Properties

Label 91.2.g.b.9.3
Level $91$
Weight $2$
Character 91.9
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 7 x^{10} - 2 x^{9} + 33 x^{8} - 11 x^{7} + 55 x^{6} + 17 x^{5} + 47 x^{4} + x^{3} + 8 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.3
Root \(-0.437442 + 0.757672i\) of defining polynomial
Character \(\chi\) \(=\) 91.9
Dual form 91.2.g.b.81.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.134063 + 0.232203i) q^{2} -1.14301 q^{3} +(0.964054 - 1.66979i) q^{4} +(1.28088 - 2.21854i) q^{5} +(-0.153235 - 0.265410i) q^{6} +(0.773854 + 2.53005i) q^{7} +1.05323 q^{8} -1.69353 q^{9} +O(q^{10})\) \(q+(0.134063 + 0.232203i) q^{2} -1.14301 q^{3} +(0.964054 - 1.66979i) q^{4} +(1.28088 - 2.21854i) q^{5} +(-0.153235 - 0.265410i) q^{6} +(0.773854 + 2.53005i) q^{7} +1.05323 q^{8} -1.69353 q^{9} +0.686871 q^{10} +3.94600 q^{11} +(-1.10192 + 1.90859i) q^{12} +(-3.15374 + 1.74755i) q^{13} +(-0.483741 + 0.518876i) q^{14} +(-1.46405 + 2.53582i) q^{15} +(-1.78691 - 3.09502i) q^{16} +(-0.392550 + 0.679916i) q^{17} +(-0.227039 - 0.393243i) q^{18} -7.49527 q^{19} +(-2.46967 - 4.27760i) q^{20} +(-0.884522 - 2.89187i) q^{21} +(0.529011 + 0.916274i) q^{22} +(3.97759 + 6.88938i) q^{23} -1.20385 q^{24} +(-0.781294 - 1.35324i) q^{25} +(-0.828585 - 0.498028i) q^{26} +5.36475 q^{27} +(4.97069 + 1.14693i) q^{28} +(-1.17586 + 2.03666i) q^{29} -0.785100 q^{30} +(1.27718 + 2.21215i) q^{31} +(1.53234 - 2.65409i) q^{32} -4.51032 q^{33} -0.210505 q^{34} +(6.60424 + 1.52385i) q^{35} +(-1.63266 + 2.82784i) q^{36} +(-3.37858 - 5.85187i) q^{37} +(-1.00484 - 1.74043i) q^{38} +(3.60475 - 1.99746i) q^{39} +(1.34905 - 2.33663i) q^{40} +(1.21874 - 2.11091i) q^{41} +(0.552920 - 0.593080i) q^{42} +(1.12473 + 1.94809i) q^{43} +(3.80416 - 6.58900i) q^{44} +(-2.16920 + 3.75717i) q^{45} +(-1.06649 + 1.84722i) q^{46} +(-0.658276 + 1.14017i) q^{47} +(2.04246 + 3.53764i) q^{48} +(-5.80230 + 3.91578i) q^{49} +(0.209485 - 0.362838i) q^{50} +(0.448688 - 0.777151i) q^{51} +(-0.122340 + 6.95082i) q^{52} +(-4.63977 - 8.03632i) q^{53} +(0.719212 + 1.24571i) q^{54} +(5.05434 - 8.75438i) q^{55} +(0.815042 + 2.66471i) q^{56} +8.56716 q^{57} -0.630558 q^{58} +(4.48335 - 7.76540i) q^{59} +(2.82286 + 4.88933i) q^{60} +9.44547 q^{61} +(-0.342445 + 0.593132i) q^{62} +(-1.31054 - 4.28472i) q^{63} -6.32592 q^{64} +(-0.162546 + 9.23511i) q^{65} +(-0.604665 - 1.04731i) q^{66} -1.35256 q^{67} +(0.756879 + 1.31095i) q^{68} +(-4.54642 - 7.87463i) q^{69} +(0.531538 + 1.73782i) q^{70} +(-6.15808 - 10.6661i) q^{71} -1.78367 q^{72} +(-0.384295 - 0.665619i) q^{73} +(0.905882 - 1.56903i) q^{74} +(0.893026 + 1.54677i) q^{75} +(-7.22585 + 12.5155i) q^{76} +(3.05363 + 9.98358i) q^{77} +(0.947080 + 0.569251i) q^{78} +(-3.09642 + 5.36316i) q^{79} -9.15525 q^{80} -1.05136 q^{81} +0.653548 q^{82} -1.07292 q^{83} +(-5.68155 - 1.31095i) q^{84} +(1.00562 + 1.74178i) q^{85} +(-0.301568 + 0.522332i) q^{86} +(1.34402 - 2.32792i) q^{87} +4.15603 q^{88} +(-3.83149 - 6.63634i) q^{89} -1.16324 q^{90} +(-6.86191 - 6.62678i) q^{91} +15.3384 q^{92} +(-1.45983 - 2.52850i) q^{93} -0.353001 q^{94} +(-9.60052 + 16.6286i) q^{95} +(-1.75148 + 3.03365i) q^{96} +(1.18601 + 2.05423i) q^{97} +(-1.68713 - 0.822354i) q^{98} -6.68267 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 2q^{2} - 2q^{3} - 4q^{4} + q^{5} - 9q^{6} + 9q^{7} - 6q^{8} - 6q^{9} + O(q^{10}) \) \( 12q + 2q^{2} - 2q^{3} - 4q^{4} + q^{5} - 9q^{6} + 9q^{7} - 6q^{8} - 6q^{9} - 8q^{10} - 8q^{11} + 5q^{12} - 2q^{13} - 2q^{14} - 2q^{15} + 8q^{16} + 5q^{17} + 3q^{18} + 2q^{19} - q^{20} - 9q^{21} - 5q^{22} - q^{23} + 22q^{24} + 7q^{25} + 5q^{26} - 8q^{27} - 7q^{28} + 3q^{29} + 10q^{30} + 16q^{31} + 8q^{32} - 32q^{33} + 32q^{34} + 8q^{35} - 21q^{36} - 13q^{37} - 17q^{38} - 23q^{39} - 5q^{40} - 8q^{41} + 2q^{42} - 11q^{43} + 21q^{44} - 7q^{45} + 16q^{46} - q^{47} + 21q^{48} - 3q^{49} + 6q^{50} - 20q^{51} - 25q^{52} - 2q^{53} - 18q^{54} + 9q^{55} - 18q^{56} + 42q^{57} + 16q^{58} + 13q^{59} + 20q^{60} + 10q^{61} + 5q^{62} + 32q^{63} - 30q^{64} + 19q^{65} + 18q^{66} + 22q^{67} + 29q^{68} + 23q^{69} - 39q^{70} + 6q^{71} - 50q^{72} - 30q^{73} - 3q^{74} - 3q^{75} - 9q^{76} + 11q^{77} + 16q^{78} + 7q^{79} + 14q^{80} + 12q^{81} - 2q^{82} - 54q^{83} + 5q^{84} - q^{85} - 7q^{86} + 16q^{87} + 4q^{89} - 16q^{90} - 20q^{91} + 54q^{92} - 7q^{93} - 90q^{94} - 6q^{95} + 19q^{96} - 35q^{97} + 62q^{98} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.134063 + 0.232203i 0.0947966 + 0.164193i 0.909524 0.415652i \(-0.136447\pi\)
−0.814727 + 0.579845i \(0.803113\pi\)
\(3\) −1.14301 −0.659917 −0.329958 0.943996i \(-0.607035\pi\)
−0.329958 + 0.943996i \(0.607035\pi\)
\(4\) 0.964054 1.66979i 0.482027 0.834896i
\(5\) 1.28088 2.21854i 0.572826 0.992163i −0.423448 0.905920i \(-0.639180\pi\)
0.996274 0.0862431i \(-0.0274862\pi\)
\(6\) −0.153235 0.265410i −0.0625578 0.108353i
\(7\) 0.773854 + 2.53005i 0.292489 + 0.956269i
\(8\) 1.05323 0.372371
\(9\) −1.69353 −0.564510
\(10\) 0.686871 0.217208
\(11\) 3.94600 1.18976 0.594882 0.803813i \(-0.297199\pi\)
0.594882 + 0.803813i \(0.297199\pi\)
\(12\) −1.10192 + 1.90859i −0.318098 + 0.550961i
\(13\) −3.15374 + 1.74755i −0.874690 + 0.484682i
\(14\) −0.483741 + 0.518876i −0.129285 + 0.138676i
\(15\) −1.46405 + 2.53582i −0.378017 + 0.654745i
\(16\) −1.78691 3.09502i −0.446728 0.773755i
\(17\) −0.392550 + 0.679916i −0.0952073 + 0.164904i −0.909695 0.415277i \(-0.863685\pi\)
0.814488 + 0.580181i \(0.197018\pi\)
\(18\) −0.227039 0.393243i −0.0535136 0.0926883i
\(19\) −7.49527 −1.71953 −0.859767 0.510687i \(-0.829391\pi\)
−0.859767 + 0.510687i \(0.829391\pi\)
\(20\) −2.46967 4.27760i −0.552235 0.956500i
\(21\) −0.884522 2.89187i −0.193018 0.631058i
\(22\) 0.529011 + 0.916274i 0.112786 + 0.195350i
\(23\) 3.97759 + 6.88938i 0.829384 + 1.43654i 0.898522 + 0.438929i \(0.144642\pi\)
−0.0691375 + 0.997607i \(0.522025\pi\)
\(24\) −1.20385 −0.245734
\(25\) −0.781294 1.35324i −0.156259 0.270648i
