Properties

Label 8281.2.a.ca.1.4
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8281,2,Mod(1,8281)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8281, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8281.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-2,1,4,1,-9,0,-3,-3,4,-4,5,0,0,2,-8,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6995813.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 6x^{4} + 4x^{3} + 7x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.874884\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.268125 q^{2} +1.14301 q^{3} -1.92811 q^{4} +2.56175 q^{5} -0.306470 q^{6} +1.05323 q^{8} -1.69353 q^{9} -0.686871 q^{10} +3.94600 q^{11} -2.20385 q^{12} +2.92811 q^{15} +3.57382 q^{16} -0.785100 q^{17} +0.454078 q^{18} +7.49527 q^{19} -4.93934 q^{20} -1.05802 q^{22} -7.95518 q^{23} +1.20385 q^{24} +1.56259 q^{25} -5.36475 q^{27} +2.35173 q^{29} -0.785100 q^{30} +2.55437 q^{31} -3.06468 q^{32} +4.51032 q^{33} +0.210505 q^{34} +3.26531 q^{36} +6.75716 q^{37} -2.00967 q^{38} +2.69810 q^{40} +2.43747 q^{41} -2.24946 q^{43} -7.60832 q^{44} -4.33841 q^{45} +2.13298 q^{46} -1.31655 q^{47} +4.08491 q^{48} -0.418969 q^{50} -0.897376 q^{51} +9.27954 q^{53} +1.43842 q^{54} +10.1087 q^{55} +8.56716 q^{57} -0.630558 q^{58} +8.96671 q^{59} -5.64571 q^{60} -9.44547 q^{61} -0.684890 q^{62} -6.32592 q^{64} -1.20933 q^{66} -1.35256 q^{67} +1.51376 q^{68} -9.09284 q^{69} +12.3162 q^{71} -1.78367 q^{72} -0.768590 q^{73} -1.81176 q^{74} +1.78605 q^{75} -14.4517 q^{76} +6.19284 q^{79} +9.15525 q^{80} -1.05136 q^{81} -0.653548 q^{82} +1.07292 q^{83} -2.01123 q^{85} +0.603137 q^{86} +2.68805 q^{87} +4.15603 q^{88} -7.66299 q^{89} +1.16324 q^{90} +15.3384 q^{92} +2.91966 q^{93} +0.353001 q^{94} +19.2010 q^{95} -3.50296 q^{96} +2.37202 q^{97} -6.68267 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + q^{3} + 4 q^{4} + q^{5} - 9 q^{6} - 3 q^{8} - 3 q^{9} + 4 q^{10} - 4 q^{11} + 5 q^{12} + 2 q^{15} - 8 q^{16} + 5 q^{17} - 3 q^{18} - q^{19} - q^{20} + 5 q^{22} + q^{23} - 11 q^{24}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.268125 −0.189593 −0.0947966 0.995497i \(-0.530220\pi\)
−0.0947966 + 0.995497i \(0.530220\pi\)
\(3\) 1.14301 0.659917 0.329958 0.943996i \(-0.392965\pi\)
0.329958 + 0.943996i \(0.392965\pi\)
\(4\) −1.92811 −0.964054
\(5\) 2.56175 1.14565 0.572826 0.819677i \(-0.305847\pi\)
0.572826 + 0.819677i \(0.305847\pi\)
\(6\) −0.306470 −0.125116
\(7\) 0 0
\(8\) 1.05323 0.372371
\(9\) −1.69353 −0.564510
\(10\) −0.686871 −0.217208
\(11\) 3.94600 1.18976 0.594882 0.803813i \(-0.297199\pi\)
0.594882 + 0.803813i \(0.297199\pi\)
\(12\) −2.20385 −0.636195
\(13\) 0 0
\(14\) 0 0
\(15\) 2.92811 0.756034
\(16\) 3.57382 0.893455
\(17\) −0.785100 −0.190415 −0.0952073 0.995457i \(-0.530351\pi\)
−0.0952073 + 0.995457i \(0.530351\pi\)
\(18\) 0.454078 0.107027
\(19\) 7.49527 1.71953 0.859767 0.510687i \(-0.170609\pi\)
0.859767 + 0.510687i \(0.170609\pi\)
\(20\) −4.93934 −1.10447
\(21\) 0 0
\(22\) −1.05802 −0.225571
\(23\) −7.95518 −1.65877 −0.829384 0.558678i \(-0.811309\pi\)
−0.829384 + 0.558678i \(0.811309\pi\)
\(24\) 1.20385 0.245734
\(25\) 1.56259 0.312518
\(26\) 0 0
\(27\) −5.36475 −1.03245
\(28\) 0 0
\(29\) 2.35173 0.436705 0.218353 0.975870i \(-0.429932\pi\)
0.218353 + 0.975870i \(0.429932\pi\)
\(30\) −0.785100 −0.143339
\(31\) 2.55437 0.458778 0.229389 0.973335i \(-0.426327\pi\)
0.229389 + 0.973335i \(0.426327\pi\)
\(32\) −3.06468 −0.541764
\(33\) 4.51032 0.785145
\(34\) 0.210505 0.0361013
\(35\) 0 0
\(36\) 3.26531 0.544219
\(37\) 6.75716 1.11087 0.555435 0.831560i \(-0.312552\pi\)
0.555435 + 0.831560i \(0.312552\pi\)
\(38\) −2.00967 −0.326012
\(39\) 0 0
\(40\) 2.69810 0.426608
\(41\) 2.43747 0.380669 0.190335 0.981719i \(-0.439043\pi\)
0.190335 + 0.981719i \(0.439043\pi\)
\(42\) 0 0
\(43\) −2.24946 −0.343039 −0.171520 0.985181i \(-0.554868\pi\)
−0.171520 + 0.985181i \(0.554868\pi\)
\(44\) −7.60832 −1.14700
\(45\) −4.33841 −0.646732
\(46\) 2.13298 0.314491
\(47\) −1.31655 −0.192039 −0.0960195 0.995379i \(-0.530611\pi\)
−0.0960195 + 0.995379i \(0.530611\pi\)
\(48\) 4.08491 0.589606
\(49\) 0 0
\(50\) −0.418969 −0.0592512
\(51\) −0.897376 −0.125658
\(52\) 0 0
\(53\) 9.27954 1.27464 0.637321 0.770598i \(-0.280042\pi\)
0.637321 + 0.770598i \(0.280042\pi\)
\(54\) 1.43842 0.195745
\(55\) 10.1087 1.36306
\(56\) 0 0
\(57\) 8.56716 1.13475
\(58\) −0.630558 −0.0827963
\(59\) 8.96671 1.16737 0.583683 0.811982i \(-0.301611\pi\)
0.583683 + 0.811982i \(0.301611\pi\)
\(60\) −5.64571 −0.728858
\(61\) −9.44547 −1.20937 −0.604684 0.796465i \(-0.706701\pi\)
−0.604684 + 0.796465i \(0.706701\pi\)
\(62\) −0.684890 −0.0869811
\(63\) 0 0
\(64\) −6.32592 −0.790741
\(65\) 0 0
\(66\) −1.20933 −0.148858
\(67\) −1.35256 −0.165242 −0.0826209 0.996581i \(-0.526329\pi\)
−0.0826209 + 0.996581i \(0.526329\pi\)
\(68\) 1.51376 0.183570
\(69\) −9.09284 −1.09465
\(70\) 0 0
