
\(472\) 0 0
\(473\) 16.8078i 0.772822i
\(474\) 0 0
\(475\) −17.0474 9.84233i −0.782189 0.451597i
\(476\) 0 0
\(477\) −7.90388 + 13.6899i −0.361894 + 0.626819i
\(478\) 0 0
\(479\) −28.8388 + 16.6501i −1.31768 + 0.760762i −0.983355 0.181696i \(-0.941841\pi\)
−0.334324 + 0.942458i \(0.608508\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 20.9380 12.0885i 0.952710 0.550048i
\(484\) 0 0
\(485\) −5.00000 + 8.66025i −0.227038 + 0.393242i
\(486\) 0 0
\(487\) 33.3953 + 19.2808i 1.51328 + 0.873695i 0.999879 + 0.0155493i \(0.00494971\pi\)
0.513406 + 0.858146i \(0.328384\pi\)
\(488\) 0 0
\(489\) 15.1922i 0.687017i
\(490\) 0 0
\(491\) 17.5270 + 30.3576i 0.790982 + 1.37002i 0.925360 + 0.379091i \(0.123763\pi\)
−0.134378 + 0.990930i \(0.542904\pi\)
\(492\) 0 0
\(493\) −25.0000 −1.12594
\(494\) 0 0
\(495\) −32.4924 −1.46043
\(496\) 0 0
\(497\) 9.84233 + 17.0474i 0.441489 + 0.764681i
\(498\) 0 0
\(499\) 16.4924i 0.738302i 0.929369 + 0.369151i \(0.120352\pi\)
−0.929369 + 0.369151i \(0.879648\pi\)
\(500\) 0 0
\(501\) −12.0645 6.96543i −0.539002 0.311193i
\(502\) 0 0
\(503\) 10.1577 17.5936i 0.452908 0.784460i −0.545657 0.838009i \(-0.683720\pi\)
0.998565 + 0.0535486i \(0.0170532\pi\)
\(504\) 0 0
\(505\) 16.1814 9.34233i 0.720062 0.415728i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −28.5788 + 16.5000i −1.26673 + 0.731350i −0.974369 0.224957i \(-0.927776\pi\)
−0.292366 + 0.956306i \(0.594443\pi\)
\(510\) 0 0
\(511\) 1.68466 2.91791i 0.0745249 0.129081i
\(512\) 0 0
\(513\) 3.19101 + 1.84233i 0.140886 + 0.0813408i
\(514\) 0 0
\(515\) 50.7386i 2.23581i
\(516\) 0 0
\(517\) 5.12311 + 8.87348i 0.225314 + 0.390255i
\(518\) 0 0
\(519\) 40.8078 1.79126
\(520\) 0 0
\(521\) −28.0540 −1.22907 −0.614533 0.788891i \(-0.710656\pi\)
−0.614533 + 0.788891i \(0.710656\pi\)
\(522\) 0 0
\(523\) −20.6501 35.7670i −0.902966 1.56398i −0.823625 0.567135i \(-0.808052\pi\)
−0.0793404 0.996848i \(-0.525281\pi\)
\(524\) 0 0
\(525\) 50.4233i 2.20065i
\(526\) 0 0
\(527\) 34.6410 + 20.0000i 1.50899 + 0.871214i
\(528\) 0 0
\(529\) 4.71165 8.16081i 0.204854 0.354818i
\(530\) 0 0
\(531\) 7.90084 4.56155i 0.342867 0.197955i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 11.3649 6.56155i 0.491349 0.283681i
\(536\) 0 0
\(537\) 5.52699 9.57302i 0.238507 0.413106i
\(538\) 0 0
\(539\) 0.972638 + 0.561553i 0.0418945 + 0.0241878i
\(540\) 0 0
\(541\) 6.68466i 0.287396i −0.989622 0.143698i \(-0.954101\pi\)
0.989622 0.143698i \(-0.0458994\pi\)
\(542\) 0 0
\(543\) −12.5616 21.7572i −0.539068 0.933693i
\(544\) 0 0
\(545\) 29.3693 1.25804
\(546\) 0 0
\(547\) −16.4924 −0.705165 −0.352583 0.935781i \(-0.614696\pi\)