\(26\) −0.828585 0.498028i −0.162499 0.0976714i
\(27\) 5.36475 1.03245
\(28\) 4.97069 + 1.14693i 0.939372 + 0.216750i
\(29\) −1.17586 + 2.03666i −0.218353 + 0.378198i −0.954304 0.298836i \(-0.903402\pi\)
0.735952 + 0.677034i \(0.236735\pi\)
\(30\) −0.785100 −0.143339
\(31\) 1.27718 + 2.21215i 0.229389 + 0.397313i 0.957627 0.288011i \(-0.0929939\pi\)
−0.728238 + 0.685324i \(0.759661\pi\)
\(32\) 1.53234 2.65409i 0.270882 0.469182i
\(33\) −4.51032 −0.785145
\(34\) −0.210505 −0.0361013
\(35\) 6.60424 + 1.52385i 1.11632 + 0.257578i
\(36\) −1.63266 + 2.82784i −0.272109 + 0.471307i
\(37\) −3.37858 5.85187i −0.555435 0.962041i −0.997870 0.0652406i \(-0.979219\pi\)
0.442435 0.896801i \(-0.354115\pi\)
\(38\) −1.00484 1.74043i −0.163006 0.282334i
\(39\) 3.60475 1.99746i 0.577223 0.319850i
\(40\) 1.34905 2.33663i 0.213304 0.369453i
\(41\) 1.21874 2.11091i 0.190335 0.329669i −0.755027 0.655694i \(-0.772376\pi\)
0.945361 + 0.326025i \(0.105709\pi\)
\(42\) 0.552920 0.593080i 0.0853174 0.0915143i
\(43\) 1.12473 + 1.94809i 0.171520 + 0.297081i 0.938951 0.344050i \(-0.111799\pi\)
−0.767432 + 0.641131i \(0.778466\pi\)
\(44\) 3.80416 6.58900i 0.573499 0.993329i
\(45\) −2.16920 + 3.75717i −0.323366 + 0.560086i
\(46\) −1.06649 + 1.84722i −0.157246 + 0.272357i
\(47\) −0.658276 + 1.14017i −0.0960195 + 0.166311i −0.910034 0.414534i \(-0.863944\pi\)
0.814014 + 0.580845i \(0.197278\pi\)
\(48\) 2.04246 + 3.53764i 0.294803 + 0.510614i
\(49\) −5.80230 + 3.91578i −0.828900 + 0.559397i
\(50\) 0.209485 0.362838i 0.0296256 0.0513130i
\(51\) 0.448688 0.777151i 0.0628289 0.108823i
\(52\) −0.122340 + 6.95082i −0.0169655 + 0.963905i
\(53\) −4.63977 8.03632i −0.637321 1.10387i −0.986018 0.166637i \(-0.946709\pi\)
0.348697 0.937236i \(-0.386624\pi\)
\(54\) 0.719212 + 1.24571i 0.0978724 + 0.169520i
\(55\) 5.05434 8.75438i 0.681528 1.18044i
\(56\) 0.815042 + 2.66471i 0.108915 + 0.356087i
\(57\) 8.56716 1.13475
\(58\) −0.630558 −0.0827963
\(59\) 4.48335 7.76540i 0.583683 1.01097i −0.411355 0.911475i \(-0.634944\pi\)
0.995038 0.0994935i \(-0.0317223\pi\)
\(60\) 2.82286 + 4.88933i 0.364429 + 0.631210i
\(61\) 9.44547 1.20937 0.604684 0.796465i \(-0.293299\pi\)
0.604684 + 0.796465i \(0.293299\pi\)
\(62\) −0.342445 + 0.593132i −0.0434906 + 0.0753279i
\(63\) −1.31054 4.28472i −0.165113 0.539823i
\(64\) −6.32592 −0.790741
\(65\) −0.162546 + 9.23511i −0.0201613 + 1.14547i
\(66\) −0.604665 1.04731i −0.0744291 0.128915i
\(67\) −1.35256 −0.165242 −0.0826209 0.996581i \(-0.526329\pi\)
−0.0826209 + 0.996581i \(0.526329\pi\)
\(68\) 0.756879 + 1.31095i 0.0917851 + 0.158976i
\(69\) −4.54642 7.87463i −0.547324 0.947994i
\(70\) 0.531538 + 1.73782i 0.0635309 + 0.207709i
\(71\) −6.15808 10.6661i −0.730829 1.26583i −0.956529 0.291637i \(-0.905800\pi\)
0.225700 0.974197i \(-0.427533\pi\)
\(72\) −1.78367 −0.210207
\(73\) −0.384295 0.665619i −0.0449783 0.0779048i 0.842660 0.538446i \(-0.180989\pi\)
−0.887638 + 0.460542i \(0.847655\pi\)
\(74\) 0.905882 1.56903i 0.105307 0.182396i
\(75\) 0.893026 + 1.54677i 0.103118 + 0.178605i
\(76\) −7.22585 + 12.5155i −0.828862 + 1.43563i
\(77\) 3.05363 + 9.98358i 0.347993 + 1.13773i
\(78\) 0.947080 + 0.569251i 0.107236 + 0.0644550i
\(79\) −3.09642 + 5.36316i −0.348375 + 0.603402i −0.985961 0.166976i \(-0.946600\pi\)
0.637586 + 0.770379i \(0.279933\pi\)
\(80\) −9.15525 −1.02359
\(81\) −1.05136 −0.116818
\(82\) 0.653548 0.0721723
\(83\) −1.07292 −0.117768 −0.0588841 0.998265i \(-0.518754\pi\)
−0.0588841 + 0.998265i \(0.518754\pi\)
\(84\) −5.68155 1.31095i −0.619907 0.143037i
\(85\) 1.00562 + 1.74178i 0.109074 + 0.188922i
\(86\) −0.301568 + 0.522332i −0.0325190 + 0.0563245i
\(87\) 1.34402 2.32792i 0.144094 0.249579i
\(88\) 4.15603 0.443034
\(89\) −3.83149 6.63634i −0.406138 0.703451i 0.588316 0.808631i \(-0.299791\pi\)
−0.994453 + 0.105180i \(0.966458\pi\)
\(90\) −1.16324 −0.122616
\(91\) −6.86191 6.62678i −0.719324 0.694675i
\(92\) 15.3384 1.59914
\(93\) −1.45983 2.52850i −0.151378 0.262194i
\(94\) −0.353001 −0.0364093
\(95\) −9.60052 + 16.6286i −0.984993 + 1.70606i
\(96\) −1.75148 + 3.03365i −0.178760 + 0.309621i
\(97\) 1.18601 + 2.05423i 0.120421 + 0.208575i 0.919934 0.392074i \(-0.128242\pi\)
−0.799513 + 0.600649i \(0.794909\pi\)
\(98\) −1.68713 0.822354i −0.170426 0.0830703i
\(99\) −6.68267 −0.671634
\(100\) −3.01284 −0.301284
\(101\) −0.797330 −0.0793373 −0.0396686 0.999213i \(-0.512630\pi\)
−0.0396686 + 0.999213i \(0.512630\pi\)
\(102\) 0.240609 0.0238239
\(103\) −1.08309 + 1.87597i −0.106720 + 0.184844i −0.914440 0.404722i \(-0.867368\pi\)
0.807720 + 0.589567i \(0.200701\pi\)
\(104\) −3.32160 + 1.84056i −0.325710 + 0.180482i
\(105\) −7.54871 1.74178i −0.736678 0.169980i
\(106\) 1.24404 2.15474i 0.120832 0.209287i
\(107\) 5.76311 + 9.98201i 0.557141 + 0.964997i 0.997733 + 0.0672896i \(0.0214351\pi\)
−0.440592 + 0.897707i \(0.645232\pi\)
\(108\) 5.17191 8.95801i 0.497667 0.861985i
\(109\) −4.03912 6.99595i −0.386877 0.670091i 0.605151 0.796111i \(-0.293113\pi\)
−0.992028 + 0.126020i \(0.959780\pi\)
\(110\) 2.71039 0.258426
\(111\) 3.86174 + 6.68874i 0.366541 + 0.634867i
\(112\) 6.44775 6.91607i 0.609255 0.653507i
\(113\) −4.02067 6.96401i −0.378233 0.655119i 0.612572 0.790415i \(-0.290135\pi\)
−0.990805 + 0.135296i \(0.956802\pi\)
\(114\) 1.14854 + 1.98932i 0.107570 + 0.186317i
\(115\) 20.3792 1.90037
\(116\) 2.26719 + 3.92690i 0.210504 + 0.364603i
\(117\) 5.34096 2.95952i 0.493772 0.273608i
\(118\) 2.40420 0.221325
\(119\) −2.02400 0.467015i −0.185540 0.0428112i
\(120\) −1.54198 + 2.67079i −0.140763 + 0.243808i
\(121\) 4.57093 0.415539
\(122\) 1.26628 + 2.19327i 0.114644 + 0.198569i
\(123\) −1.39303 + 2.41279i −0.125605 + 0.217554i
\(124\) 4.92510 0.442287
\(125\) 8.80581 0.787615
\(126\) 0.819230 0.878733i 0.0729828 0.0782838i
\(127\) −0.894023 + 1.54849i −0.0793317 + 0.137406i −0.902962 0.429721i \(-0.858612\pi\)
0.823630 + 0.567127i \(0.191945\pi\)