\(71\) 12.3162 1.46166 0.730829 0.682560i \(-0.239133\pi\)
0.730829 + 0.682560i \(0.239133\pi\)
\(72\) −1.78367 −0.210207
\(73\) −0.768590 −0.0899567 −0.0449783 0.998988i \(-0.514322\pi\)
−0.0449783 + 0.998988i \(0.514322\pi\)
\(74\) −1.81176 −0.210613
\(75\) 1.78605 0.206236
\(76\) −14.4517 −1.65772
\(77\) 0 0
\(78\) 0 0
\(79\) 6.19284 0.696749 0.348375 0.937355i \(-0.386734\pi\)
0.348375 + 0.937355i \(0.386734\pi\)
\(80\) 9.15525 1.02359
\(81\) −1.05136 −0.116818
\(82\) −0.653548 −0.0721723
\(83\) 1.07292 0.117768 0.0588841 0.998265i \(-0.481246\pi\)
0.0588841 + 0.998265i \(0.481246\pi\)
\(84\) 0 0
\(85\) −2.01123 −0.218149
\(86\) 0.603137 0.0650379
\(87\) 2.68805 0.288189
\(88\) 4.15603 0.443034
\(89\) −7.66299 −0.812275 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(90\) 1.16324 0.122616
\(91\) 0 0
\(92\) 15.3384 1.59914
\(93\) 2.91966 0.302755
\(94\) 0.353001 0.0364093
\(95\) 19.2010 1.96999
\(96\) −3.50296 −0.357519
\(97\) 2.37202 0.240842 0.120421 0.992723i \(-0.461576\pi\)
0.120421 + 0.992723i \(0.461576\pi\)
\(98\) 0 0
\(99\) −6.68267 −0.671634
\(100\) −3.01284 −0.301284
\(101\) 0.797330 0.0793373 0.0396686 0.999213i \(-0.487370\pi\)
0.0396686 + 0.999213i \(0.487370\pi\)
\(102\) 0.240609 0.0238239
\(103\) −2.16618 −0.213440 −0.106720 0.994289i \(-0.534035\pi\)
−0.106720 + 0.994289i \(0.534035\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2.48808 −0.241664
\(107\) −11.5262 −1.11428 −0.557141 0.830418i \(-0.688102\pi\)
−0.557141 + 0.830418i \(0.688102\pi\)
\(108\) 10.3438 0.995334
\(109\) 8.07823 0.773754 0.386877 0.922131i \(-0.373554\pi\)
0.386877 + 0.922131i \(0.373554\pi\)
\(110\) −2.71039 −0.258426
\(111\) 7.72349 0.733081
\(112\) 0 0
\(113\) 8.04135 0.756467 0.378233 0.925710i \(-0.376532\pi\)
0.378233 + 0.925710i \(0.376532\pi\)
\(114\) −2.29707 −0.215141
\(115\) −20.3792 −1.90037
\(116\) −4.53439 −0.421007
\(117\) 0 0
\(118\) −2.40420 −0.221325
\(119\) 0 0
\(120\) 3.08396 0.281526
\(121\) 4.57093 0.415539
\(122\) 2.53257 0.229288
\(123\) 2.78605 0.251210
\(124\) −4.92510 −0.442287
\(125\) −8.80581 −0.787615
\(126\) 0 0
\(127\) 1.78805 0.158663 0.0793317 0.996848i \(-0.474721\pi\)
0.0793317 + 0.996848i \(0.474721\pi\)
\(128\) 7.82550 0.691683
\(129\) −2.57115 −0.226377
\(130\) 0 0
\(131\) 6.39091 0.558376 0.279188 0.960236i \(-0.409935\pi\)
0.279188 + 0.960236i \(0.409935\pi\)
\(132\) −8.69638 −0.756923
\(133\) 0 0
\(134\) 0.362656 0.0313287
\(135\) −13.7432 −1.18282
\(136\) −0.826887 −0.0709050
\(137\) 10.0365 0.857480 0.428740 0.903428i \(-0.358958\pi\)
0.428740 + 0.903428i \(0.358958\pi\)
\(138\) 2.43802 0.207538
\(139\) 5.54557 0.470369 0.235184 0.971951i \(-0.424431\pi\)
0.235184 + 0.971951i \(0.424431\pi\)
\(140\) 0 0
\(141\) −1.50483 −0.126730
\(142\) −3.30227 −0.277121
\(143\) 0 0
\(144\) −6.05238 −0.504365
\(145\) 6.02455 0.500312
\(146\) 0.206078 0.0170552
\(147\) 0 0
\(148\) −13.0285 −1.07094
\(149\) 18.4651 1.51272 0.756359 0.654157i \(-0.226976\pi\)
0.756359 + 0.654157i \(0.226976\pi\)
\(150\) −0.478886 −0.0391009
\(151\) 1.60736 0.130805 0.0654024 0.997859i \(-0.479167\pi\)
0.0654024 + 0.997859i \(0.479167\pi\)
\(152\) 7.89421 0.640305
\(153\) 1.32959 0.107491
\(154\) 0 0
\(155\) 6.54366 0.525600
\(156\) 0 0
\(157\) 1.64593 0.131360 0.0656799 0.997841i \(-0.479078\pi\)
0.0656799 + 0.997841i \(0.479078\pi\)
\(158\) −1.66046 −0.132099
\(159\) 10.6066 0.841158
\(160\) −7.85096 −0.620673
\(161\) 0 0
\(162\) 0.281897 0.0221479
\(163\) −6.54819 −0.512894 −0.256447 0.966558i \(-0.582552\pi\)
−0.256447 + 0.966558i \(0.582552\pi\)
\(164\) −4.69971 −0.366986
\(165\) 11.5543 0.899503
\(166\) −0.287677 −0.0223281
\(167\) −9.54880 −0.738908 −0.369454 0.929249i \(-0.620455\pi\)
−0.369454 + 0.929249i \(0.620455\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0.539262 0.0413595
\(171\) −12.6935 −0.970694
\(172\) 4.33720 0.330709
\(173\) −11.1316 −0.846322 −0.423161 0.906054i \(-0.639080\pi\)
−0.423161 + 0.906054i \(0.639080\pi\)
\(174\) −0.720733 −0.0546386
\(175\) 0 0
\(176\) 14.1023 1.06300
\(177\) 10.2490 0.770364
\(178\) 2.05464 0.154002
\(179\) −12.6435 −0.945017 −0.472508 0.881326i \(-0.656651\pi\)
−0.472508 + 0.881326i \(0.656651\pi\)
\(180\) 8.36493 0.623485
\(181\) −14.9158 −1.10868 −0.554341 0.832289i \(-0.687030\pi\)
−0.554341 + 0.832289i \(0.687030\pi\)
\(182\) 0 0
\(183\) −10.7963 −0.798082
\(184\) −8.37859 −0.617678
\(185\) 17.3102 1.27267
\(186\) −0.782836 −0.0574003
\(187\) −3.09801 −0.226549
\(188\) 2.53846 0.185136
\(189\) 0 0
\(190\) −5.14829 −0.373496
\(191\) −14.1306 −1.02245 −0.511226 0.859447i \(-0.670808\pi\)
−0.511226 + 0.859447i \(0.670808\pi\)
\(192\) −7.23059 −0.521823
\(193\) 3.89454 0.280335 0.140167 0.990128i \(-0.455236\pi\)
0.140167 + 0.990128i \(0.455236\pi\)
\(194\) −0.635998 −0.0456620
\(195\) 0 0
\(196\) 0 0
\(197\) −11.7089 −0.834224 −0.417112 0.908855i \(-0.636958\pi\)
−0.417112 + 0.908855i \(0.636958\pi\)
\(198\) 1.79179 0.127337