−0.352583 + 0.935781i \(0.614696\pi\)
\(548\) 0 0
\(549\) 12.9039 + 22.3502i 0.550724 + 0.953882i
\(550\) 0 0
\(551\) 12.8078i 0.545629i
\(552\) 0 0
\(553\) 8.87348 + 5.12311i 0.377339 + 0.217857i
\(554\) 0 0
\(555\) −4.56155 + 7.90084i −0.193627 + 0.335372i
\(556\) 0 0
\(557\) 1.29248 0.746211i 0.0547640 0.0316180i −0.472368 0.881401i \(-0.656601\pi\)
0.527132 + 0.849783i \(0.323267\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −28.4124 + 16.4039i −1.19957 + 0.692572i
\(562\) 0 0
\(563\) −15.5270 + 26.8935i −0.654385 + 1.13343i 0.327663 + 0.944795i \(0.393739\pi\)
−0.982048 + 0.188633i \(0.939594\pi\)
\(564\) 0 0
\(565\) 28.5190 + 16.4654i 1.19980 + 0.692706i
\(566\) 0 0
\(567\) 17.9309i 0.753026i
\(568\) 0 0
\(569\) 3.15767 + 5.46925i 0.132376 + 0.229283i 0.924592 0.380958i \(-0.124406\pi\)
−0.792216 + 0.610241i \(0.791073\pi\)
\(570\) 0 0
\(571\) −24.4924 −1.02498 −0.512488 0.858694i \(-0.671276\pi\)
−0.512488 + 0.858694i \(0.671276\pi\)
\(572\) 0 0
\(573\) −11.0540 −0.461786
\(574\) 0 0
\(575\) 14.1577 + 24.5218i 0.590416 + 1.02263i
\(576\) 0 0
\(577\) 31.5616i 1.31392i −0.753923 0.656962i \(-0.771841\pi\)
0.753923 0.656962i \(-0.228159\pi\)
\(578\) 0 0
\(579\) 6.65511 + 3.84233i 0.276577 + 0.159682i
\(580\) 0 0
\(581\) 2.87689 4.98293i 0.119354 0.206727i
\(582\) 0 0
\(583\) −9.84612 + 5.68466i −0.407785 + 0.235434i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.0645 + 6.96543i −0.497955 + 0.287494i −0.727869 0.685717i \(-0.759489\pi\)
0.229914 + 0.973211i \(0.426156\pi\)
\(588\) 0 0
\(589\) 10.2462 17.7470i 0.422188 0.731251i
\(590\) 0 0
\(591\) −5.13628 2.96543i −0.211278 0.121982i
\(592\) 0 0
\(593\) 23.5616i 0.967557i 0.875190 + 0.483779i \(0.160736\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(594\) 0 0
\(595\) −22.8078 39.5042i −0.935027 1.61951i
\(596\) 0 0
\(597\) −24.1771 −0.989502
\(598\) 0 0
\(599\) −22.7386 −0.929075 −0.464538 0.885553i \(-0.653779\pi\)
−0.464538 + 0.885553i \(0.653779\pi\)
\(600\) 0 0
\(601\) 18.9924 + 32.8958i 0.774717 + 1.34185i 0.934953 + 0.354771i \(0.115441\pi\)
−0.160236 + 0.987079i \(0.551226\pi\)
\(602\) 0 0
\(603\) 33.6155i 1.36893i
\(604\) 0 0
\(605\) 13.6899 + 7.90388i 0.556575 + 0.321339i
\(606\) 0 0
\(607\) −15.8423 + 27.4397i −0.643020 + 1.11374i 0.341735 + 0.939796i \(0.388986\pi\)
−0.984755 + 0.173947i \(0.944348\pi\)
\(608\) 0 0
\(609\) −28.4124 + 16.4039i −1.15133 + 0.664719i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −7.79423 + 4.50000i −0.314806 + 0.181753i −0.649075 0.760724i \(-0.724844\pi\)
0.334269 + 0.942478i \(0.391511\pi\)
