L(s) = 1 | + (−1.28 − 2.21i)3-s − 3.56i·5-s + (−2.21 − 1.28i)7-s + (−1.78 + 3.08i)9-s + (−2.21 + 1.28i)11-s + (−7.90 + 4.56i)15-s + (−2.5 + 4.33i)17-s + (2.21 + 1.28i)19-s + 6.56i·21-s + (−1.84 − 3.19i)23-s − 7.68·25-s + 1.43·27-s + (2.5 + 4.33i)29-s − 8i·31-s + (5.68 + 3.28i)33-s + ⋯ |
L(s) = 1 | + (−0.739 − 1.28i)3-s − 1.59i·5-s + (−0.838 − 0.484i)7-s + (−0.593 + 1.02i)9-s + (−0.668 + 0.386i)11-s + (−2.03 + 1.17i)15-s + (−0.606 + 1.05i)17-s + (0.508 + 0.293i)19-s + 1.43i·21-s + (−0.384 − 0.665i)23-s − 1.53·25-s + 0.276·27-s + (0.464 + 0.804i)29-s − 1.43i·31-s + (0.989 + 0.571i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 - 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.252 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2254628174\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2254628174\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (1.28 + 2.21i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + 3.56iT - 5T^{2} \) |
| 7 | \( 1 + (2.21 + 1.28i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.21 - 1.28i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (2.5 - 4.33i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.21 - 1.28i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.84 + 3.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.5 - 4.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 8iT - 31T^{2} \) |
| 37 | \( 1 + (-0.866 + 0.5i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-8.00 + 4.62i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.28 - 5.68i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 4iT - 47T^{2} \) |
| 53 | \( 1 - 4.43T + 53T^{2} \) |
| 59 | \( 1 + (2.21 + 1.28i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.62 + 6.27i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.17 - 4.71i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (6.65 + 3.84i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 1.31iT - 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 - 2.24iT - 83T^{2} \) |
| 89 | \( 1 + (-8.38 + 4.84i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.43 + 1.40i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.830922338437435575912480408624, −8.026332247874949491495064369999, −7.36549294874960361172972768265, −6.38959427862682783812987744329, −5.79084398110462558147727903935, −4.85931046285219653705180319813, −3.91386117800414127998395683228, −2.21410168098523973987471451964, −1.12175117746517501257456016481, −0.11311401418781187692683725998,
2.70679949368567254106977845223, 3.16747372757871725369622688526, 4.28127947334557937436318880837, 5.34054460216394905028266135705, 6.03157232132997939385868546169, 6.80076080752900102322595249755, 7.64109814708583016989486841491, 8.982064479955757576568796334808, 9.715248456614793907058923309899, 10.24827248424488181268995019485