\(128\) −3.91275 6.77709i −0.345842 0.599015i
\(129\) −1.28558 2.22668i −0.113189 0.196049i
\(130\) −2.16621 + 1.20034i −0.189989 + 0.105277i
\(131\) 3.19545 5.53469i 0.279188 0.483568i −0.691995 0.721902i \(-0.743268\pi\)
0.971183 + 0.238334i \(0.0766014\pi\)
\(132\) −4.34819 + 7.53129i −0.378461 + 0.655514i
\(133\) −5.80024 18.9634i −0.502945 1.64434i
\(134\) −0.181328 0.314069i −0.0156644 0.0271315i
\(135\) 6.87158 11.9019i 0.591412 1.02436i
\(136\) −0.413443 + 0.716105i −0.0354525 + 0.0614055i
\(137\) −5.01827 + 8.69190i −0.428740 + 0.742599i −0.996762 0.0804144i \(-0.974376\pi\)
0.568022 + 0.823014i \(0.307709\pi\)
\(138\) 1.21901 2.11139i 0.103769 0.179733i
\(139\) 2.77278 + 4.80260i 0.235184 + 0.407351i 0.959326 0.282300i \(-0.0910972\pi\)
−0.724142 + 0.689651i \(0.757764\pi\)
\(140\) 8.91137 9.55862i 0.753148 0.807851i
\(141\) 0.752416 1.30322i 0.0633648 0.109751i
\(142\) 1.65114 2.85985i 0.138560 0.239993i
\(143\) −12.4447 + 6.89582i −1.04068 + 0.576658i
\(144\) 3.02619 + 5.24151i 0.252182 + 0.436793i
\(145\) 3.01228 + 5.21742i 0.250156 + 0.433283i
\(146\) 0.103039 0.178469i 0.00852759 0.0147702i
\(147\) 6.63208 4.47577i 0.547005 0.369155i
\(148\) −13.0285 −1.07094
\(149\) 18.4651 1.51272 0.756359 0.654157i \(-0.226976\pi\)
0.756359 + 0.654157i \(0.226976\pi\)
\(150\) −0.239443 + 0.414727i −0.0195504 + 0.0338623i
\(151\) −0.803678 1.39201i −0.0654024 0.113280i 0.831470 0.555570i \(-0.187500\pi\)
−0.896872 + 0.442289i \(0.854166\pi\)
\(152\) −7.89421 −0.640305
\(153\) 0.664795 1.15146i 0.0537455 0.0930900i
\(154\) −1.90884 + 2.04749i −0.153819 + 0.164991i
\(155\) 6.54366 0.525600
\(156\) 0.139836 7.94485i 0.0111958 0.636097i
\(157\) 0.822967 + 1.42542i 0.0656799 + 0.113761i 0.896995 0.442040i \(-0.145745\pi\)
−0.831315 + 0.555801i \(0.812412\pi\)
\(158\) −1.66046 −0.132099
\(159\) 5.30330 + 9.18558i 0.420579 + 0.728464i
\(160\) −3.92548 6.79913i −0.310337 0.537519i
\(161\) −14.3524 + 15.3949i −1.13113 + 1.21329i
\(162\) −0.140949 0.244130i −0.0110740 0.0191807i
\(163\) −6.54819 −0.512894 −0.256447 0.966558i \(-0.582552\pi\)
−0.256447 + 0.966558i \(0.582552\pi\)
\(164\) −2.34986 4.07007i −0.183493 0.317819i
\(165\) −5.77716 + 10.0063i −0.449751 + 0.778992i
\(166\) −0.143838 0.249135i −0.0111640 0.0193367i
\(167\) −4.77440 + 8.26950i −0.369454 + 0.639913i −0.989480 0.144668i \(-0.953789\pi\)
0.620026 + 0.784581i \(0.287122\pi\)
\(168\) −0.931600 3.04579i −0.0718745 0.234988i
\(169\) 6.89216 11.0226i 0.530166 0.847894i
\(170\) −0.269631 + 0.467015i −0.0206798 + 0.0358184i
\(171\) 12.6935 0.970694
\(172\) 4.33720 0.330709
\(173\) 11.1316 0.846322 0.423161 0.906054i \(-0.360920\pi\)
0.423161 + 0.906054i \(0.360920\pi\)
\(174\) 0.720733 0.0546386
\(175\) 2.81916 3.02392i 0.213108 0.228587i
\(176\) −7.05115 12.2130i −0.531501 0.920586i
\(177\) −5.12451 + 8.87592i −0.385182 + 0.667155i
\(178\) 1.02732 1.77937i 0.0770009 0.133369i
\(179\) −12.6435 −0.945017 −0.472508 0.881326i \(-0.656651\pi\)
−0.472508 + 0.881326i \(0.656651\pi\)
\(180\) 4.18246 + 7.24424i 0.311742 + 0.539954i
\(181\) 14.9158 1.10868 0.554341 0.832289i \(-0.312970\pi\)
0.554341 + 0.832289i \(0.312970\pi\)
\(182\) 0.618833 2.48176i 0.0458709 0.183960i
\(183\) −10.7963 −0.798082
\(184\) 4.18930 + 7.25607i 0.308839 + 0.534925i
\(185\) −17.3102 −1.27267
\(186\) 0.391418 0.677956i 0.0287001 0.0497101i
\(187\) −1.54900 + 2.68295i −0.113274 + 0.196197i
\(188\) 1.26923 + 2.19837i 0.0925680 + 0.160332i
\(189\) 4.15153 + 13.5731i 0.301979 + 0.987296i
\(190\) −5.14829 −0.373496
\(191\) −14.1306 −1.02245 −0.511226 0.859447i \(-0.670808\pi\)
−0.511226 + 0.859447i \(0.670808\pi\)
\(192\) 7.23059 0.521823
\(193\) 3.89454 0.280335 0.140167 0.990128i \(-0.455236\pi\)
0.140167 + 0.990128i \(0.455236\pi\)
\(194\) −0.317999 + 0.550790i −0.0228310 + 0.0395444i
\(195\) 0.185791 10.5558i 0.0133048 0.755917i
\(196\) 0.944795 + 13.4637i 0.0674853 + 0.961689i
\(197\) 5.85445 10.1402i 0.417112 0.722459i −0.578536 0.815657i \(-0.696376\pi\)
0.995648 + 0.0931979i \(0.0297089\pi\)
\(198\) −0.895897 1.55174i −0.0636686 0.110277i
\(199\) −1.74842 + 3.02835i −0.123942 + 0.214674i −0.921319 0.388808i \(-0.872887\pi\)
0.797377 + 0.603482i \(0.206220\pi\)
\(200\) −0.822878 1.42527i −0.0581863 0.100782i
\(201\) 1.54599 0.109046
\(202\) −0.106892 0.185143i −0.00752090 0.0130266i
\(203\) −6.06279 1.39892i −0.425524 0.0981850i
\(204\) −0.865120 1.49843i −0.0605705 0.104911i
\(205\) −3.12210 5.40764i −0.218057 0.377686i
\(206\) −0.580807 −0.0404667
\(207\) −6.73617 11.6674i −0.468196 0.810939i
\(208\) 11.0441 + 6.63818i 0.765774 + 0.460275i
\(209\) −29.5764 −2.04584
\(210\) −0.607552 1.98634i −0.0419251 0.137071i
\(211\) −9.50258 + 16.4589i −0.654184 + 1.13308i 0.327913 + 0.944708i \(0.393655\pi\)
−0.982098 + 0.188373i \(0.939679\pi\)
\(212\) −17.8920 −1.22882
\(213\) 7.03874 + 12.1915i 0.482286 + 0.835345i
\(214\) −1.54524 + 2.67643i −0.105630 + 0.182957i
\(215\) 5.76256 0.393004
\(216\) 5.65029 0.384453
\(217\) −4.60849 + 4.94321i −0.312844 + 0.335567i
\(218\) 1.08299 1.87579i 0.0733492 0.127045i
\(219\) 0.439253 + 0.760808i 0.0296820 + 0.0514106i
\(220\) −9.74533 16.8794i −0.657030 1.13801i
\(221\) 0.0498153 2.83028i 0.00335094 0.190385i
\(222\) −1.03543 + 1.79342i −0.0694936 + 0.120366i
\(223\) 5.98311 10.3630i 0.400658 0.693961i −0.593147 0.805094i \(-0.702115\pi\)
0.993805 + 0.111133i \(0.0354481\pi\)
\(224\) 7.90079 + 1.82302i 0.527894 + 0.121806i
\(225\) 1.32315 + 2.29175i 0.0882097 + 0.152784i
\(226\) 1.07804 1.86723i 0.0717104 0.124206i
\(227\) −7.69209 + 13.3231i −0.510542 + 0.884284i 0.489384 + 0.872069i \(0.337222\pi\)
−0.999925 + 0.0122157i \(0.996112\pi\)
\(228\) 8.25921 14.3054i 0.546980 0.947396i
\(229\) −4.33084 + 7.50123i −0.286190 + 0.495695i −0.972897 0.231239i \(-0.925722\pi\)
0.686707 + 0.726934i \(0.259055\pi\)
\(230\) 2.73209 + 4.73212i 0.180149 + 0.312027i
\(231\) −3.49032 11.4113i −0.229646 0.750810i
\(232\) −1.23845 + 2.14506i −0.0813082 + 0.140830i