\(614\) 0 0
\(615\) −42.1771 + 73.0528i −1.70074 + 2.94578i
\(616\) 0 0
\(617\) −7.58100 4.37689i −0.305200 0.176207i 0.339577 0.940578i \(-0.389716\pi\)
−0.644776 + 0.764371i \(0.723050\pi\)
\(618\) 0 0
\(619\) 36.9848i 1.48655i −0.668988 0.743273i \(-0.733272\pi\)
0.668988 0.743273i \(-0.266728\pi\)
\(620\) 0 0
\(621\) −2.65009 4.59010i −0.106345 0.184194i
\(622\) 0 0
\(623\) −24.8078 −0.993902
\(624\) 0 0
\(625\) −4.36932 −0.174773
\(626\) 0 0
\(627\) 8.40388 + 14.5560i 0.335619 + 0.581309i
\(628\) 0 0
\(629\) 5.00000i 0.199363i
\(630\) 0 0
\(631\) −23.4294 13.5270i −0.932711 0.538501i −0.0450430 0.998985i \(-0.514342\pi\)
−0.887668 + 0.460484i \(0.847676\pi\)
\(632\) 0 0
\(633\) −15.7732 + 27.3200i −0.626928 + 1.08587i
\(634\) 0 0
\(635\) 39.5042 22.8078i 1.56768 0.905099i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 23.7025 13.6847i 0.937657 0.541357i
\(640\) 0 0
\(641\) 15.7462 27.2732i 0.621938 1.07723i −0.367187 0.930147i \(-0.619679\pi\)
0.989124 0.147081i \(-0.0469877\pi\)
\(642\) 0 0
\(643\) 28.8388 + 16.6501i 1.13729 + 0.656616i 0.945758 0.324871i \(-0.105321\pi\)
0.191533 + 0.981486i \(0.438654\pi\)
\(644\) 0 0
\(645\) 59.8617i 2.35705i
\(646\) 0 0
\(647\) −2.96543 5.13628i −0.116583 0.201928i 0.801828 0.597555i \(-0.203861\pi\)
−0.918412 + 0.395626i \(0.870528\pi\)
\(648\) 0 0
\(649\) 6.56155 0.257563
\(650\) 0 0
\(651\) 52.4924 2.05734
\(652\) 0 0
\(653\) −22.7732 39.4443i −0.891184 1.54358i −0.838457 0.544967i \(-0.816542\pi\)
−0.0527268 0.998609i \(-0.516791\pi\)
\(654\) 0 0
\(655\) 64.9848i 2.53917i
\(656\) 0 0
\(657\) −4.05703 2.34233i −0.158280 0.0913830i
\(658\) 0 0
\(659\) −8.71922 + 15.1021i −0.339653 + 0.588296i −0.984367 0.176128i \(-0.943643\pi\)
0.644715 + 0.764423i \(0.276976\pi\)
\(660\) 0 0
\(661\) 37.8788 21.8693i 1.47331 0.850618i 0.473764 0.880652i \(-0.342895\pi\)
0.999549 + 0.0300338i \(0.00956148\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −20.2384 + 11.6847i −0.784812 + 0.453112i
\(666\) 0 0
\(667\) 9.21165 15.9550i 0.356676 0.617782i
\(668\) 0 0
\(669\) 8.17394 + 4.71922i 0.316023 + 0.182456i
\(670\) 0 0
\(671\) 18.5616i 0.716561i
\(672\) 0 0
\(673\) 0.376894 + 0.652800i 0.0145282 + 0.0251636i 0.873198 0.487365i \(-0.162042\pi\)
−0.858670 + 0.512529i \(0.828709\pi\)
\(674\) 0 0
\(675\) −11.0540 −0.425468
\(676\) 0 0
\(677\) 20.7386 0.797050 0.398525 0.917157i \(-0.369522\pi\)
0.398525 + 0.917157i \(0.369522\pi\)
\(678\) 0 0
\(679\) 3.59612 + 6.22866i 0.138006 + 0.239034i
\(680\) 0 0
\(681\) 18.0691i 0.692411i
\(682\) 0 0
\(683\) 17.0474 + 9.84233i 0.652301 + 0.376606i 0.789337 0.613960i \(-0.210424\pi\)