\(199\) −3.49684 −0.247884 −0.123942 0.992289i \(-0.539554\pi\)
−0.123942 + 0.992289i \(0.539554\pi\)
\(200\) 1.64576 0.116373
\(201\) −1.54599 −0.109046
\(202\) −0.213784 −0.0150418
\(203\) 0 0
\(204\) 1.73024 0.121141
\(205\) 6.24421 0.436114
\(206\) 0.580807 0.0404667
\(207\) 13.4723 0.936392
\(208\) 0 0
\(209\) 29.5764 2.04584
\(210\) 0 0
\(211\) 19.0052 1.30837 0.654184 0.756335i \(-0.273012\pi\)
0.654184 + 0.756335i \(0.273012\pi\)
\(212\) −17.8920 −1.22882
\(213\) 14.0775 0.964573
\(214\) 3.09047 0.211260
\(215\) −5.76256 −0.393004
\(216\) −5.65029 −0.384453
\(217\) 0 0
\(218\) −2.16598 −0.146698
\(219\) −0.878506 −0.0593639
\(220\) −19.4907 −1.31406
\(221\) 0 0
\(222\) −2.07086 −0.138987
\(223\) 11.9662 0.801317 0.400658 0.916228i \(-0.368781\pi\)
0.400658 + 0.916228i \(0.368781\pi\)
\(224\) 0 0
\(225\) −2.64629 −0.176419
\(226\) −2.15609 −0.143421
\(227\) −15.3842 −1.02108 −0.510542 0.859853i \(-0.670555\pi\)
−0.510542 + 0.859853i \(0.670555\pi\)
\(228\) −16.5184 −1.09396
\(229\) −8.66168 −0.572380 −0.286190 0.958173i \(-0.592389\pi\)
−0.286190 + 0.958173i \(0.592389\pi\)
\(230\) 5.46418 0.360297
\(231\) 0 0
\(232\) 2.47690 0.162616
\(233\) 20.2507 1.32667 0.663333 0.748325i \(-0.269141\pi\)
0.663333 + 0.748325i \(0.269141\pi\)
\(234\) 0 0
\(235\) −3.37269 −0.220010
\(236\) −17.2888 −1.12540
\(237\) 7.07847 0.459796
\(238\) 0 0
\(239\) 16.5526 1.07070 0.535350 0.844630i \(-0.320180\pi\)
0.535350 + 0.844630i \(0.320180\pi\)
\(240\) 10.4645 0.675483
\(241\) 16.4008 1.05647 0.528233 0.849100i \(-0.322855\pi\)
0.528233 + 0.849100i \(0.322855\pi\)
\(242\) −1.22558 −0.0787834
\(243\) 14.8925 0.955356
\(244\) 18.2119 1.16590
\(245\) 0 0
\(246\) −0.747011 −0.0476277
\(247\) 0 0
\(248\) 2.69032 0.170836
\(249\) 1.22636 0.0777172
\(250\) 2.36106 0.149326
\(251\) 20.4307 1.28958 0.644788 0.764362i \(-0.276946\pi\)
0.644788 + 0.764362i \(0.276946\pi\)
\(252\) 0 0
\(253\) −31.3911 −1.97354
\(254\) −0.479420 −0.0300815
\(255\) −2.29886 −0.143960
\(256\) 10.5536 0.659602
\(257\) −13.7779 −0.859442 −0.429721 0.902962i \(-0.641388\pi\)
−0.429721 + 0.902962i \(0.641388\pi\)
\(258\) 0.689391 0.0429196
\(259\) 0 0
\(260\) 0 0
\(261\) −3.98272 −0.246524
\(262\) −1.71356 −0.105864
\(263\) 25.9173 1.59813 0.799065 0.601244i \(-0.205328\pi\)
0.799065 + 0.601244i \(0.205328\pi\)
\(264\) 4.75038 0.292366
\(265\) 23.7719 1.46030
\(266\) 0 0
\(267\) −8.75887 −0.536034
\(268\) 2.60789 0.159302
\(269\) 30.0666 1.83319 0.916596 0.399814i \(-0.130925\pi\)
0.916596 + 0.399814i \(0.130925\pi\)
\(270\) 3.68489 0.224255
\(271\) −14.4505 −0.877808 −0.438904 0.898534i \(-0.644633\pi\)
−0.438904 + 0.898534i \(0.644633\pi\)
\(272\) −2.80581 −0.170127
\(273\) 0 0
\(274\) −2.69105 −0.162572
\(275\) 6.16598 0.371822
\(276\) 17.5320 1.05530
\(277\) −15.3255 −0.920819 −0.460409 0.887707i \(-0.652297\pi\)
−0.460409 + 0.887707i \(0.652297\pi\)
\(278\) −1.48691 −0.0891787
\(279\) −4.32590 −0.258985
\(280\) 0 0
\(281\) 5.29279 0.315741 0.157871 0.987460i \(-0.449537\pi\)
0.157871 + 0.987460i \(0.449537\pi\)
\(282\) 0.403483 0.0240271
\(283\) 30.7845 1.82995 0.914975 0.403511i \(-0.132210\pi\)
0.914975 + 0.403511i \(0.132210\pi\)
\(284\) −23.7469 −1.40912
\(285\) 21.9470 1.30003
\(286\) 0 0
\(287\) 0 0
\(288\) 5.19013 0.305831
\(289\) −16.3836 −0.963742
\(290\) −1.61533 −0.0948557
\(291\) 2.71124 0.158935
\(292\) 1.48193 0.0867231
\(293\) 17.5173 1.02337 0.511685 0.859173i \(-0.329021\pi\)
0.511685 + 0.859173i \(0.329021\pi\)
\(294\) 0 0
\(295\) 22.9705 1.33739
\(296\) 7.11681 0.413656
\(297\) −21.1693 −1.22837
\(298\) −4.95095 −0.286801
\(299\) 0 0
\(300\) −3.44370 −0.198822
\(301\) 0 0
\(302\) −0.430973 −0.0247997
\(303\) 0.911355 0.0523560
\(304\) 26.7868 1.53633
\(305\) −24.1970 −1.38551
\(306\) −0.356497 −0.0203796
\(307\) 8.63573 0.492867 0.246434 0.969160i \(-0.420741\pi\)
0.246434 + 0.969160i \(0.420741\pi\)
\(308\) 0 0
\(309\) −2.47596 −0.140852
\(310\) −1.75452 −0.0996501
\(311\) 16.4226 0.931240 0.465620 0.884985i \(-0.345831\pi\)
0.465620 + 0.884985i \(0.345831\pi\)
\(312\) 0 0
\(313\) −10.0462 −0.567843 −0.283921 0.958848i \(-0.591636\pi\)
−0.283921 + 0.958848i \(0.591636\pi\)
\(314\) −0.441316 −0.0249049
\(315\) 0 0
\(316\) −11.9405 −0.671704
\(317\) 10.1450 0.569799 0.284899 0.958557i \(-0.408040\pi\)
0.284899 + 0.958557i \(0.408040\pi\)
\(318\) −2.84390 −0.159478
\(319\) 9.27992 0.519576
\(320\) −16.2055 −0.905913
\(321\) −13.1746 −0.735333
\(322\) 0 0
\(323\) −5.88454 −0.327424
\(324\) 2.02714 0.112619
\(325\) 0 0
\(326\) 1.75573 0.0972411
\(327\) 9.23349 0.510613
\(328\) 2.56721 0.141750
\(329\) 0 0
\(330\) −3.09801 −0.170540
\(331\) 2.31916 0.127473 0.0637363 0.997967i \(-0.479698\pi\)
0.0637363 + 0.997967i \(0.479698\pi\)
\(332\) −2.06871 −0.113535
\(333\) −11.4434 −0.627097
\(334\) 2.56027 0.140092
\(335\) −3.46493 −0.189309
\(336\) 0 0
\(337\) −15.9998 −0.871565 −0.435783 0.900052i \(-0.643528\pi\)
−0.435783 + 0.900052i \(0.643528\pi\)