\(233\) −10.1253 + 17.5376i −0.663333 + 1.14893i 0.316402 + 0.948625i \(0.397525\pi\)
−0.979734 + 0.200301i \(0.935808\pi\)
\(234\) 1.40323 + 0.843426i 0.0917322 + 0.0551365i
\(235\) 1.68634 + 2.92083i 0.110005 + 0.190534i
\(236\) −8.64440 14.9725i −0.562702 0.974629i
\(237\) 3.53924 6.13014i 0.229898 0.398195i
\(238\) −0.162900 0.532588i −0.0105592 0.0345226i
\(239\) 16.5526 1.07070 0.535350 0.844630i \(-0.320180\pi\)
0.535350 + 0.844630i \(0.320180\pi\)
\(240\) 10.4645 0.675483
\(241\) 8.20038 14.2035i 0.528233 0.914926i −0.471225 0.882013i \(-0.656188\pi\)
0.999458 0.0329132i \(-0.0104785\pi\)
\(242\) 0.612791 + 1.06138i 0.0393917 + 0.0682284i
\(243\) −14.8925 −0.955356
\(244\) 9.10595 15.7720i 0.582949 1.00970i
\(245\) 1.25529 + 17.8883i 0.0801974 + 1.14284i
\(246\) −0.747011 −0.0476277
\(247\) 23.6381 13.0983i 1.50406 0.833427i
\(248\) 1.34516 + 2.32989i 0.0854178 + 0.147948i
\(249\) 1.22636 0.0777172
\(250\) 1.18053 + 2.04474i 0.0746632 + 0.129321i
\(251\) 10.2154 + 17.6935i 0.644788 + 1.11681i 0.984350 + 0.176222i \(0.0563876\pi\)
−0.339563 + 0.940583i \(0.610279\pi\)
\(252\) −8.41802 1.94236i −0.530285 0.122357i
\(253\) 15.6956 + 27.1855i 0.986772 + 1.70914i
\(254\) −0.479420 −0.0300815
\(255\) −1.14943 1.99087i −0.0719800 0.124673i
\(256\) −5.27682 + 9.13972i −0.329801 + 0.571232i
\(257\) −6.88895 11.9320i −0.429721 0.744299i 0.567127 0.823630i \(-0.308055\pi\)
−0.996848 + 0.0793315i \(0.974721\pi\)
\(258\) 0.344695 0.597030i 0.0214598 0.0371695i
\(259\) 12.1910 13.0765i 0.757511 0.812532i
\(260\) 15.2640 + 9.17456i 0.946633 + 0.568982i
\(261\) 1.99136 3.44914i 0.123262 0.213496i
\(262\) 1.71356 0.105864
\(263\) 25.9173 1.59813 0.799065 0.601244i \(-0.205328\pi\)
0.799065 + 0.601244i \(0.205328\pi\)
\(264\) −4.75038 −0.292366
\(265\) −23.7719 −1.46030
\(266\) 3.62577 3.88912i 0.222310 0.238457i
\(267\) 4.37943 + 7.58540i 0.268017 + 0.464219i
\(268\) −1.30394 + 2.25850i −0.0796510 + 0.137960i
\(269\) 15.0333 26.0384i 0.916596 1.58759i 0.112050 0.993703i \(-0.464258\pi\)
0.804547 0.593889i \(-0.202408\pi\)
\(270\) 3.68489 0.224255
\(271\) −7.22527 12.5145i −0.438904 0.760204i 0.558701 0.829369i \(-0.311300\pi\)
−0.997605 + 0.0691651i \(0.977966\pi\)
\(272\) 2.80581 0.170127
\(273\) 7.84323 + 7.57446i 0.474694 + 0.458427i
\(274\) −2.69105 −0.162572
\(275\) −3.08299 5.33989i −0.185911 0.322008i
\(276\) −17.5320 −1.05530
\(277\) 7.66274 13.2723i 0.460409 0.797452i −0.538572 0.842580i \(-0.681036\pi\)
0.998981 + 0.0451272i \(0.0143693\pi\)
\(278\) −0.743453 + 1.28770i −0.0445894 + 0.0772310i
\(279\) −2.16295 3.74634i −0.129492 0.224287i
\(280\) 6.95575 + 1.60496i 0.415686 + 0.0959148i
\(281\) 5.29279 0.315741 0.157871 0.987460i \(-0.449537\pi\)
0.157871 + 0.987460i \(0.449537\pi\)
\(282\) 0.403483 0.0240271
\(283\) −30.7845 −1.82995 −0.914975 0.403511i \(-0.867790\pi\)
−0.914975 + 0.403511i \(0.867790\pi\)
\(284\) −23.7469 −1.40912
\(285\) 10.9735 19.0066i 0.650013 1.12586i
\(286\) −3.26960 1.96522i −0.193335 0.116206i
\(287\) 6.28384 + 1.44992i 0.370923 + 0.0855864i
\(288\) −2.59507 + 4.49479i −0.152916 + 0.264858i
\(289\) 8.19181 + 14.1886i 0.481871 + 0.834625i
\(290\) −0.807667 + 1.39892i −0.0474279 + 0.0821474i
\(291\) −1.35562 2.34800i −0.0794677 0.137642i
\(292\) −1.48193 −0.0867231
\(293\) 8.75864 + 15.1704i 0.511685 + 0.886265i 0.999908 + 0.0135461i \(0.00431197\pi\)
−0.488223 + 0.872719i \(0.662355\pi\)
\(294\) 1.92840 + 0.939958i 0.112467 + 0.0548195i
\(295\) −11.4853 19.8930i −0.668697 1.15822i
\(296\) −3.55840 6.16333i −0.206828 0.358237i
\(297\) 21.1693 1.22837
\(298\) 2.47548 + 4.28765i 0.143400 + 0.248377i
\(299\) −24.5838 14.7763i −1.42172 0.854536i
\(300\) 3.44370 0.198822
\(301\) −4.05839 + 4.35316i −0.233921 + 0.250912i
\(302\) 0.215486 0.373233i 0.0123998 0.0214772i
\(303\) 0.911355 0.0523560
\(304\) 13.3934 + 23.1980i 0.768163 + 1.33050i
\(305\) 12.0985 20.9552i 0.692757 1.19989i
\(306\) 0.356497 0.0203796
\(307\) −8.63573 −0.492867 −0.246434 0.969160i \(-0.579259\pi\)
−0.246434 + 0.969160i \(0.579259\pi\)
\(308\) 19.6144 + 4.52579i 1.11763 + 0.257881i
\(309\) 1.23798 2.14425i 0.0704262 0.121982i
\(310\) 0.877260 + 1.51946i 0.0498250 + 0.0862995i
\(311\) 8.21130 + 14.2224i 0.465620 + 0.806478i 0.999229 0.0392535i \(-0.0124980\pi\)
−0.533609 + 0.845731i \(0.679165\pi\)
\(312\) 3.79662 2.10378i 0.214941 0.119103i
\(313\) −5.02308 + 8.70024i −0.283921 + 0.491766i −0.972347 0.233541i \(-0.924969\pi\)
0.688426 + 0.725307i \(0.258302\pi\)
\(314\) −0.220658 + 0.382191i −0.0124525 + 0.0215683i
\(315\) −11.1845 2.58069i −0.630174 0.145406i
\(316\) 5.97024 + 10.3408i 0.335852 + 0.581713i
\(317\) −5.07249 + 8.78581i −0.284899 + 0.493460i −0.972585 0.232549i \(-0.925294\pi\)
0.687685 + 0.726009i \(0.258627\pi\)
\(318\) −1.42195 + 2.46289i −0.0797389 + 0.138112i
\(319\) −4.63996 + 8.03665i −0.259788 + 0.449966i
\(320\) −8.10273 + 14.0343i −0.452957 + 0.784544i
\(321\) −6.58729 11.4095i −0.367667 0.636817i
\(322\) −5.49886 1.26880i −0.306440 0.0707075i
\(323\) 2.94227 5.09616i 0.163712 0.283558i
\(324\) −1.01357 + 1.75556i −0.0563095 + 0.0975310i
\(325\) 4.82885 + 2.90242i 0.267856 + 0.160998i
\(326\) −0.877867 1.52051i −0.0486206 0.0842133i
\(327\) 4.61674 + 7.99644i 0.255307 + 0.442204i
\(328\) 1.28360 2.22327i 0.0708751 0.122759i
\(329\) −3.39409 0.783149i −0.187122 0.0431764i
\(330\) −3.09801 −0.170540
\(331\) 2.31916 0.127473 0.0637363 0.997967i \(-0.479698\pi\)
0.0637363 + 0.997967i \(0.479698\pi\)
\(332\) −1.03435 + 1.79155i −0.0567675 + 0.0983242i
\(333\) 5.72172 + 9.91032i 0.313549 + 0.543082i
\(334\) −2.56027 −0.140092
\(335\) −1.73247 + 3.00072i −0.0946547 + 0.163947i
\(336\) −7.36983 + 7.90512i −0.402057 + 0.431260i
\(337\) −15.9998 −0.871565 −0.435783 0.900052i \(-0.643528\pi\)
−0.435783 + 0.900052i \(0.643528\pi\)
\(338\) 3.48347 + 0.122662i 0.189476 + 0.00667193i
\(339\) 4.59567 + 7.95993i 0.249602 + 0.432324i