−0.137036 + 0.990566i \(0.543758\pi\)
\(684\) 0 0
\(685\) −38.2732 + 66.2911i −1.46234 + 2.53285i
\(686\) 0 0
\(687\) 9.41967 5.43845i 0.359383 0.207490i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −18.5662 + 10.7192i −0.706293 + 0.407778i −0.809687 0.586862i \(-0.800363\pi\)
0.103394 + 0.994640i \(0.467030\pi\)
\(692\) 0 0
\(693\) −11.6847 + 20.2384i −0.443863 + 0.768794i
\(694\) 0 0
\(695\) 60.7153 + 35.0540i 2.30306 + 1.32967i
\(696\) 0 0
\(697\) 46.2311i 1.75113i
\(698\) 0 0
\(699\) 5.43845 + 9.41967i 0.205701 + 0.356285i
\(700\) 0 0
\(701\) 16.7386 0.632209 0.316105 0.948724i \(-0.397625\pi\)
0.316105 + 0.948724i \(0.397625\pi\)
\(702\) 0 0
\(703\) 2.56155 0.0966108
\(704\) 0 0
\(705\) 18.2462 + 31.6034i 0.687192 + 1.19025i
\(706\) 0 0
\(707\) 13.4384i 0.505405i
\(708\) 0 0
\(709\) −13.6301 7.86932i −0.511888 0.295538i 0.221722 0.975110i \(-0.428832\pi\)
−0.733609 + 0.679572i \(0.762166\pi\)
\(710\) 0 0
\(711\) 7.12311 12.3376i 0.267137 0.462695i
\(712\) 0 0
\(713\) −25.5281 + 14.7386i −0.956033 + 0.551966i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.89055 2.24621i 0.145295 0.0838863i
\(718\) 0 0
\(719\) −7.03457 + 12.1842i −0.262345 + 0.454395i −0.966865 0.255290i \(-0.917829\pi\)
0.704520 + 0.709685i \(0.251163\pi\)
\(720\) 0 0
\(721\) 31.6034 + 18.2462i 1.17697 + 0.679524i
\(722\) 0 0
\(723\) 65.3002i 2.42854i
\(724\) 0 0
\(725\) −19.2116 33.2755i −0.713503 1.23582i
\(726\) 0 0
\(727\) 42.7386 1.58509 0.792544 0.609815i \(-0.208756\pi\)
0.792544 + 0.609815i \(0.208756\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) −16.4039 28.4124i −0.606719 1.05087i
\(732\) 0 0
\(733\) 21.8078i 0.805488i −0.915313 0.402744i \(-0.868056\pi\)
0.915313 0.402744i \(-0.131944\pi\)
\(734\) 0 0
\(735\) 3.46410 + 2.00000i 0.127775 + 0.0737711i
\(736\) 0 0
\(737\) 12.0885 20.9380i 0.445287 0.771260i
\(738\) 0 0
\(739\) −15.6483 + 9.03457i −0.575633 + 0.332342i −0.759396 0.650629i \(-0.774505\pi\)
0.183763 + 0.982971i \(0.441172\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −32.8491 + 18.9654i −1.20512 + 0.695774i −0.961688 0.274145i \(-0.911605\pi\)
−0.243428 + 0.969919i \(0.578272\pi\)
\(744\) 0 0
\(745\) −23.5885 + 40.8566i −0.864217 + 1.49687i
\(746\) 0 0
\(747\) −6.92820 4.00000i −0.253490 0.146352i
\(748\) 0 0
\(749\) 9.43845i 0.344873i
\(750\) 0 0
\(751\) 2.65009 + 4.59010i 0.0967033 + 0.167495i 0.910318 0.413909i \(-0.135837\pi\)
−0.813615 + 0.581404i \(0.802504\pi\)
\(752\) 0 0
\(753\) −76.6695 −2.79399
\(754\) 0 0
\(755\) 44.4924 1.61925
\(756\) 0 0
\(757\) −26.7732 46.3725i −0.973088 1.68544i −0.686104 0.727503i \(-0.740681\pi\)