\(338\) 0 0
\(339\) 9.19133 0.499205
\(340\) 3.87788 0.210307
\(341\) 10.0795 0.545837
\(342\) 3.40344 0.184037
\(343\) 0 0
\(344\) −2.36919 −0.127738
\(345\) −23.2936 −1.25409
\(346\) 2.98467 0.160457
\(347\) −22.8208 −1.22509 −0.612543 0.790437i \(-0.709853\pi\)
−0.612543 + 0.790437i \(0.709853\pi\)
\(348\) −5.18285 −0.277830
\(349\) 22.7022 1.21522 0.607612 0.794234i \(-0.292128\pi\)
0.607612 + 0.794234i \(0.292128\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −12.0932 −0.644572
\(353\) 27.2644 1.45114 0.725568 0.688150i \(-0.241577\pi\)
0.725568 + 0.688150i \(0.241577\pi\)
\(354\) −2.74802 −0.146056
\(355\) 31.5510 1.67455
\(356\) 14.7751 0.783077
\(357\) 0 0
\(358\) 3.39003 0.179169
\(359\) −14.4262 −0.761385 −0.380692 0.924702i \(-0.624314\pi\)
−0.380692 + 0.924702i \(0.624314\pi\)
\(360\) −4.56932 −0.240824
\(361\) 37.1791 1.95679
\(362\) 3.99930 0.210199
\(363\) 5.22461 0.274221
\(364\) 0 0
\(365\) −1.96894 −0.103059
\(366\) 2.89475 0.151311
\(367\) 11.3917 0.594643 0.297322 0.954777i \(-0.403907\pi\)
0.297322 + 0.954777i \(0.403907\pi\)
\(368\) −28.4304 −1.48204
\(369\) −4.12793 −0.214892
\(370\) −4.64130 −0.241289
\(371\) 0 0
\(372\) −5.62943 −0.291872
\(373\) −30.9629 −1.60320 −0.801599 0.597862i \(-0.796017\pi\)
−0.801599 + 0.597862i \(0.796017\pi\)
\(374\) 0.830653 0.0429521
\(375\) −10.0651 −0.519760
\(376\) −1.38663 −0.0715098
\(377\) 0 0
\(378\) 0 0
\(379\) 10.5866 0.543797 0.271898 0.962326i \(-0.412349\pi\)
0.271898 + 0.962326i \(0.412349\pi\)
\(380\) −37.0217 −1.89917
\(381\) 2.04375 0.104705
\(382\) 3.78876 0.193850
\(383\) −30.7517 −1.57134 −0.785668 0.618648i \(-0.787681\pi\)
−0.785668 + 0.618648i \(0.787681\pi\)
\(384\) 8.94462 0.456453
\(385\) 0 0
\(386\) −1.04422 −0.0531496
\(387\) 3.80953 0.193649
\(388\) −4.57351 −0.232185
\(389\) −16.3796 −0.830477 −0.415239 0.909713i \(-0.636302\pi\)
−0.415239 + 0.909713i \(0.636302\pi\)
\(390\) 0 0
\(391\) 6.24561 0.315854
\(392\) 0 0
\(393\) 7.30486 0.368482
\(394\) 3.13945 0.158163
\(395\) 15.8645 0.798232
\(396\) 12.8849 0.647492
\(397\) 15.8827 0.797127 0.398564 0.917141i \(-0.369509\pi\)
0.398564 + 0.917141i \(0.369509\pi\)
\(398\) 0.937591 0.0469972
\(399\) 0 0
\(400\) 5.58441 0.279221
\(401\) 6.63573 0.331373 0.165686 0.986178i \(-0.447016\pi\)
0.165686 + 0.986178i \(0.447016\pi\)
\(402\) 0.414519 0.0206743
\(403\) 0 0
\(404\) −1.53734 −0.0764855
\(405\) −2.69334 −0.133833
\(406\) 0 0
\(407\) 26.6637 1.32167
\(408\) −0.945139 −0.0467914
\(409\) −5.87235 −0.290369 −0.145184 0.989405i \(-0.546378\pi\)
−0.145184 + 0.989405i \(0.546378\pi\)
\(410\) −1.67423 −0.0826843
\(411\) 11.4719 0.565865
\(412\) 4.17663 0.205768
\(413\) 0 0
\(414\) −3.61227 −0.177533
\(415\) 2.74856 0.134921
\(416\) 0 0
\(417\) 6.33863 0.310404
\(418\) −7.93017 −0.387877
\(419\) 30.1423 1.47255 0.736274 0.676683i \(-0.236583\pi\)
0.736274 + 0.676683i \(0.236583\pi\)
\(420\) 0 0
\(421\) 40.0580 1.95231 0.976153 0.217083i \(-0.0696543\pi\)
0.976153 + 0.217083i \(0.0696543\pi\)
\(422\) −5.09576 −0.248058
\(423\) 2.22962 0.108408
\(424\) 9.77344 0.474640
\(425\) −1.22679 −0.0595079
\(426\) −3.77453 −0.182876
\(427\) 0 0
\(428\) 22.2238 1.07423
\(429\) 0 0
\(430\) 1.54509 0.0745108
\(431\) −3.91587 −0.188621 −0.0943104 0.995543i \(-0.530065\pi\)
−0.0943104 + 0.995543i \(0.530065\pi\)
\(432\) −19.1726 −0.922445
\(433\) 40.7925 1.96036 0.980182 0.198100i \(-0.0634770\pi\)
0.980182 + 0.198100i \(0.0634770\pi\)
\(434\) 0 0
\(435\) 6.88612 0.330164
\(436\) −15.5757 −0.745941
\(437\) −59.6262 −2.85231
\(438\) 0.235549 0.0112550
\(439\) 25.5623 1.22002 0.610010 0.792394i \(-0.291165\pi\)
0.610010 + 0.792394i \(0.291165\pi\)
\(440\) 10.6467 0.507563
\(441\) 0 0
\(442\) 0 0
\(443\) −27.4564 −1.30449 −0.652247 0.758007i \(-0.726173\pi\)
−0.652247 + 0.758007i \(0.726173\pi\)
\(444\) −14.8917 −0.706730
\(445\) −19.6307 −0.930584
\(446\) −3.20844 −0.151924
\(447\) 21.1057 0.998267
\(448\) 0 0
\(449\) −14.8036 −0.698626 −0.349313 0.937006i \(-0.613585\pi\)
−0.349313 + 0.937006i \(0.613585\pi\)
\(450\) 0.709537 0.0334479
\(451\) 9.61827 0.452907
\(452\) −15.5046 −0.729275
\(453\) 1.83722 0.0863203
\(454\) 4.12489 0.193590
\(455\) 0 0
\(456\) 9.02315 0.422548
\(457\) −0.651951 −0.0304970 −0.0152485 0.999884i \(-0.504854\pi\)
−0.0152485 + 0.999884i \(0.504854\pi\)
\(458\) 2.32241 0.108519
\(459\) 4.21186 0.196593
\(460\) 39.2933 1.83206
\(461\) −12.4955 −0.581972 −0.290986 0.956727i \(-0.593983\pi\)
−0.290986 + 0.956727i \(0.593983\pi\)
\(462\) 0 0
\(463\) −0.309503 −0.0143838 −0.00719190 0.999974i \(-0.502289\pi\)
−0.00719190 + 0.999974i \(0.502289\pi\)
\(464\) 8.40466 0.390176
\(465\) 7.47946 0.346852
\(466\) −5.42972 −0.251527
\(467\) −24.4773 −1.13268 −0.566338 0.824173i \(-0.691640\pi\)
−0.566338 + 0.824173i \(0.691640\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0.904302 0.0417123
\(471\) 1.88132 0.0866865
\(472\) 9.44396 0.434694
\(473\) −8.87637 −0.408136