\(340\) 3.87788 0.210307
\(341\) 5.03977 + 8.72913i 0.272919 + 0.472709i
\(342\) 1.70172 + 2.94747i 0.0920185 + 0.159381i
\(343\) −14.3972 11.6499i −0.777378 0.629034i
\(344\) 1.18459 + 2.05178i 0.0638690 + 0.110624i
\(345\) −23.2936 −1.25409
\(346\) 1.49234 + 2.58480i 0.0802285 + 0.138960i
\(347\) 11.4104 19.7634i 0.612543 1.06096i −0.378267 0.925696i \(-0.623480\pi\)
0.990810 0.135259i \(-0.0431867\pi\)
\(348\) −2.59142 4.48848i −0.138915 0.240608i
\(349\) 11.3511 19.6607i 0.607612 1.05241i −0.384021 0.923324i \(-0.625461\pi\)
0.991633 0.129090i \(-0.0412056\pi\)
\(350\) 1.08011 + 0.249223i 0.0577342 + 0.0133215i
\(351\) −16.9190 + 9.37515i −0.903071 + 0.500408i
\(352\) 6.04662 10.4731i 0.322286 0.558216i
\(353\) −27.2644 −1.45114 −0.725568 0.688150i \(-0.758423\pi\)
−0.725568 + 0.688150i \(0.758423\pi\)
\(354\) −2.74802 −0.146056
\(355\) −31.5510 −1.67455
\(356\) −14.7751 −0.783077
\(357\) 2.31345 + 0.533802i 0.122441 + 0.0282518i
\(358\) −1.69502 2.93585i −0.0895844 0.155165i
\(359\) 7.21309 12.4934i 0.380692 0.659378i −0.610469 0.792040i \(-0.709019\pi\)
0.991161 + 0.132662i \(0.0423524\pi\)
\(360\) −2.28466 + 3.95715i −0.120412 + 0.208560i
\(361\) 37.1791 1.95679
\(362\) 1.99965 + 3.46350i 0.105099 + 0.182037i
\(363\) −5.22461 −0.274221
\(364\) −17.6806 + 5.06939i −0.926715 + 0.265708i
\(365\) −1.96894 −0.103059
\(366\) −1.44737 2.50693i −0.0756555 0.131039i
\(367\) −11.3917 −0.594643 −0.297322 0.954777i \(-0.596093\pi\)
−0.297322 + 0.954777i \(0.596093\pi\)
\(368\) 14.2152 24.6214i 0.741018 1.28348i
\(369\) −2.06397 + 3.57489i −0.107446 + 0.186102i
\(370\) −2.32065 4.01948i −0.120645 0.208963i
\(371\) 16.7418 17.9578i 0.869190 0.932321i
\(372\) −5.62943 −0.291872
\(373\) −30.9629 −1.60320 −0.801599 0.597862i \(-0.796017\pi\)
−0.801599 + 0.597862i \(0.796017\pi\)
\(374\) −0.830653 −0.0429521
\(375\) −10.0651 −0.519760
\(376\) −0.693313 + 1.20085i −0.0357549 + 0.0619293i
\(377\) 0.149219 8.47796i 0.00768518 0.436637i
\(378\) −2.59515 + 2.78364i −0.133480 + 0.143175i
\(379\) −5.29330 + 9.16826i −0.271898 + 0.470942i −0.969348 0.245692i \(-0.920985\pi\)
0.697450 + 0.716634i \(0.254318\pi\)
\(380\) 18.5109 + 32.0617i 0.949587 + 1.64473i
\(381\) 1.02188 1.76994i 0.0523523 0.0906768i
\(382\) −1.89438 3.28116i −0.0969249 0.167879i
\(383\) 30.7517 1.57134 0.785668 0.618648i \(-0.212319\pi\)
0.785668 + 0.618648i \(0.212319\pi\)
\(384\) 4.47231 + 7.74627i 0.228227 + 0.395300i
\(385\) 26.0603 + 6.01313i 1.32816 + 0.306458i
\(386\) 0.522112 + 0.904324i 0.0265748 + 0.0460289i
\(387\) −1.90476 3.29915i −0.0968246 0.167705i
\(388\) 4.57351 0.232185
\(389\) 8.18978 + 14.1851i 0.415239 + 0.719214i 0.995453 0.0952492i \(-0.0303648\pi\)
−0.580215 + 0.814463i \(0.697031\pi\)
\(390\) 2.47600 1.37200i 0.125377 0.0694738i
\(391\) −6.24561 −0.315854
\(392\) −6.11113 + 4.12419i −0.308659 + 0.208303i
\(393\) −3.65243 + 6.32620i −0.184241 + 0.319114i
\(394\) 3.13945 0.158163
\(395\) 7.93227 + 13.7391i 0.399116 + 0.691289i
\(396\) −6.44246 + 11.1587i −0.323746 + 0.560744i
\(397\) −15.8827 −0.797127 −0.398564 0.917141i \(-0.630491\pi\)
−0.398564 + 0.917141i \(0.630491\pi\)
\(398\) −0.937591 −0.0469972
\(399\) 6.62973 + 21.6753i 0.331902 + 1.08512i
\(400\) −2.79221 + 4.83624i −0.139610 + 0.241812i
\(401\) −3.31787 5.74671i −0.165686 0.286977i 0.771212 0.636578i \(-0.219651\pi\)
−0.936899 + 0.349601i \(0.886317\pi\)
\(402\) 0.207259 + 0.358984i 0.0103372 + 0.0179045i
\(403\) −7.89373 4.74460i −0.393215 0.236345i
\(404\) −0.768670 + 1.33137i −0.0382427 + 0.0662384i
\(405\) −1.34667 + 2.33250i −0.0669164 + 0.115903i
\(406\) −0.487959 1.59534i −0.0242170 0.0791755i
\(407\) −13.3319 23.0915i −0.660836 1.14460i
\(408\) 0.472570 0.818515i 0.0233957 0.0405225i
\(409\) −2.93617 + 5.08560i −0.145184 + 0.251467i −0.929442 0.368969i \(-0.879711\pi\)
0.784257 + 0.620436i \(0.213044\pi\)
\(410\) 0.837115 1.44992i 0.0413421 0.0716067i
\(411\) 5.73593 9.93492i 0.282933 0.490053i
\(412\) 2.08831 + 3.61707i 0.102884 + 0.178200i
\(413\) 23.1163 + 5.33383i 1.13748 + 0.262460i
\(414\) 1.80614 3.12832i 0.0887667 0.153749i
\(415\) −1.37428 + 2.38032i −0.0674607 + 0.116845i
\(416\) −0.194457 + 11.0482i −0.00953403 + 0.541680i
\(417\) −3.16932 5.48942i −0.155202 0.268818i
\(418\) −3.96508 6.86773i −0.193939 0.335911i
\(419\) 15.0712 26.1040i 0.736274 1.27526i −0.217888 0.975974i \(-0.569917\pi\)
0.954162 0.299290i \(-0.0967499\pi\)
\(420\) −10.1858 + 10.9256i −0.497015 + 0.533114i
\(421\) 40.0580 1.95231 0.976153 0.217083i \(-0.0696543\pi\)
0.976153 + 0.217083i \(0.0696543\pi\)
\(422\) −5.09576 −0.248058
\(423\) 1.11481 1.93091i 0.0542040 0.0938840i
\(424\) −4.88672 8.46405i −0.237320 0.411051i
\(425\) 1.22679 0.0595079
\(426\) −1.88726 + 3.26884i −0.0914382 + 0.158376i
\(427\) 7.30941 + 23.8975i 0.353727 + 1.15648i
\(428\) 22.2238 1.07423
\(429\) 14.2244 7.88199i 0.686759 0.380546i
\(430\) 0.772544 + 1.33809i 0.0372554 + 0.0645282i
\(431\) −3.91587 −0.188621 −0.0943104 0.995543i \(-0.530065\pi\)
−0.0943104 + 0.995543i \(0.530065\pi\)
\(432\) −9.58632 16.6040i −0.461222 0.798860i
\(433\) 20.3963 + 35.3274i 0.980182 + 1.69772i 0.661650 + 0.749813i \(0.269856\pi\)
0.318532 + 0.947912i \(0.396810\pi\)
\(434\) −1.76566 0.407405i −0.0847542 0.0195561i
\(435\) −3.44306 5.96355i −0.165082 0.285930i
\(436\) −15.5757 −0.745941
\(437\) −29.8131 51.6378i −1.42615 2.47017i
\(438\) −0.117775 + 0.203992i −0.00562750 + 0.00974711i
\(439\) 12.7811 + 22.1376i 0.610010 + 1.05657i 0.991238 + 0.132087i \(0.0421680\pi\)
−0.381228 + 0.924481i \(0.624499\pi\)
\(440\) 5.32336 9.22033i 0.253781 0.439562i
\(441\) 9.82637 6.63149i 0.467923 0.315785i
\(442\) 0.663878 0.367867i 0.0315775 0.0174977i
\(443\) 13.7282 23.7779i 0.652247 1.12972i −0.330330 0.943866i \(-0.607160\pi\)
0.982576 0.185859i \(-0.0595067\pi\)
\(444\) 14.8917 0.706730
\(445\) −19.6307 −0.930584
\(446\) 3.20844 0.151924
\(447\) −21.1057 −0.998267
\(448\) −4.89534 16.0049i −0.231283 0.756161i
