Defining parameters
Level: | \( N \) | \(=\) | \( 832 = 2^{6} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 832.i (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(832, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 248 | 60 | 188 |
Cusp forms | 200 | 52 | 148 |
Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(832, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(832, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)