\(474\) −1.89792 −0.0871742
\(475\) 11.7120 0.537384
\(476\) 0 0
\(477\) −15.7152 −0.719549
\(478\) −4.43817 −0.202997
\(479\) −8.13850 −0.371858 −0.185929 0.982563i \(-0.559529\pi\)
−0.185929 + 0.982563i \(0.559529\pi\)
\(480\) −8.97372 −0.409593
\(481\) 0 0
\(482\) −4.39746 −0.200299
\(483\) 0 0
\(484\) −8.81325 −0.400602
\(485\) 6.07653 0.275921
\(486\) −3.99306 −0.181129
\(487\) 4.60960 0.208881 0.104440 0.994531i \(-0.466695\pi\)
0.104440 + 0.994531i \(0.466695\pi\)
\(488\) −9.94821 −0.450334
\(489\) −7.48464 −0.338467
\(490\) 0 0
\(491\) 13.0189 0.587537 0.293768 0.955877i \(-0.405091\pi\)
0.293768 + 0.955877i \(0.405091\pi\)
\(492\) −5.37181 −0.242180
\(493\) −1.84634 −0.0831551
\(494\) 0 0
\(495\) −17.1194 −0.769459
\(496\) 9.12885 0.409897
\(497\) 0 0
\(498\) −0.328817 −0.0147347
\(499\) −32.3207 −1.44687 −0.723436 0.690391i \(-0.757438\pi\)
−0.723436 + 0.690391i \(0.757438\pi\)
\(500\) 16.9786 0.759304
\(501\) −10.9144 −0.487618
\(502\) −5.47799 −0.244495
\(503\) 31.8253 1.41902 0.709509 0.704696i \(-0.248917\pi\)
0.709509 + 0.704696i \(0.248917\pi\)
\(504\) 0 0
\(505\) 2.04256 0.0908929
\(506\) 8.41676 0.374170
\(507\) 0 0
\(508\) −3.44755 −0.152960
\(509\) −2.25575 −0.0999845 −0.0499922 0.998750i \(-0.515920\pi\)
−0.0499922 + 0.998750i \(0.515920\pi\)
\(510\) 0.616382 0.0272938
\(511\) 0 0
\(512\) −18.4807 −0.816739
\(513\) −40.2102 −1.77533
\(514\) 3.69420 0.162944
\(515\) −5.54922 −0.244528
\(516\) 4.95746 0.218240
\(517\) −5.19512 −0.228481
\(518\) 0 0
\(519\) −12.7236 −0.558502
\(520\) 0 0
\(521\) −10.7712 −0.471897 −0.235948 0.971766i \(-0.575820\pi\)
−0.235948 + 0.971766i \(0.575820\pi\)
\(522\) 1.06787 0.0467393
\(523\) −7.40793 −0.323926 −0.161963 0.986797i \(-0.551783\pi\)
−0.161963 + 0.986797i \(0.551783\pi\)
\(524\) −12.3224 −0.538305
\(525\) 0 0
\(526\) −6.94909 −0.302995
\(527\) −2.00543 −0.0873580
\(528\) 16.1191 0.701492
\(529\) 40.2848 1.75151
\(530\) −6.37385 −0.276862
\(531\) −15.1854 −0.658990
\(532\) 0 0
\(533\) 0 0
\(534\) 2.34847 0.101628
\(535\) −29.5274 −1.27658
\(536\) −1.42455 −0.0615313
\(537\) −14.4516 −0.623632
\(538\) −8.06161 −0.347561
\(539\) 0 0
\(540\) 26.4983 1.14031
\(541\) 32.5481 1.39935 0.699676 0.714460i \(-0.253327\pi\)
0.699676 + 0.714460i \(0.253327\pi\)
\(542\) 3.87455 0.166426
\(543\) −17.0489 −0.731638
\(544\) 2.40608 0.103160
\(545\) 20.6944 0.886453
\(546\) 0 0
\(547\) −13.4997 −0.577206 −0.288603 0.957449i \(-0.593191\pi\)
−0.288603 + 0.957449i \(0.593191\pi\)
\(548\) −19.3515 −0.826657
\(549\) 15.9962 0.682701
\(550\) −1.65325 −0.0704950
\(551\) 17.6268 0.750929
\(552\) −9.57680 −0.407616
\(553\) 0 0
\(554\) 4.10915 0.174581
\(555\) 19.7857 0.839856
\(556\) −10.6925 −0.453461
\(557\) −29.7703 −1.26141 −0.630703 0.776024i \(-0.717233\pi\)
−0.630703 + 0.776024i \(0.717233\pi\)
\(558\) 1.15988 0.0491017
\(559\) 0 0
\(560\) 0 0
\(561\) −3.54105 −0.149503
\(562\) −1.41913 −0.0598624
\(563\) −14.1326 −0.595617 −0.297809 0.954626i \(-0.596256\pi\)
−0.297809 + 0.954626i \(0.596256\pi\)
\(564\) 2.90148 0.122174
\(565\) 20.6000 0.866647
\(566\) −8.25410 −0.346946
\(567\) 0 0
\(568\) 12.9717 0.544280
\(569\) −24.2540 −1.01678 −0.508391 0.861127i \(-0.669759\pi\)
−0.508391 + 0.861127i \(0.669759\pi\)
\(570\) −5.88454 −0.246476
\(571\) 1.20832 0.0505665 0.0252832 0.999680i \(-0.491951\pi\)
0.0252832 + 0.999680i \(0.491951\pi\)
\(572\) 0 0
\(573\) −16.1514 −0.674732
\(574\) 0 0
\(575\) −12.4307 −0.518394
\(576\) 10.7131 0.446381
\(577\) 14.6104 0.608237 0.304119 0.952634i \(-0.401638\pi\)
0.304119 + 0.952634i \(0.401638\pi\)
\(578\) 4.39286 0.182719
\(579\) 4.45149 0.184998
\(580\) −11.6160 −0.482328
\(581\) 0 0
\(582\) −0.726951 −0.0301331
\(583\) 36.6171 1.51652
\(584\) −0.809498 −0.0334973
\(585\) 0 0
\(586\) −4.69683 −0.194024
\(587\) −21.5095 −0.887793 −0.443897 0.896078i \(-0.646404\pi\)
−0.443897 + 0.896078i \(0.646404\pi\)
\(588\) 0 0
\(589\) 19.1457 0.788884
\(590\) −6.15897 −0.253561
\(591\) −13.3834 −0.550518
\(592\) 24.1489 0.992512
\(593\) 2.64857 0.108764 0.0543820 0.998520i \(-0.482681\pi\)
0.0543820 + 0.998520i \(0.482681\pi\)
\(594\) 5.67602 0.232890
\(595\) 0 0
\(596\) −35.6027 −1.45834
\(597\) −3.99692 −0.163583
\(598\) 0 0
\(599\) −40.2501 −1.64457 −0.822287 0.569074i \(-0.807302\pi\)
−0.822287 + 0.569074i \(0.807302\pi\)
\(600\) 1.88112 0.0767962
\(601\) −38.3449 −1.56412 −0.782061 0.623202i \(-0.785831\pi\)
−0.782061 + 0.623202i \(0.785831\pi\)
\(602\) 0 0
\(603\) 2.29060 0.0932806
\(604\) −3.09916 −0.126103
\(605\) 11.7096 0.476063
\(606\) −0.244357 −0.00992634
\(607\) −42.5547 −1.72724 −0.863620 0.504143i \(-0.831808\pi\)
−0.863620 + 0.504143i \(0.831808\pi\)
\(608\) −22.9706 −0.931582
\(609\) 0 0
\(610\) 6.48782 0.262684
\(611\) 0 0
\(612\) −2.56360 −0.103627
\(613\) 15.2652 0.616556 0.308278 0.951296i \(-0.400247\pi\)
0.308278 + 0.951296i \(0.400247\pi\)
\(614\) −2.31546 −0.0934442
\(615\) 7.13718 0.287799