\(449\) 7.40181 + 12.8203i 0.349313 + 0.605028i 0.986128 0.165989i \(-0.0530816\pi\)
−0.636815 + 0.771017i \(0.719748\pi\)
\(450\) −0.354769 + 0.614477i −0.0167240 + 0.0289667i
\(451\) 4.80913 8.32966i 0.226453 0.392229i
\(452\) −15.5046 −0.729275
\(453\) 0.918611 + 1.59108i 0.0431601 + 0.0747555i
\(454\) −4.12489 −0.193590
\(455\) −23.4911 + 6.73537i −1.10128 + 0.315759i
\(456\) 9.02315 0.422548
\(457\) 0.325975 + 0.564606i 0.0152485 + 0.0264112i 0.873549 0.486736i \(-0.161813\pi\)
−0.858300 + 0.513147i \(0.828479\pi\)
\(458\) −2.32241 −0.108519
\(459\) −2.10593 + 3.64758i −0.0982965 + 0.170254i
\(460\) 19.6467 34.0290i 0.916031 1.58661i
\(461\) −6.24774 10.8214i −0.290986 0.504003i 0.683057 0.730365i \(-0.260650\pi\)
−0.974043 + 0.226362i \(0.927317\pi\)
\(462\) 2.18182 2.34030i 0.101508 0.108880i
\(463\) −0.309503 −0.0143838 −0.00719190 0.999974i \(-0.502289\pi\)
−0.00719190 + 0.999974i \(0.502289\pi\)
\(464\) 8.40466 0.390176
\(465\) −7.47946 −0.346852
\(466\) −5.42972 −0.251527
\(467\) −12.2387 + 21.1980i −0.566338 + 0.980926i 0.430586 + 0.902549i \(0.358307\pi\)
−0.996924 + 0.0783762i \(0.975026\pi\)
\(468\) 0.207187 11.7714i 0.00957722 0.544134i
\(469\) −1.04668 3.42205i −0.0483314 0.158016i
\(470\) −0.452151 + 0.783149i −0.0208562 + 0.0361240i
\(471\) −0.940659 1.62927i −0.0433433 0.0750727i
\(472\) 4.72198 8.17871i 0.217347 0.376456i
\(473\) 4.43818 + 7.68716i 0.204068 + 0.353456i
\(474\) 1.89792 0.0871742
\(475\) 5.85601 + 10.1429i 0.268692 + 0.465389i
\(476\) −2.73106 + 2.92943i −0.125178 + 0.134270i
\(477\) 7.85759 + 13.6097i 0.359774 + 0.623147i
\(478\) 2.21909 + 3.84357i 0.101499 + 0.175801i
\(479\) 8.13850 0.371858 0.185929 0.982563i \(-0.440471\pi\)
0.185929 + 0.982563i \(0.440471\pi\)
\(480\) 4.48686 + 7.77147i 0.204796 + 0.354718i
\(481\) 20.8816 + 12.5511i 0.952118 + 0.572279i
\(482\) 4.39746 0.200299
\(483\) 16.4049 17.5965i 0.746450 0.800667i
\(484\) 4.40662 7.63250i 0.200301 0.346932i
\(485\) 6.07653 0.275921
\(486\) −1.99653 3.45809i −0.0905645 0.156862i
\(487\) −2.30480 + 3.99203i −0.104440 + 0.180896i −0.913509 0.406817i \(-0.866638\pi\)
0.809069 + 0.587714i \(0.199972\pi\)
\(488\) 9.94821 0.450334
\(489\) 7.48464 0.338467
\(490\) −3.98543 + 2.68963i −0.180044 + 0.121505i
\(491\) −6.50947 + 11.2747i −0.293768 + 0.508822i −0.974698 0.223527i \(-0.928243\pi\)
0.680929 + 0.732349i \(0.261576\pi\)
\(492\) 2.68591 + 4.65213i 0.121090 + 0.209734i
\(493\) −0.923171 1.59898i −0.0415775 0.0720144i
\(494\) 6.21047 + 3.73286i 0.279422 + 0.167949i
\(495\) −8.55969 + 14.8258i −0.384729 + 0.666371i
\(496\) 4.56443 7.90582i 0.204949 0.354982i
\(497\) 22.2203 23.8342i 0.996718 1.06911i
\(498\) 0.164409 + 0.284764i 0.00736733 + 0.0127606i
\(499\) 16.1603 27.9905i 0.723436 1.25303i −0.236178 0.971710i \(-0.575895\pi\)
0.959614 0.281319i \(-0.0907717\pi\)
\(500\) 8.48928 14.7039i 0.379652 0.657577i
\(501\) 5.45718 9.45211i 0.243809 0.422289i
\(502\) −2.73900 + 4.74408i −0.122247 + 0.211739i
\(503\) 15.9126 + 27.5615i 0.709509 + 1.22891i 0.965039 + 0.262105i \(0.0844165\pi\)
−0.255531 + 0.966801i \(0.582250\pi\)
\(504\) −1.38030 4.51277i −0.0614834 0.201015i
\(505\) −1.02128 + 1.76891i −0.0454465 + 0.0787156i
\(506\) −4.20838 + 7.28912i −0.187085 + 0.324041i
\(507\) −7.87780 + 12.5990i −0.349866 + 0.559539i
\(508\) 1.72377 + 2.98566i 0.0764801 + 0.132467i
\(509\) −1.12788 1.95354i −0.0499922 0.0865891i 0.839946 0.542669i \(-0.182586\pi\)
−0.889939 + 0.456080i \(0.849253\pi\)
\(510\) 0.308191 0.533802i 0.0136469 0.0236372i
\(511\) 1.38666 1.48738i 0.0613422 0.0657977i
\(512\) −18.4807 −0.816739
\(513\) −40.2102 −1.77533
\(514\) 1.84710 3.19927i 0.0814722 0.141114i
\(515\) 2.77461 + 4.80576i 0.122264 + 0.211767i
\(516\) −4.95746 −0.218240
\(517\) −2.59756 + 4.49911i −0.114241 + 0.197870i
\(518\) 4.67075 + 1.07772i 0.205221 + 0.0473525i
\(519\) −12.7236 −0.558502
\(520\) −0.171197 + 9.72665i −0.00750749 + 0.426542i
\(521\) −5.38562 9.32817i −0.235948 0.408675i 0.723600 0.690220i \(-0.242486\pi\)
−0.959548 + 0.281546i \(0.909153\pi\)
\(522\) 1.06787 0.0467393
\(523\) −3.70397 6.41546i −0.161963 0.280528i 0.773610 0.633663i \(-0.218449\pi\)
−0.935573 + 0.353134i \(0.885116\pi\)
\(524\) −6.16118 10.6715i −0.269152 0.466186i
\(525\) −3.22232 + 3.45637i −0.140634 + 0.150848i
\(526\) 3.47454 + 6.01809i 0.151497 + 0.262401i
\(527\) −2.00543 −0.0873580
\(528\) 8.05953 + 13.9595i 0.350746 + 0.607510i
\(529\) −20.1424 + 34.8877i −0.875757 + 1.51686i
\(530\) −3.18692 5.51991i −0.138431 0.239770i
\(531\) −7.59270 + 13.1509i −0.329495 + 0.570702i
\(532\) −37.2567 8.59656i −1.61528 0.372708i
\(533\) −0.154660 + 8.78707i −0.00669906 + 0.380610i
\(534\) −1.17424 + 2.03384i −0.0508142 + 0.0880127i
\(535\) 29.5274 1.27658
\(536\) −1.42455 −0.0615313
\(537\) 14.4516 0.623632
\(538\) 8.06161 0.347561
\(539\) −22.8959 + 15.4517i −0.986196 + 0.665550i
\(540\) −13.2492 22.9482i −0.570153 0.987534i
\(541\) −16.2741 + 28.1875i −0.699676 + 1.21188i 0.268902 + 0.963168i \(0.413339\pi\)
−0.968579 + 0.248708i \(0.919994\pi\)
\(542\) 1.93728 3.35546i 0.0832132 0.144129i
\(543\) −17.0489 −0.731638
\(544\) 1.20304 + 2.08373i 0.0515799 + 0.0893391i
\(545\) −20.6944 −0.886453
\(546\) −0.707332 + 2.83668i −0.0302710 + 0.121399i
\(547\) −13.4997 −0.577206 −0.288603 0.957449i \(-0.593191\pi\)
−0.288603 + 0.957449i \(0.593191\pi\)
\(548\) 9.67577 + 16.7589i 0.413329 + 0.715906i
\(549\) −15.9962 −0.682701
\(550\) 0.826627 1.43176i 0.0352475 0.0610504i
\(551\) 8.81342 15.2653i 0.375464 0.650323i
\(552\) −4.78840 8.29376i −0.203808 0.353006i
\(553\) −15.9652 3.68380i −0.678911 0.156651i
\(554\) 4.10915 0.174581
\(555\) 19.7857 0.839856
\(556\) 10.6925 0.453461
\(557\) −29.7703 −1.26141 −0.630703 0.776024i \(-0.717233\pi\)
−0.630703 + 0.776024i \(0.717233\pi\)
\(558\) 0.579941 1.00449i 0.0245509 0.0425233i
\(559\) −6.95148 4.17825i −0.294016 0.176721i
\(560\) −7.08483 23.1632i −0.299389 0.978826i