−0.286984 0.957935i \(-0.592653\pi\)
\(758\) 0 0
\(759\) 24.1771i 0.877572i
\(760\) 0 0
\(761\) −44.9735 25.9654i −1.63029 0.941246i −0.984004 0.178148i \(-0.942989\pi\)
−0.646283 0.763098i \(-0.723677\pi\)
\(762\) 0 0
\(763\) 10.5616 18.2931i 0.382354 0.662256i
\(764\) 0 0
\(765\) −54.9262 + 31.7116i −1.98586 + 1.14654i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −24.1888 + 13.9654i −0.872272 + 0.503606i −0.868103 0.496385i \(-0.834660\pi\)
−0.00416940 + 0.999991i \(0.501327\pi\)
\(770\) 0 0
\(771\) −14.4039 + 24.9483i −0.518743 + 0.898489i
\(772\) 0 0
\(773\) −47.4649 27.4039i −1.70719 0.985649i −0.938001 0.346633i \(-0.887325\pi\)
−0.769194 0.639016i \(-0.779342\pi\)
\(774\) 0 0
\(775\) 61.4773i 2.20833i
\(776\) 0 0
\(777\) 3.28078 + 5.68247i 0.117697 + 0.203858i
\(778\) 0 0
\(779\) 23.6847 0.848591
\(780\) 0 0
\(781\) 19.6847 0.704372
\(782\) 0 0
\(783\) 3.59612 + 6.22866i 0.128515 + 0.222594i
\(784\) 0 0
\(785\) 63.4233i 2.26367i
\(786\) 0 0
\(787\) 29.8114 + 17.2116i 1.06266 + 0.613529i 0.926168 0.377112i \(-0.123083\pi\)
0.136496 + 0.990641i \(0.456416\pi\)
\(788\) 0 0
\(789\) −11.2808 + 19.5389i −0.401606 + 0.695602i
\(790\) 0 0
\(791\) 20.5115 11.8423i 0.729306 0.421065i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −35.0675 + 20.2462i −1.24371 + 0.718059i
\(796\) 0 0
\(797\) −7.96543 + 13.7965i −0.282150 + 0.488698i −0.971914 0.235336i \(-0.924381\pi\)
0.689764 + 0.724034i \(0.257714\pi\)
\(798\) 0 0
\(799\) 17.3205 + 10.0000i 0.612756 + 0.353775i
\(800\) 0 0
\(801\) 34.4924i 1.21873i
\(802\) 0 0
\(803\) −1.68466 2.91791i −0.0594503 0.102971i
\(804\) 0 0
\(805\) 33.6155 1.18479
\(806\) 0 0
\(807\) 37.9309 1.33523
\(808\) 0 0
\(809\) 3.37689 + 5.84895i 0.118725 + 0.205638i 0.919263 0.393644i \(-0.128786\pi\)
−0.800537 + 0.599283i \(0.795453\pi\)
\(810\) 0 0
\(811\) 8.00000i 0.280918i 0.990086 + 0.140459i \(0.0448578\pi\)
−0.990086 + 0.140459i \(0.955142\pi\)
\(812\) 0 0
\(813\) −12.0645 6.96543i −0.423120 0.244288i
\(814\) 0 0
\(815\) 10.5616 18.2931i 0.369955 0.640781i
\(816\) 0 0
\(817\) −14.5560 + 8.40388i −0.509248 + 0.294015i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.89570 3.40388i 0.205761 0.118796i −0.393579 0.919291i \(-0.628763\pi\)
0.599340 + 0.800495i \(0.295430\pi\)
\(822\) 0 0
\(823\) 22.0885 38.2585i 0.769958 1.33361i −0.167627 0.985851i \(-0.553610\pi\)
0.937585 0.347756i \(-0.113056\pi\)
\(824\) 0 0
\(825\) −43.6679 25.2116i −1.52032 0.877757i
\(826\) 0 0
\(827\) 28.9848i 1.00790i −0.863732 0.503951i \(-0.831879\pi\)
0.863732 0.503951i \(-0.168121\pi\)
\(828\) 0 0