\(616\) 0 0
\(617\) 13.9812 0.562863 0.281431 0.959581i \(-0.409191\pi\)
0.281431 + 0.959581i \(0.409191\pi\)
\(618\) 0.663868 0.0267047
\(619\) 8.51585 0.342281 0.171140 0.985247i \(-0.445255\pi\)
0.171140 + 0.985247i \(0.445255\pi\)
\(620\) −12.6169 −0.506707
\(621\) 42.6775 1.71259
\(622\) −4.40331 −0.176557
\(623\) 0 0
\(624\) 0 0
\(625\) −30.3713 −1.21485
\(626\) 2.69363 0.107659
\(627\) 33.8060 1.35008
\(628\) −3.17354 −0.126638
\(629\) −5.30504 −0.211526
\(630\) 0 0
\(631\) 36.8292 1.46615 0.733074 0.680149i \(-0.238085\pi\)
0.733074 + 0.680149i \(0.238085\pi\)
\(632\) 6.52246 0.259449
\(633\) 21.7231 0.863414
\(634\) −2.72013 −0.108030
\(635\) 4.58053 0.181773
\(636\) −20.4507 −0.810922
\(637\) 0 0
\(638\) −2.48818 −0.0985081
\(639\) −20.8578 −0.825121
\(640\) 20.0470 0.792428
\(641\) 25.8747 1.02199 0.510996 0.859583i \(-0.329277\pi\)
0.510996 + 0.859583i \(0.329277\pi\)
\(642\) 3.53244 0.139414
\(643\) −40.5252 −1.59816 −0.799078 0.601227i \(-0.794679\pi\)
−0.799078 + 0.601227i \(0.794679\pi\)
\(644\) 0 0
\(645\) −6.58666 −0.259350
\(646\) 1.57779 0.0620774
\(647\) −1.78400 −0.0701364 −0.0350682 0.999385i \(-0.511165\pi\)
−0.0350682 + 0.999385i \(0.511165\pi\)
\(648\) −1.10732 −0.0434997
\(649\) 35.3826 1.38889
\(650\) 0 0
\(651\) 0 0
\(652\) 12.6256 0.494457
\(653\) 12.4042 0.485414 0.242707 0.970100i \(-0.421965\pi\)
0.242707 + 0.970100i \(0.421965\pi\)
\(654\) −2.47573 −0.0968088
\(655\) 16.3719 0.639704
\(656\) 8.71109 0.340111
\(657\) 1.30163 0.0507815
\(658\) 0 0
\(659\) −1.12867 −0.0439668 −0.0219834 0.999758i \(-0.506998\pi\)
−0.0219834 + 0.999758i \(0.506998\pi\)
\(660\) −22.2780 −0.867170
\(661\) 28.9254 1.12507 0.562534 0.826774i \(-0.309826\pi\)
0.562534 + 0.826774i \(0.309826\pi\)
\(662\) −0.621826 −0.0241680
\(663\) 0 0
\(664\) 1.13003 0.0438535
\(665\) 0 0
\(666\) 3.06828 0.118893
\(667\) −18.7084 −0.724393
\(668\) 18.4111 0.712348
\(669\) 13.6775 0.528802
\(670\) 0.929036 0.0358918
\(671\) −37.2718 −1.43886
\(672\) 0 0
\(673\) −7.09960 −0.273669 −0.136835 0.990594i \(-0.543693\pi\)
−0.136835 + 0.990594i \(0.543693\pi\)
\(674\) 4.28995 0.165243
\(675\) −8.38289 −0.322658
\(676\) 0 0
\(677\) 50.4020 1.93710 0.968552 0.248811i \(-0.0800397\pi\)
0.968552 + 0.248811i \(0.0800397\pi\)
\(678\) −2.46443 −0.0946458
\(679\) 0 0
\(680\) −2.11828 −0.0812324
\(681\) −17.5843 −0.673830
\(682\) −2.70258 −0.103487
\(683\) 27.5282 1.05334 0.526669 0.850070i \(-0.323441\pi\)
0.526669 + 0.850070i \(0.323441\pi\)
\(684\) 24.4744 0.935802
\(685\) 25.7112 0.982373
\(686\) 0 0
\(687\) −9.90037 −0.377723
\(688\) −8.03917 −0.306490
\(689\) 0 0
\(690\) 6.24561 0.237766
\(691\) 24.3338 0.925702 0.462851 0.886436i \(-0.346826\pi\)
0.462851 + 0.886436i \(0.346826\pi\)
\(692\) 21.4630 0.815901
\(693\) 0 0
\(694\) 6.11884 0.232268
\(695\) 14.2064 0.538879
\(696\) 2.83112 0.107313
\(697\) −1.91366 −0.0724850
\(698\) −6.08704 −0.230398
\(699\) 23.1467 0.875488
\(700\) 0 0
\(701\) −20.5588 −0.776495 −0.388248 0.921555i \(-0.626919\pi\)
−0.388248 + 0.921555i \(0.626919\pi\)
\(702\) 0 0
\(703\) 50.6467 1.91018
\(704\) −24.9621 −0.940795
\(705\) −3.85501 −0.145188
\(706\) −7.31027 −0.275126
\(707\) 0 0
\(708\) −19.7612 −0.742673
\(709\) 40.9089 1.53637 0.768183 0.640230i \(-0.221161\pi\)
0.768183 + 0.640230i \(0.221161\pi\)
\(710\) −8.45961 −0.317484
\(711\) −10.4878 −0.393322
\(712\) −8.07085 −0.302468
\(713\) −20.3204 −0.761006
\(714\) 0 0
\(715\) 0 0
\(716\) 24.3780 0.911048
\(717\) 18.9198 0.706572
\(718\) 3.86802 0.144353
\(719\) 1.19947 0.0447326 0.0223663 0.999750i \(-0.492880\pi\)
0.0223663 + 0.999750i \(0.492880\pi\)
\(720\) −15.5047 −0.577826
\(721\) 0 0
\(722\) −9.96865 −0.370995
\(723\) 18.7462 0.697179
\(724\) 28.7593 1.06883
\(725\) 3.67478 0.136478
\(726\) −1.40085 −0.0519904
\(727\) 2.06230 0.0764865 0.0382433 0.999268i \(-0.487824\pi\)
0.0382433 + 0.999268i \(0.487824\pi\)
\(728\) 0 0
\(729\) 20.1764 0.747273
\(730\) 0.527922 0.0195393
\(731\) 1.76605 0.0653197
\(732\) 20.8164 0.769395
\(733\) −30.0621 −1.11037 −0.555184 0.831728i \(-0.687352\pi\)
−0.555184 + 0.831728i \(0.687352\pi\)
\(734\) −3.05441 −0.112740
\(735\) 0 0
\(736\) 24.3801 0.898662
\(737\) −5.33721 −0.196599
\(738\) 1.10680 0.0407420
\(739\) 44.2548 1.62794 0.813969 0.580908i \(-0.197303\pi\)
0.813969 + 0.580908i \(0.197303\pi\)
\(740\) −33.3759 −1.22692
\(741\) 0 0
\(742\) 0 0
\(743\) −8.62651 −0.316476 −0.158238 0.987401i \(-0.550581\pi\)
−0.158238 + 0.987401i \(0.550581\pi\)
\(744\) 3.07506 0.112737
\(745\) 47.3030 1.73305
\(746\) 8.30194 0.303955
\(747\) −1.81702 −0.0664814
\(748\) 5.97329 0.218405
\(749\) 0 0
\(750\) 2.69871 0.0985430
\(751\) 5.72211 0.208803 0.104401 0.994535i \(-0.466707\pi\)
0.104401 + 0.994535i \(0.466707\pi\)
\(752\) −4.70512 −0.171578
\(753\) 23.3525 0.851012
\(754\) 0 0
\(755\) 4.11765 0.149857
\(756\) 0 0
\(757\) −34.7222 −1.26200 −0.631000 0.775783i \(-0.717355\pi\)
−0.631000 + 0.775783i \(0.717355\pi\)