\(561\) 1.77052 3.06664i 0.0747516 0.129474i
\(562\) 0.709566 + 1.22900i 0.0299312 + 0.0518424i
\(563\) −7.06629 + 12.2392i −0.297809 + 0.515819i −0.975634 0.219403i \(-0.929589\pi\)
0.677826 + 0.735223i \(0.262922\pi\)
\(564\) −1.45074 2.51275i −0.0610872 0.105806i
\(565\) −20.6000 −0.866647
\(566\) −4.12705 7.14826i −0.173473 0.300464i
\(567\) −0.813601 2.66000i −0.0341680 0.111710i
\(568\) −6.48584 11.2338i −0.272140 0.471360i
\(569\) 12.1270 + 21.0046i 0.508391 + 0.880558i 0.999953 + 0.00971585i \(0.00309270\pi\)
−0.491562 + 0.870842i \(0.663574\pi\)
\(570\) 5.88454 0.246476
\(571\) −0.604159 1.04643i −0.0252832 0.0437919i 0.853107 0.521736i \(-0.174715\pi\)
−0.878390 + 0.477944i \(0.841382\pi\)
\(572\) −0.482755 + 27.4279i −0.0201850 + 1.14682i
\(573\) 16.1514 0.674732
\(574\) 0.505750 + 1.65351i 0.0211096 + 0.0690161i
\(575\) 6.21533 10.7653i 0.259197 0.448943i
\(576\) 10.7131 0.446381
\(577\) 7.30518 + 12.6529i 0.304119 + 0.526749i 0.977065 0.212943i \(-0.0683047\pi\)
−0.672946 + 0.739692i \(0.734971\pi\)
\(578\) −2.19643 + 3.80433i −0.0913595 + 0.158239i
\(579\) −4.45149 −0.184998
\(580\) 11.6160 0.482328
\(581\) −0.830283 2.71454i −0.0344459 0.112618i
\(582\) 0.363475 0.629558i 0.0150665 0.0260960i
\(583\) −18.3085 31.7113i −0.758262 1.31335i
\(584\) −0.404749 0.701046i −0.0167486 0.0290095i
\(585\) 0.275276 15.6399i 0.0113813 0.646632i
\(586\) −2.34841 + 4.06757i −0.0970120 + 0.168030i
\(587\) −10.7548 + 18.6278i −0.443897 + 0.768852i −0.997975 0.0636132i \(-0.979738\pi\)
0.554078 + 0.832465i \(0.313071\pi\)
\(588\) −1.07991 15.3891i −0.0445347 0.634635i
\(589\) −9.57284 16.5806i −0.394442 0.683193i
\(590\) 3.07949 5.33383i 0.126780 0.219590i
\(591\) −6.69168 + 11.5903i −0.275259 + 0.476763i
\(592\) −12.0744 + 20.9135i −0.496256 + 0.859541i
\(593\) 1.32429 2.29373i 0.0543820 0.0941923i −0.837553 0.546356i \(-0.816014\pi\)
0.891935 + 0.452164i \(0.149348\pi\)
\(594\) 2.83801 + 4.91558i 0.116445 + 0.201689i
\(595\) −3.62859 + 3.89214i −0.148758 + 0.159562i
\(596\) 17.8013 30.8328i 0.729171 1.26296i
\(597\) 1.99846 3.46143i 0.0817915 0.141667i
\(598\) 0.135340 7.68939i 0.00553445 0.314443i
\(599\) 20.1250 + 34.8576i 0.822287 + 1.42424i 0.903975 + 0.427584i \(0.140635\pi\)
−0.0816889 + 0.996658i \(0.526031\pi\)
\(600\) 0.940558 + 1.62909i 0.0383981 + 0.0665075i
\(601\) −19.1725 + 33.2077i −0.782061 + 1.35457i 0.148679 + 0.988886i \(0.452498\pi\)
−0.930739 + 0.365683i \(0.880835\pi\)
\(602\) −1.55490 0.358775i −0.0633728 0.0146226i
\(603\) 2.29060 0.0932806
\(604\) −3.09916 −0.126103
\(605\) 5.85480 10.1408i 0.238031 0.412283i
\(606\) 0.122179 + 0.211620i 0.00496317 + 0.00859646i
\(607\) 42.5547 1.72724 0.863620 0.504143i \(-0.168192\pi\)
0.863620 + 0.504143i \(0.168192\pi\)
\(608\) −11.4853 + 19.8931i −0.465791 + 0.806773i
\(609\) 6.92982 + 1.59898i 0.280811 + 0.0647939i
\(610\) 6.48782 0.262684
\(611\) 0.0835364 4.74616i 0.00337952 0.192009i
\(612\) −1.28180 2.22014i −0.0518136 0.0897438i
\(613\) 15.2652 0.616556 0.308278 0.951296i \(-0.400247\pi\)
0.308278 + 0.951296i \(0.400247\pi\)
\(614\) −1.15773 2.00524i −0.0467221 0.0809251i
\(615\) 3.56859 + 6.18098i 0.143899 + 0.249241i
\(616\) 3.21616 + 10.5150i 0.129583 + 0.423660i
\(617\) −6.99061 12.1081i −0.281431 0.487453i 0.690306 0.723517i \(-0.257476\pi\)
−0.971737 + 0.236064i \(0.924142\pi\)
\(618\) 0.663868 0.0267047
\(619\) 4.25792 + 7.37494i 0.171140 + 0.296424i 0.938819 0.344411i \(-0.111921\pi\)
−0.767678 + 0.640835i \(0.778588\pi\)
\(620\) 6.30845 10.9265i 0.253353 0.438821i
\(621\) 21.3388 + 36.9598i 0.856295 + 1.48315i
\(622\) −2.20166 + 3.81338i −0.0882784 + 0.152903i
\(623\) 13.8253 14.8294i 0.553897 0.594129i
\(624\) −12.6236 7.58750i −0.505347 0.303743i
\(625\) 15.1856 26.3023i 0.607425 1.05209i
\(626\) −2.69363 −0.107659
\(627\) 33.8060 1.35008
\(628\) 3.17354 0.126638
\(629\) 5.30504 0.211526
\(630\) −0.900175 2.94305i −0.0358638 0.117254i
\(631\) −18.4146 31.8950i −0.733074 1.26972i −0.955563 0.294786i \(-0.904752\pi\)
0.222490 0.974935i \(-0.428582\pi\)
\(632\) −3.26123 + 5.64861i −0.129725 + 0.224690i
\(633\) 10.8615 18.8127i 0.431707 0.747739i
\(634\) −2.72013 −0.108030
\(635\) 2.29027 + 3.96686i 0.0908865 + 0.157420i
\(636\) 20.4507 0.810922
\(637\) 11.4560 22.4891i 0.453901 0.891052i
\(638\) −2.48818 −0.0985081
\(639\) 10.4289 + 18.0634i 0.412561 + 0.714576i
\(640\) −20.0470 −0.792428
\(641\) −12.9374 + 22.4082i −0.510996 + 0.885070i 0.488923 + 0.872327i \(0.337390\pi\)
−0.999919 + 0.0127435i \(0.995944\pi\)
\(642\) 1.76622 3.05918i 0.0697071 0.120736i
\(643\) −20.2626 35.0958i −0.799078 1.38404i −0.920217 0.391408i \(-0.871988\pi\)
0.121139 0.992636i \(-0.461345\pi\)
\(644\) 11.8697 + 38.8070i 0.467732 + 1.52921i
\(645\) −6.58666 −0.259350
\(646\) 1.57779 0.0620774
\(647\) 1.78400 0.0701364 0.0350682 0.999385i \(-0.488835\pi\)
0.0350682 + 0.999385i \(0.488835\pi\)
\(648\) −1.10732 −0.0434997
\(649\) 17.6913 30.6423i 0.694445 1.20281i
\(650\) −0.0265840 + 1.51038i −0.00104271 + 0.0592420i
\(651\) 5.26754 5.65014i 0.206451 0.221446i
\(652\) −6.31281 + 10.9341i −0.247229 + 0.428213i
\(653\) −6.20210 10.7424i −0.242707 0.420381i 0.718778 0.695240i \(-0.244702\pi\)
−0.961484 + 0.274860i \(0.911369\pi\)
\(654\) −1.23787 + 2.14405i −0.0484044 + 0.0838389i
\(655\) −8.18597 14.1785i −0.319852 0.554000i
\(656\) −8.71109 −0.340111
\(657\) 0.650815 + 1.12725i 0.0253907 + 0.0439780i
\(658\) −0.273171 0.893110i −0.0106493 0.0348171i
\(659\) 0.564336 + 0.977458i 0.0219834 + 0.0380764i 0.876808 0.480841i \(-0.159669\pi\)
−0.854824 + 0.518917i \(0.826335\pi\)
\(660\) 11.1390 + 19.2933i 0.433585 + 0.750991i
\(661\) −28.9254 −1.12507 −0.562534 0.826774i \(-0.690174\pi\)
−0.562534 + 0.826774i \(0.690174\pi\)
\(662\) 0.310913 + 0.538517i 0.0120840 + 0.0209301i
\(663\) −0.0569393 + 3.23503i −0.00221134 + 0.125638i
\(664\) −1.13003 −0.0438535
\(665\) −49.5006 11.4217i −1.91955 0.442915i
