Properties

Label 2-91e2-1.1-c1-0-213
Degree $2$
Conductor $8281$
Sign $1$
Analytic cond. $66.1241$
Root an. cond. $8.13167$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.268·2-s + 1.14·3-s − 1.92·4-s + 2.56·5-s − 0.306·6-s + 1.05·8-s − 1.69·9-s − 0.686·10-s + 3.94·11-s − 2.20·12-s + 2.92·15-s + 3.57·16-s − 0.785·17-s + 0.454·18-s + 7.49·19-s − 4.93·20-s − 1.05·22-s − 7.95·23-s + 1.20·24-s + 1.56·25-s − 5.36·27-s + 2.35·29-s − 0.785·30-s + 2.55·31-s − 3.06·32-s + 4.51·33-s + 0.210·34-s + ⋯
L(s)  = 1  − 0.189·2-s + 0.659·3-s − 0.964·4-s + 1.14·5-s − 0.125·6-s + 0.372·8-s − 0.564·9-s − 0.217·10-s + 1.18·11-s − 0.636·12-s + 0.756·15-s + 0.893·16-s − 0.190·17-s + 0.107·18-s + 1.71·19-s − 1.10·20-s − 0.225·22-s − 1.65·23-s + 0.245·24-s + 0.312·25-s − 1.03·27-s + 0.436·29-s − 0.143·30-s + 0.458·31-s − 0.541·32-s + 0.785·33-s + 0.0361·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8281\)    =    \(7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(66.1241\)
Root analytic conductor: \(8.13167\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8281,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.501979188\)
\(L(\frac12)\) \(\approx\) \(2.501979188\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 \)
good2 \( 1 + 0.268T + 2T^{2} \)
3 \( 1 - 1.14T + 3T^{2} \)
5 \( 1 - 2.56T + 5T^{2} \)
11 \( 1 - 3.94T + 11T^{2} \)
17 \( 1 + 0.785T + 17T^{2} \)
19 \( 1 - 7.49T + 19T^{2} \)
23 \( 1 + 7.95T + 23T^{2} \)
29 \( 1 - 2.35T + 29T^{2} \)
31 \( 1 - 2.55T + 31T^{2} \)
37 \( 1 - 6.75T + 37T^{2} \)
41 \( 1 - 2.43T + 41T^{2} \)
43 \( 1 + 2.24T + 43T^{2} \)
47 \( 1 + 1.31T + 47T^{2} \)
53 \( 1 - 9.27T + 53T^{2} \)
59 \( 1 - 8.96T + 59T^{2} \)
61 \( 1 + 9.44T + 61T^{2} \)
67 \( 1 + 1.35T + 67T^{2} \)
71 \( 1 - 12.3T + 71T^{2} \)
73 \( 1 + 0.768T + 73T^{2} \)
79 \( 1 - 6.19T + 79T^{2} \)
83 \( 1 - 1.07T + 83T^{2} \)
89 \( 1 + 7.66T + 89T^{2} \)
97 \( 1 - 2.37T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.045635567238459735669628823881, −7.25733792142614546221811472532, −6.22109537473291961856865500787, −5.79998062686491644322444914524, −5.08104519458995656504032086932, −4.14569544252367041594552651778, −3.54004638402305436357637868506, −2.62177813970810036745771356626, −1.73922983119376271014378684478, −0.814295490772582289319922007665, 0.814295490772582289319922007665, 1.73922983119376271014378684478, 2.62177813970810036745771356626, 3.54004638402305436357637868506, 4.14569544252367041594552651778, 5.08104519458995656504032086932, 5.79998062686491644322444914524, 6.22109537473291961856865500787, 7.25733792142614546221811472532, 8.045635567238459735669628823881

Graph of the $Z$-function along the critical line