\(758\) −2.83853 −0.103100
\(759\) −35.8803 −1.30237
\(760\) 20.2230 0.733566
\(761\) 53.1735 1.92754 0.963768 0.266741i \(-0.0859467\pi\)
0.963768 + 0.266741i \(0.0859467\pi\)
\(762\) −0.547981 −0.0198513
\(763\) 0 0
\(764\) 27.2452 0.985699
\(765\) 3.40609 0.123147
\(766\) 8.24529 0.297915
\(767\) 0 0
\(768\) 12.0629 0.435282
\(769\) −4.91157 −0.177116 −0.0885578 0.996071i \(-0.528226\pi\)
−0.0885578 + 0.996071i \(0.528226\pi\)
\(770\) 0 0
\(771\) −15.7483 −0.567160
\(772\) −7.50909 −0.270258
\(773\) 22.9807 0.826557 0.413279 0.910605i \(-0.364384\pi\)
0.413279 + 0.910605i \(0.364384\pi\)
\(774\) −1.02143 −0.0367146
\(775\) 3.99142 0.143376
\(776\) 2.49827 0.0896826
\(777\) 0 0
\(778\) 4.39178 0.157453
\(779\) 18.2695 0.654573
\(780\) 0 0
\(781\) 48.5996 1.73903
\(782\) −1.67460 −0.0598837
\(783\) −12.6164 −0.450874
\(784\) 0 0
\(785\) 4.21648 0.150493
\(786\) −1.95862 −0.0698616
\(787\) 3.18774 0.113631 0.0568154 0.998385i \(-0.481905\pi\)
0.0568154 + 0.998385i \(0.481905\pi\)
\(788\) 22.5760 0.804237
\(789\) 29.6237 1.05463
\(790\) −4.25368 −0.151339
\(791\) 0 0
\(792\) −7.03836 −0.250097
\(793\) 0 0
\(794\) −4.25854 −0.151130
\(795\) 27.1715 0.963674
\(796\) 6.74229 0.238974
\(797\) −54.6509 −1.93584 −0.967918 0.251267i \(-0.919153\pi\)
−0.967918 + 0.251267i \(0.919153\pi\)
\(798\) 0 0
\(799\) 1.03363 0.0365670
\(800\) −4.78884 −0.169311
\(801\) 12.9775 0.458538
\(802\) −1.77921 −0.0628260
\(803\) −3.03286 −0.107027
\(804\) 2.98084 0.105126
\(805\) 0 0
\(806\) 0 0
\(807\) 34.3664 1.20975
\(808\) 0.839768 0.0295429
\(809\) −20.2995 −0.713694 −0.356847 0.934163i \(-0.616148\pi\)
−0.356847 + 0.934163i \(0.616148\pi\)
\(810\) 0.722151 0.0253738
\(811\) −2.43587 −0.0855350 −0.0427675 0.999085i \(-0.513617\pi\)
−0.0427675 + 0.999085i \(0.513617\pi\)
\(812\) 0 0
\(813\) −16.5171 −0.579280
\(814\) −7.14922 −0.250580
\(815\) −16.7748 −0.587597
\(816\) −3.20706 −0.112270
\(817\) −16.8603 −0.589867
\(818\) 1.57452 0.0550519
\(819\) 0 0
\(820\) −12.0395 −0.420438
\(821\) 45.3524 1.58281 0.791405 0.611292i \(-0.209350\pi\)
0.791405 + 0.611292i \(0.209350\pi\)
\(822\) −3.07589 −0.107284
\(823\) −2.75742 −0.0961177 −0.0480588 0.998845i \(-0.515303\pi\)
−0.0480588 + 0.998845i \(0.515303\pi\)
\(824\) −2.28147 −0.0794789
\(825\) 7.04776 0.245372
\(826\) 0 0
\(827\) −8.64504 −0.300618 −0.150309 0.988639i \(-0.548027\pi\)
−0.150309 + 0.988639i \(0.548027\pi\)
\(828\) −25.9761 −0.902733
\(829\) 29.5741 1.02715 0.513576 0.858044i \(-0.328320\pi\)
0.513576 + 0.858044i \(0.328320\pi\)
\(830\) −0.736958 −0.0255802
\(831\) −17.5172 −0.607663
\(832\) 0 0
\(833\) 0 0
\(834\) −1.69955 −0.0588505
\(835\) −24.4617 −0.846531
\(836\) −57.0264 −1.97230
\(837\) −13.7035 −0.473663
\(838\) −8.08191 −0.279185
\(839\) −25.2473 −0.871633 −0.435817 0.900035i \(-0.643540\pi\)
−0.435817 + 0.900035i \(0.643540\pi\)
\(840\) 0 0
\(841\) −23.4694 −0.809289
\(842\) −10.7406 −0.370144
\(843\) 6.04971 0.208363
\(844\) −36.6440 −1.26134
\(845\) 0 0
\(846\) −0.597818 −0.0205534
\(847\) 0 0
\(848\) 33.1634 1.13884
\(849\) 35.1870 1.20761
\(850\) 0.328933 0.0112823
\(851\) −53.7544 −1.84268
\(852\) −27.1429 −0.929901
\(853\) 35.1368 1.20306 0.601531 0.798850i \(-0.294558\pi\)
0.601531 + 0.798850i \(0.294558\pi\)
\(854\) 0 0
\(855\) −32.5176 −1.11208
\(856\) −12.1397 −0.414927
\(857\) 1.34269 0.0458654 0.0229327 0.999737i \(-0.492700\pi\)
0.0229327 + 0.999737i \(0.492700\pi\)
\(858\) 0 0
\(859\) −4.76772 −0.162673 −0.0813363 0.996687i \(-0.525919\pi\)
−0.0813363 + 0.996687i \(0.525919\pi\)
\(860\) 11.1108 0.378877
\(861\) 0 0
\(862\) 1.04994 0.0357612
\(863\) −26.6105 −0.905830 −0.452915 0.891554i \(-0.649616\pi\)
−0.452915 + 0.891554i \(0.649616\pi\)
\(864\) 16.4412 0.559343
\(865\) −28.5165 −0.969591
\(866\) −10.9375 −0.371672
\(867\) −18.7266 −0.635989
\(868\) 0 0
\(869\) 24.4370 0.828967
\(870\) −1.84634 −0.0625968
\(871\) 0 0
\(872\) 8.50819 0.288124
\(873\) −4.01708 −0.135958
\(874\) 15.9873 0.540778
\(875\) 0 0
\(876\) 1.69385 0.0572300
\(877\) 8.03696 0.271389 0.135695 0.990751i \(-0.456673\pi\)
0.135695 + 0.990751i \(0.456673\pi\)
\(878\) −6.85389 −0.231307
\(879\) 20.0224 0.675339
\(880\) 36.1266 1.21783
\(881\) 54.6697 1.84187 0.920935 0.389716i \(-0.127427\pi\)
0.920935 + 0.389716i \(0.127427\pi\)
\(882\) 0 0
\(883\) −8.45085 −0.284394 −0.142197 0.989838i \(-0.545417\pi\)
−0.142197 + 0.989838i \(0.545417\pi\)
\(884\) 0 0
\(885\) 26.2555 0.882569
\(886\) 7.36176 0.247323
\(887\) 10.3557 0.347710 0.173855 0.984771i \(-0.444378\pi\)
0.173855 + 0.984771i \(0.444378\pi\)
\(888\) 8.13457 0.272978
\(889\) 0 0
\(890\) 5.26349 0.176432
\(891\) −4.14868 −0.138986
\(892\) −23.0722 −0.772513
\(893\) −9.86792 −0.330217
\(894\) −5.65898 −0.189265
\(895\) −32.3895 −1.08266
\(896\) 0 0
\(897\) 0 0
\(898\) 3.96922 0.132455
\(899\) 6.00718 0.200351
\(900\) 5.10234 0.170078
\(901\) −7.28536 −0.242711
\(902\) −2.57890 −0.0858680
\(903\) 0 0