\(829\) 19.7462 + 34.2014i 0.685814 + 1.18787i 0.973180 + 0.230044i \(0.0738871\pi\)
−0.287366 + 0.957821i \(0.592780\pi\)
\(830\) 0 0
\(831\) −28.1771 −0.977452
\(832\) 0 0
\(833\) 2.19224 0.0759565
\(834\) 0 0
\(835\) −9.68466 16.7743i −0.335151 0.580499i
\(836\) 0 0
\(837\) 11.5076i 0.397760i
\(838\) 0 0
\(839\) 34.3679 + 19.8423i 1.18651 + 0.685033i 0.957512 0.288393i \(-0.0931210\pi\)
0.229000 + 0.973426i \(0.426454\pi\)
\(840\) 0 0
\(841\) 2.00000 3.46410i 0.0689655 0.119452i
\(842\) 0 0
\(843\) −32.5760 + 18.8078i −1.12198 + 0.647774i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 9.84612 5.68466i 0.338317 0.195327i
\(848\) 0 0
\(849\) −27.4579 + 47.5584i −0.942351 + 1.63220i
\(850\) 0 0
\(851\) −3.19101 1.84233i −0.109386 0.0631542i
\(852\) 0 0
\(853\) 13.4233i 0.459605i −0.973237 0.229802i \(-0.926192\pi\)
0.973237 0.229802i \(-0.0738080\pi\)
\(854\) 0 0
\(855\) 16.2462 + 28.1393i 0.555609 + 0.962343i
\(856\) 0 0
\(857\) 52.0540 1.77813 0.889065 0.457781i \(-0.151356\pi\)
0.889065 + 0.457781i \(0.151356\pi\)
\(858\) 0 0
\(859\) −5.75379 −0.196317 −0.0981584 0.995171i \(-0.531295\pi\)
−0.0981584 + 0.995171i \(0.531295\pi\)
\(860\) 0 0
\(861\) 30.3348 + 52.5413i 1.03381 + 1.79060i
\(862\) 0 0
\(863\) 38.2462i 1.30192i −0.759114 0.650958i \(-0.774367\pi\)
0.759114 0.650958i \(-0.225633\pi\)
\(864\) 0 0
\(865\) 49.1371 + 28.3693i 1.67071 + 0.964586i
\(866\) 0 0
\(867\) −10.2462 + 17.7470i −0.347980 + 0.602718i
\(868\) 0 0
\(869\) 8.87348 5.12311i 0.301012 0.173789i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 8.66025 5.00000i 0.293105 0.169224i
\(874\) 0 0
\(875\) 12.2462 21.2111i 0.413998 0.717065i
\(876\) 0 0
\(877\) −8.43390 4.86932i −0.284793 0.164425i 0.350798 0.936451i \(-0.385910\pi\)
−0.635591 + 0.772026i \(0.719244\pi\)
\(878\) 0 0
\(879\) 29.4384i 0.992934i
\(880\) 0 0
\(881\) 0.623106 + 1.07925i 0.0209930 + 0.0363609i 0.876331 0.481709i \(-0.159984\pi\)
−0.855338 + 0.518070i \(0.826651\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 23.3693 0.785551
\(886\) 0 0
\(887\) −4.15767 7.20130i −0.139601 0.241796i 0.787745 0.616002i \(-0.211249\pi\)
−0.927346 + 0.374206i \(0.877915\pi\)
\(888\) 0 0
\(889\) 32.8078i 1.10034i
\(890\) 0 0
\(891\) −15.5286 8.96543i −0.520227 0.300353i
\(892\) 0 0
\(893\) 5.12311 8.87348i 0.171438 0.296940i
\(894\) 0 0
\(895\) 13.3102 7.68466i 0.444912 0.256870i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 34.6410 20.0000i 1.15534 0.667037i
\(900\) 0 0
\(901\) −11.0961 + 19.2190i −0.369665 + 0.640279i
\(902\) 0 0
\(903\) −37.2858 21.5270i −1.24079 0.716373i
\(904\) 0 0
