Properties

Label 832.2.i
Level $832$
Weight $2$
Character orbit 832.i
Rep. character $\chi_{832}(321,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $52$
Newform subspaces $17$
Sturm bound $224$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 17 \)
Sturm bound: \(224\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(832, [\chi])\).

Total New Old
Modular forms 248 60 188
Cusp forms 200 52 148
Eisenstein series 48 8 40

Trace form

\( 52 q + 8 q^{5} - 24 q^{9} + O(q^{10}) \) \( 52 q + 8 q^{5} - 24 q^{9} + 12 q^{13} + 2 q^{17} + 12 q^{21} + 20 q^{25} + 2 q^{29} + 10 q^{33} + 18 q^{37} + 2 q^{41} - 16 q^{49} + 8 q^{53} + 4 q^{57} - 6 q^{61} - 12 q^{65} - 10 q^{69} - 20 q^{77} - 18 q^{81} + 12 q^{85} + 6 q^{89} - 48 q^{93} - 10 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(832, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
832.2.i.a 832.i 13.c $2$ $6.644$ \(\Q(\sqrt{-3}) \) None 52.2.e.a \(0\) \(-3\) \(-4\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-3+3\zeta_{6})q^{3}-2q^{5}+\zeta_{6}q^{7}-6\zeta_{6}q^{9}+\cdots\)
832.2.i.b 832.i 13.c $2$ $6.644$ \(\Q(\sqrt{-3}) \) None 416.2.i.a \(0\) \(-2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{3}-q^{5}-\zeta_{6}q^{9}+(-4+\cdots)q^{11}+\cdots\)
832.2.i.c 832.i 13.c $2$ $6.644$ \(\Q(\sqrt{-3}) \) None 52.2.e.b \(0\) \(-2\) \(6\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{3}+3q^{5}+4\zeta_{6}q^{7}+\cdots\)
832.2.i.d 832.i 13.c $2$ $6.644$ \(\Q(\sqrt{-3}) \) None 104.2.i.a \(0\) \(-1\) \(-4\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}-2q^{5}-\zeta_{6}q^{7}+2\zeta_{6}q^{9}+\cdots\)
832.2.i.e 832.i 13.c $2$ $6.644$ \(\Q(\sqrt{-3}) \) None 26.2.c.a \(0\) \(0\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{5}-4\zeta_{6}q^{7}+3\zeta_{6}q^{9}+(4-4\zeta_{6})q^{11}+\cdots\)
832.2.i.f 832.i 13.c $2$ $6.644$ \(\Q(\sqrt{-3}) \) None 26.2.c.a \(0\) \(0\) \(2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{5}+4\zeta_{6}q^{7}+3\zeta_{6}q^{9}+(-4+4\zeta_{6})q^{11}+\cdots\)
832.2.i.g 832.i 13.c $2$ $6.644$ \(\Q(\sqrt{-3}) \) None 104.2.i.a \(0\) \(1\) \(-4\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{3}-2q^{5}+\zeta_{6}q^{7}+2\zeta_{6}q^{9}+\cdots\)
832.2.i.h 832.i 13.c $2$ $6.644$ \(\Q(\sqrt{-3}) \) None 416.2.i.a \(0\) \(2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{3}-q^{5}-\zeta_{6}q^{9}+(4-4\zeta_{6})q^{11}+\cdots\)
832.2.i.i 832.i 13.c $2$ $6.644$ \(\Q(\sqrt{-3}) \) None 52.2.e.b \(0\) \(2\) \(6\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{3}+3q^{5}-4\zeta_{6}q^{7}-\zeta_{6}q^{9}+\cdots\)
832.2.i.j 832.i 13.c $2$ $6.644$ \(\Q(\sqrt{-3}) \) None 52.2.e.a \(0\) \(3\) \(-4\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(3-3\zeta_{6})q^{3}-2q^{5}-\zeta_{6}q^{7}-6\zeta_{6}q^{9}+\cdots\)
832.2.i.k 832.i 13.c $4$ $6.644$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 416.2.i.c \(0\) \(-2\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{1}-\beta _{2})q^{3}-2\beta _{3}q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
832.2.i.l 832.i 13.c $4$ $6.644$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 104.2.i.b \(0\) \(-1\) \(6\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{3}+(1-\beta _{3})q^{5}+(\beta _{1}+\beta _{3})q^{7}+\cdots\)
832.2.i.m 832.i 13.c $4$ $6.644$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-1}) \) 416.2.i.e \(0\) \(0\) \(-4\) \(0\) $\mathrm{U}(1)[D_{3}]$ \(q+(\beta_{3}-2\beta_1-1)q^{5}+(-3\beta_{2}+3)q^{9}+\cdots\)
832.2.i.n 832.i 13.c $4$ $6.644$ \(\Q(\sqrt{-3}, \sqrt{11})\) None 416.2.i.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{3}+(\beta _{1}+\beta _{3})q^{7}+8\beta _{2}q^{9}+\beta _{1}q^{11}+\cdots\)
832.2.i.o 832.i 13.c $4$ $6.644$ \(\Q(\sqrt{-3}, \sqrt{17})\) None 104.2.i.b \(0\) \(1\) \(6\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{3}+(1-\beta _{3})q^{5}+(-\beta _{1}-\beta _{3})q^{7}+\cdots\)
832.2.i.p 832.i 13.c $4$ $6.644$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 416.2.i.c \(0\) \(2\) \(0\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{1}+\beta _{2})q^{3}+2\beta _{3}q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
832.2.i.q 832.i 13.c $8$ $6.644$ 8.0.6927565824.3 None 416.2.i.g \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{2}-\beta _{7})q^{3}+(1-\beta _{3})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(832, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)