\(904\) 8.46935 0.281686
\(905\) −38.2106 −1.27016
\(906\) −0.492606 −0.0163657
\(907\) 18.4804 0.613631 0.306815 0.951769i \(-0.400737\pi\)
0.306815 + 0.951769i \(0.400737\pi\)
\(908\) 29.6624 0.984380
\(909\) −1.35030 −0.0447867
\(910\) 0 0
\(911\) −26.6282 −0.882230 −0.441115 0.897451i \(-0.645417\pi\)
−0.441115 + 0.897451i \(0.645417\pi\)
\(912\) 30.6175 1.01385
\(913\) 4.23374 0.140116
\(914\) 0.174804 0.00578202
\(915\) −27.6574 −0.914324
\(916\) 16.7007 0.551805
\(917\) 0 0
\(918\) −1.12931 −0.0372727
\(919\) −11.1493 −0.367783 −0.183891 0.982947i \(-0.558869\pi\)
−0.183891 + 0.982947i \(0.558869\pi\)
\(920\) −21.4639 −0.707644
\(921\) 9.87072 0.325251
\(922\) 3.35035 0.110338
\(923\) 0 0
\(924\) 0 0
\(925\) 10.5587 0.347166
\(926\) 0.0829855 0.00272707
\(927\) 3.66849 0.120489
\(928\) −7.20730 −0.236591
\(929\) −7.74510 −0.254108 −0.127054 0.991896i \(-0.540552\pi\)
−0.127054 + 0.991896i \(0.540552\pi\)
\(930\) −2.00543 −0.0657607
\(931\) 0 0
\(932\) −39.0455 −1.27898
\(933\) 18.7712 0.614541
\(934\) 6.56299 0.214748
\(935\) −7.93633 −0.259546
\(936\) 0 0
\(937\) −36.4239 −1.18992 −0.594959 0.803756i \(-0.702832\pi\)
−0.594959 + 0.803756i \(0.702832\pi\)
\(938\) 0 0
\(939\) −11.4829 −0.374729
\(940\) 6.50291 0.212101
\(941\) 19.7893 0.645114 0.322557 0.946550i \(-0.395458\pi\)
0.322557 + 0.946550i \(0.395458\pi\)
\(942\) −0.504429 −0.0164352
\(943\) −19.3905 −0.631442
\(944\) 32.0454 1.04299
\(945\) 0 0
\(946\) 2.37998 0.0773798
\(947\) 9.94796 0.323265 0.161633 0.986851i \(-0.448324\pi\)
0.161633 + 0.986851i \(0.448324\pi\)
\(948\) −13.6481 −0.443269
\(949\) 0 0
\(950\) −3.14029 −0.101884
\(951\) 11.5958 0.376020
\(952\) 0 0
\(953\) 0.0211134 0.000683929 0 0.000341965 1.00000i \(-0.499891\pi\)
0.000341965 1.00000i \(0.499891\pi\)
\(954\) 4.21364 0.136422
\(955\) −36.1990 −1.17137
\(956\) −31.9152 −1.03221
\(957\) 10.6070 0.342877
\(958\) 2.18214 0.0705017
\(959\) 0 0
\(960\) −18.5230 −0.597827
\(961\) −24.4752 −0.789523
\(962\) 0 0
\(963\) 19.5200 0.629024
\(964\) −31.6224 −1.01849
\(965\) 9.97685 0.321166
\(966\) 0 0
\(967\) −19.8102 −0.637053 −0.318526 0.947914i \(-0.603188\pi\)
−0.318526 + 0.947914i \(0.603188\pi\)
\(968\) 4.81422 0.154735
\(969\) −6.72608 −0.216073
\(970\) −1.62927 −0.0523127
\(971\) 3.61774 0.116099 0.0580493 0.998314i \(-0.481512\pi\)
0.0580493 + 0.998314i \(0.481512\pi\)
\(972\) −28.7144 −0.921015
\(973\) 0 0
\(974\) −1.23595 −0.0396024
\(975\) 0 0
\(976\) −33.7564 −1.08052
\(977\) 2.16169 0.0691586 0.0345793 0.999402i \(-0.488991\pi\)
0.0345793 + 0.999402i \(0.488991\pi\)
\(978\) 2.00682 0.0641710
\(979\) −30.2382 −0.966416
\(980\) 0 0
\(981\) −13.6807 −0.436792
\(982\) −3.49071 −0.111393
\(983\) 30.1091 0.960331 0.480165 0.877178i \(-0.340577\pi\)
0.480165 + 0.877178i \(0.340577\pi\)
\(984\) 2.93434 0.0935433
\(985\) −29.9953 −0.955730
\(986\) 0.495051 0.0157656
\(987\) 0 0
\(988\) 0 0
\(989\) 17.8948 0.569023
\(990\) 4.59014 0.145884
\(991\) −27.1460 −0.862323 −0.431161 0.902275i \(-0.641896\pi\)
−0.431161 + 0.902275i \(0.641896\pi\)
\(992\) −7.82832 −0.248549
\(993\) 2.65082 0.0841213
\(994\) 0 0
\(995\) −8.95805 −0.283989
\(996\) −2.36455 −0.0749236
\(997\) −50.8009 −1.60888 −0.804441 0.594033i \(-0.797535\pi\)
−0.804441 + 0.594033i \(0.797535\pi\)
\(998\) 8.66599 0.274317
\(999\) −36.2504 −1.14691
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.ca.1.4 6
7.3 odd 6 1183.2.e.h.170.3 12
7.5 odd 6 1183.2.e.h.508.3 12
7.6 odd 2 8281.2.a.bz.1.4 6
13.3 even 3 637.2.f.j.295.3 12
13.9 even 3 637.2.f.j.393.3 12
13.12 even 2 8281.2.a.cf.1.3 6
91.3 odd 6 91.2.g.b.9.3 12
91.9 even 3 637.2.g.l.263.3 12
91.12 odd 6 1183.2.e.g.508.4 12
91.16 even 3 637.2.h.l.165.4 12
91.38 odd 6 1183.2.e.g.170.4 12
91.48 odd 6 637.2.f.k.393.3 12
91.55 odd 6 637.2.f.k.295.3 12
91.61 odd 6 91.2.g.b.81.3 yes 12
91.68 odd 6 91.2.h.b.74.4 yes 12
91.74 even 3 637.2.h.l.471.4 12
91.81 even 3 637.2.g.l.373.3 12
91.87 odd 6 91.2.h.b.16.4 yes 12
91.90 odd 2 8281.2.a.ce.1.3 6
273.68 even 6 819.2.s.d.802.3 12
273.152 even 6 819.2.n.d.172.4 12
273.185 even 6 819.2.n.d.100.4 12
273.269 even 6 819.2.s.d.289.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.3 12 91.3 odd 6
91.2.g.b.81.3 yes 12 91.61 odd 6
91.2.h.b.16.4 yes 12 91.87 odd 6
91.2.h.b.74.4 yes 12 91.68 odd 6
637.2.f.j.295.3 12 13.3 even 3
637.2.f.j.393.3 12 13.9 even 3
637.2.f.k.295.3 12 91.55 odd 6
637.2.f.k.393.3 12 91.48 odd 6
637.2.g.l.263.3 12 91.9 even 3
637.2.g.l.373.3 12 91.81 even 3
637.2.h.l.165.4 12 91.16 even 3
637.2.h.l.471.4 12 91.74 even 3
819.2.n.d.100.4 12 273.185 even 6
819.2.n.d.172.4 12 273.152 even 6
819.2.s.d.289.3 12 273.269 even 6
819.2.s.d.802.3 12 273.68 even 6
1183.2.e.g.170.4 12 91.38 odd 6
1183.2.e.g.508.4 12 91.12 odd 6
1183.2.e.h.170.3 12 7.3 odd 6
1183.2.e.h.508.3 12 7.5 odd 6
8281.2.a.bz.1.4 6 7.6 odd 2
8281.2.a.ca.1.4 6 1.1 even 1 trivial
8281.2.a.ce.1.3 6 91.90 odd 2
8281.2.a.cf.1.3 6 13.12 even 2