\(905\) 34.9309i 1.16114i
\(906\) 0 0
\(907\) 6.65009 + 11.5183i 0.220813 + 0.382459i 0.955055 0.296429i \(-0.0957957\pi\)
−0.734242 + 0.678888i \(0.762462\pi\)
\(908\) 0 0
\(909\) −18.6847 −0.619731
\(910\) 0 0
\(911\) 18.7386 0.620839 0.310419 0.950600i \(-0.399531\pi\)
0.310419 + 0.950600i \(0.399531\pi\)
\(912\) 0 0
\(913\) −2.87689 4.98293i −0.0952113 0.164911i
\(914\) 0 0
\(915\) 66.1080i 2.18546i
\(916\) 0 0
\(917\) −40.4768 23.3693i −1.33666 0.771723i
\(918\) 0 0
\(919\) 5.77320 9.99947i 0.190440 0.329852i −0.754956 0.655775i \(-0.772342\pi\)
0.945396 + 0.325923i \(0.105675\pi\)
\(920\) 0 0
\(921\) 58.2238 33.6155i 1.91854 1.10767i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −6.65511 + 3.84233i −0.218819 + 0.126335i
\(926\) 0 0
\(927\) 25.3693 43.9409i 0.833238 1.44321i
\(928\) 0 0
\(929\) −24.2356 13.9924i −0.795144 0.459076i 0.0466265 0.998912i \(-0.485153\pi\)
−0.841770 + 0.539836i \(0.818486\pi\)
\(930\) 0 0
\(931\) 1.12311i 0.0368083i
\(932\) 0 0
\(933\) −18.2462 31.6034i −0.597354 1.03465i
\(934\) 0 0
\(935\) −45.6155 −1.49179
\(936\) 0 0
\(937\) −1.31534 −0.0429703 −0.0214852 0.999769i \(-0.506839\pi\)
−0.0214852 + 0.999769i \(0.506839\pi\)
\(938\) 0 0
\(939\) 41.3002 + 71.5340i 1.34778 + 2.33442i
\(940\) 0 0
\(941\) 14.0000i 0.456387i 0.973616 + 0.228193i \(0.0732819\pi\)
−0.973616 + 0.228193i \(0.926718\pi\)
\(942\) 0 0
\(943\) −29.5047 17.0346i −0.960806 0.554722i
\(944\) 0 0
\(945\) −6.56155 + 11.3649i −0.213447 + 0.369702i
\(946\) 0 0
\(947\) 40.2038 23.2116i 1.30645 0.754277i 0.324945 0.945733i \(-0.394654\pi\)
0.981501 + 0.191456i \(0.0613208\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 36.4666 21.0540i 1.18251 0.682722i
\(952\) 0 0
\(953\) −2.59612 + 4.49661i −0.0840965 + 0.145659i −0.905006 0.425399i \(-0.860134\pi\)
0.820909 + 0.571059i \(0.193467\pi\)
\(954\) 0 0
\(955\) −13.3102 7.68466i −0.430709 0.248670i
\(956\) 0 0
\(957\) 32.8078i 1.06052i
\(958\) 0 0
\(959\) 27.5270 + 47.6781i 0.888893 + 1.53961i
\(960\) 0 0
\(961\) −33.0000 −1.06452
\(962\) 0 0
\(963\) −13.1231 −0.422886
\(964\) 0 0
\(965\) 5.34233 + 9.25319i 0.171976 + 0.297871i
\(966\) 0 0
\(967\) 22.2462i 0.715390i 0.933838 + 0.357695i \(0.116437\pi\)
−0.933838 + 0.357695i \(0.883563\pi\)
\(968\) 0 0
\(969\) 28.4124 + 16.4039i 0.912736 + 0.526969i
\(970\) 0 0
\(971\) −15.8423 + 27.4397i −0.508405 + 0.880582i 0.491548 + 0.870850i \(0.336431\pi\)
−0.999953 + 0.00973207i \(0.996902\pi\)
\(972\) 0 0
\(973\) 43.6679 25.2116i 1.39993 0.808248i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.2036 + 7.62311i −0.422421 + 0.243885i −0.696113 0.717933i \(-0.745089\pi\)