\(666\) −1.53414 + 2.65721i −0.0594467 + 0.102965i
\(667\) −18.7084 −0.724393
\(668\) 9.20556 + 15.9445i 0.356174 + 0.616911i
\(669\) −6.83874 + 11.8451i −0.264401 + 0.457956i
\(670\) −0.929036 −0.0358918
\(671\) 37.2718 1.43886
\(672\) −9.03068 2.08373i −0.348366 0.0803815i
\(673\) 3.54980 6.14843i 0.136835 0.237005i −0.789462 0.613799i \(-0.789640\pi\)
0.926297 + 0.376795i \(0.122974\pi\)
\(674\) −2.14498 3.71521i −0.0826214 0.143104i
\(675\) −4.19145 7.25980i −0.161329 0.279430i
\(676\) −11.7610 22.1349i −0.452348 0.851341i
\(677\) 25.2010 43.6494i 0.968552 1.67758i 0.268800 0.963196i \(-0.413373\pi\)
0.699752 0.714386i \(-0.253294\pi\)
\(678\) −1.23221 + 2.13426i −0.0473229 + 0.0819657i
\(679\) −4.27950 + 4.59033i −0.164232 + 0.176161i
\(680\) 1.05914 + 1.83449i 0.0406162 + 0.0703493i
\(681\) 8.79213 15.2284i 0.336915 0.583554i
\(682\) −1.35129 + 2.34050i −0.0517435 + 0.0896224i
\(683\) −13.7641 + 23.8401i −0.526669 + 0.912217i 0.472848 + 0.881144i \(0.343226\pi\)
−0.999517 + 0.0310735i \(0.990107\pi\)
\(684\) 12.2372 21.1954i 0.467901 0.810428i
\(685\) 12.8556 + 22.2665i 0.491186 + 0.850760i
\(686\) 0.775007 4.90490i 0.0295899 0.187270i
\(687\) 4.95019 8.57398i 0.188861 0.327118i
\(688\) 4.01958 6.96212i 0.153245 0.265428i
\(689\) 28.6765 + 17.2362i 1.09249 + 0.656649i
\(690\) −3.12280 5.40885i −0.118883 0.205912i
\(691\) 12.1669 + 21.0737i 0.462851 + 0.801682i 0.999102 0.0423772i \(-0.0134931\pi\)
−0.536251 + 0.844059i \(0.680160\pi\)
\(692\) 10.7315 18.5875i 0.407950 0.706591i
\(693\) −5.17141 16.9075i −0.196446 0.642263i
\(694\) 6.11884 0.232268
\(695\) 14.2064 0.538879
\(696\) 1.41556 2.45182i 0.0536566 0.0929360i
\(697\) 0.956829 + 1.65728i 0.0362425 + 0.0627738i
\(698\) 6.08704 0.230398
\(699\) 11.5733 20.0456i 0.437744 0.758195i
\(700\) −2.33150 7.62263i −0.0881223 0.288108i
\(701\) −20.5588 −0.776495 −0.388248 0.921555i \(-0.626919\pi\)
−0.388248 + 0.921555i \(0.626919\pi\)
\(702\) −4.44515 2.67180i −0.167771 0.100840i
\(703\) 25.3234 + 43.8613i 0.955088 + 1.65426i
\(704\) −24.9621 −0.940795
\(705\) −1.92751 3.33854i −0.0725940 0.125737i
\(706\) −3.65513 6.33088i −0.137563 0.238266i
\(707\) −0.617017 2.01728i −0.0232053 0.0758678i
\(708\) 9.88062 + 17.1137i 0.371336 + 0.643174i
\(709\) 40.9089 1.53637 0.768183 0.640230i \(-0.221161\pi\)
0.768183 + 0.640230i \(0.221161\pi\)
\(710\) −4.22981 7.32624i −0.158742 0.274949i
\(711\) 5.24388 9.08267i 0.196661 0.340627i
\(712\) −4.03543 6.98956i −0.151234 0.261945i
\(713\) −10.1602 + 17.5980i −0.380503 + 0.659051i
\(714\) 0.186196 + 0.608753i 0.00696822 + 0.0227820i
\(715\) −0.641405 + 36.4418i −0.0239872 + 1.36284i
\(716\) −12.1890 + 21.1119i −0.455524 + 0.788990i
\(717\) −18.9198 −0.706572
\(718\) 3.86802 0.144353
\(719\) −1.19947 −0.0447326 −0.0223663 0.999750i \(-0.507120\pi\)
−0.0223663 + 0.999750i \(0.507120\pi\)
\(720\) 15.5047 0.577826
\(721\) −5.58444 1.28855i −0.207975 0.0479880i
\(722\) 4.98433 + 8.63311i 0.185497 + 0.321291i
\(723\) −9.37311 + 16.2347i −0.348590 + 0.603775i
\(724\) 14.3796 24.9063i 0.534415 0.925634i
\(725\) 3.67478 0.136478
\(726\) −0.700425 1.21317i −0.0259952 0.0450250i
\(727\) −2.06230 −0.0764865 −0.0382433 0.999268i \(-0.512176\pi\)
−0.0382433 + 0.999268i \(0.512176\pi\)
\(728\) −7.22714 6.97949i −0.267856 0.258677i
\(729\) 20.1764 0.747273
\(730\) −0.263961 0.457194i −0.00976964 0.0169215i
\(731\) −1.76605 −0.0653197
\(732\) −10.4082 + 18.0275i −0.384697 + 0.666315i
\(733\) −15.0310 + 26.0345i −0.555184 + 0.961606i 0.442706 + 0.896667i \(0.354019\pi\)
−0.997889 + 0.0649392i \(0.979315\pi\)
\(734\) −1.52720 2.64520i −0.0563702 0.0976360i
\(735\) −1.43481 20.4465i −0.0529236 0.754180i
\(736\) 24.3801 0.898662
\(737\) −5.33721 −0.196599
\(738\) −1.10680 −0.0407420
\(739\) 44.2548 1.62794 0.813969 0.580908i \(-0.197303\pi\)
0.813969 + 0.580908i \(0.197303\pi\)
\(740\) −16.6880 + 28.9044i −0.613461 + 1.06255i
\(741\) −27.0186 + 14.9715i −0.992553 + 0.549992i
\(742\) 6.41430 + 1.48003i 0.235476 + 0.0543335i
\(743\) 4.31326 7.47078i 0.158238 0.274076i −0.775995 0.630739i \(-0.782752\pi\)
0.934233 + 0.356662i \(0.116085\pi\)
\(744\) −1.53753 2.66308i −0.0563686 0.0976334i
\(745\) 23.6515 40.9656i 0.866524 1.50086i
\(746\) −4.15097 7.18969i −0.151978 0.263233i
\(747\) 1.81702 0.0664814
\(748\) 2.98665 + 5.17302i 0.109203 + 0.189144i
\(749\) −20.7952 + 22.3056i −0.759839 + 0.815028i
\(750\) −1.34936 2.33715i −0.0492715 0.0853408i
\(751\) −2.86105 4.95549i −0.104401 0.180828i 0.809092 0.587682i \(-0.199959\pi\)
−0.913493 + 0.406853i \(0.866626\pi\)
\(752\) 4.70512 0.171578
\(753\) −11.6763 20.2239i −0.425506 0.736998i
\(754\) 1.98862 1.10193i 0.0724211 0.0401299i
\(755\) −4.11765 −0.149857
\(756\) 26.6665 + 6.15300i 0.969851 + 0.223782i
\(757\) 17.3611 30.0703i 0.631000 1.09292i −0.356347 0.934354i \(-0.615978\pi\)
0.987348 0.158571i \(-0.0506887\pi\)
\(758\) −2.83853 −0.103100
\(759\) −17.9402 31.0733i −0.651187 1.12789i
\(760\) −10.1115 + 17.5137i −0.366783 + 0.635287i
\(761\) −53.1735 −1.92754 −0.963768 0.266741i \(-0.914053\pi\)
−0.963768 + 0.266741i \(0.914053\pi\)
\(762\) 0.547981 0.0198513
\(763\) 14.5744 15.6330i 0.527630 0.565953i
\(764\) −13.6226 + 23.5951i −0.492849 + 0.853640i
\(765\) −1.70304 2.94976i −0.0615736 0.106649i
\(766\) 4.12265 + 7.14063i 0.148957 + 0.258002i
\(767\) −0.568946 + 32.3249i −0.0205434 + 1.16719i
\(768\) 6.03145 10.4468i 0.217641 0.376966i
\(769\) −2.45578 + 4.25354i −0.0885578 + 0.153387i −0.906902 0.421342i \(-0.861559\pi\)
0.818344 + 0.574729i \(0.194892\pi\)
\(770\) 2.09745 + 6.85743i 0.0755868 + 0.247125i
\(771\) 7.87414 + 13.6384i 0.283580 + 0.491175i
\(772\) 3.75455 6.50306i 0.135129 0.234050i
\(773\) 11.4903 19.9018i 0.413279 0.715819i −0.581967 0.813212i \(-0.697717\pi\)
0.995246 + 0.0973926i \(0.0310502\pi\)
\(774\) 0.510715 0.884585i 0.0183573 0.0317957i
\(775\) 1.99571 3.45667i 0.0716881 0.124167i
\(776\) 1.24913 + 2.16356i 0.0448413