0.273692 + 0.961817i \(0.411755\pi\)
\(978\) 0 0
\(979\) −12.4039 + 21.4842i −0.396430 + 0.686637i
\(980\) 0 0
\(981\) −25.4346 14.6847i −0.812063 0.468845i
\(982\) 0 0
\(983\) 40.9848i 1.30721i −0.756834 0.653607i \(-0.773255\pi\)
0.756834 0.653607i \(-0.226745\pi\)
\(984\) 0 0
\(985\) −4.12311 7.14143i −0.131373 0.227545i
\(986\) 0 0
\(987\) 26.2462 0.835426
\(988\) 0 0
\(989\) 24.1771 0.768786
\(990\) 0 0
\(991\) −28.6501 49.6234i −0.910100 1.57634i −0.813921 0.580976i \(-0.802671\pi\)
−0.0961794 0.995364i \(-0.530662\pi\)
\(992\) 0 0
\(993\) 56.1771i 1.78273i
\(994\) 0 0
\(995\) −29.1119 16.8078i −0.922909 0.532842i
\(996\) 0 0
\(997\) 13.3769 23.1695i 0.423650 0.733784i −0.572643 0.819805i \(-0.694082\pi\)
0.996293 + 0.0860208i \(0.0274151\pi\)
\(998\) 0 0
\(999\) 1.24573 0.719224i 0.0394132 0.0227552i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1352.2.o.c.361.1 8
13.2 odd 12 1352.2.a.f.1.2 2
13.3 even 3 1352.2.f.d.337.3 4
13.4 even 6 inner 1352.2.o.c.1161.2 8
13.5 odd 4 104.2.i.b.81.1 yes 4
13.6 odd 12 104.2.i.b.9.1 4
13.7 odd 12 1352.2.i.e.529.1 4
13.8 odd 4 1352.2.i.e.1329.1 4
13.9 even 3 inner 1352.2.o.c.1161.1 8
13.10 even 6 1352.2.f.d.337.4 4
13.11 odd 12 1352.2.a.h.1.2 2
13.12 even 2 inner 1352.2.o.c.361.2 8
39.5 even 4 936.2.t.f.289.2 4
39.32 even 12 936.2.t.f.217.2 4
52.3 odd 6 2704.2.f.l.337.1 4
52.11 even 12 2704.2.a.r.1.1 2
52.15 even 12 2704.2.a.q.1.1 2
52.19 even 12 208.2.i.e.113.2 4
52.23 odd 6 2704.2.f.l.337.2 4
52.31 even 4 208.2.i.e.81.2 4
104.5 odd 4 832.2.i.o.705.2 4
104.19 even 12 832.2.i.l.321.1 4
104.45 odd 12 832.2.i.o.321.2 4
104.83 even 4 832.2.i.l.705.1 4
156.71 odd 12 1872.2.t.s.1153.2 4
156.83 odd 4 1872.2.t.s.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.i.b.9.1 4 13.6 odd 12
104.2.i.b.81.1 yes 4 13.5 odd 4
208.2.i.e.81.2 4 52.31 even 4
208.2.i.e.113.2 4 52.19 even 12
832.2.i.l.321.1 4 104.19 even 12
832.2.i.l.705.1 4 104.83 even 4
832.2.i.o.321.2 4 104.45 odd 12
832.2.i.o.705.2 4 104.5 odd 4
936.2.t.f.217.2 4 39.32 even 12
936.2.t.f.289.2 4 39.5 even 4
1352.2.a.f.1.2 2 13.2 odd 12
1352.2.a.h.1.2 2 13.11 odd 12
1352.2.f.d.337.3 4 13.3 even 3
1352.2.f.d.337.4 4 13.10 even 6
1352.2.i.e.529.1 4 13.7 odd 12
1352.2.i.e.1329.1 4 13.8 odd 4
1352.2.o.c.361.1 8 1.1 even 1 trivial
1352.2.o.c.361.2 8 13.12 even 2 inner
1352.2.o.c.1161.1 8 13.9 even 3 inner
1352.2.o.c.1161.2 8 13.4 even 6 inner
1872.2.t.s.289.2 4 156.83 odd 4
1872.2.t.s.1153.2 4 156.71 odd 12
2704.2.a.q.1.1 2 52.15 even 12
2704.2.a.r.1.1 2 52.11 even 12
2704.2.f.l.337.1 4 52.3 odd 6
2704.2.f.l.337.2 4 52.23 odd 6