Properties

Label 8281.2.a.ce.1.3
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8281,2,Mod(1,8281)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8281, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8281.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,2,-1,4,1,-9,0,3,-3,-4,4,-5,0,0,-2,-8,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.6995813.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 6x^{4} + 4x^{3} + 7x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.874884\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.268125 q^{2} -1.14301 q^{3} -1.92811 q^{4} +2.56175 q^{5} -0.306470 q^{6} -1.05323 q^{8} -1.69353 q^{9} +0.686871 q^{10} -3.94600 q^{11} +2.20385 q^{12} -2.92811 q^{15} +3.57382 q^{16} +0.785100 q^{17} -0.454078 q^{18} +7.49527 q^{19} -4.93934 q^{20} -1.05802 q^{22} -7.95518 q^{23} +1.20385 q^{24} +1.56259 q^{25} +5.36475 q^{27} +2.35173 q^{29} -0.785100 q^{30} +2.55437 q^{31} +3.06468 q^{32} +4.51032 q^{33} +0.210505 q^{34} +3.26531 q^{36} -6.75716 q^{37} +2.00967 q^{38} -2.69810 q^{40} +2.43747 q^{41} -2.24946 q^{43} +7.60832 q^{44} -4.33841 q^{45} -2.13298 q^{46} -1.31655 q^{47} -4.08491 q^{48} +0.418969 q^{50} -0.897376 q^{51} +9.27954 q^{53} +1.43842 q^{54} -10.1087 q^{55} -8.56716 q^{57} +0.630558 q^{58} +8.96671 q^{59} +5.64571 q^{60} +9.44547 q^{61} +0.684890 q^{62} -6.32592 q^{64} +1.20933 q^{66} +1.35256 q^{67} -1.51376 q^{68} +9.09284 q^{69} -12.3162 q^{71} +1.78367 q^{72} -0.768590 q^{73} -1.81176 q^{74} -1.78605 q^{75} -14.4517 q^{76} +6.19284 q^{79} +9.15525 q^{80} -1.05136 q^{81} +0.653548 q^{82} +1.07292 q^{83} +2.01123 q^{85} -0.603137 q^{86} -2.68805 q^{87} +4.15603 q^{88} -7.66299 q^{89} -1.16324 q^{90} +15.3384 q^{92} -2.91966 q^{93} -0.353001 q^{94} +19.2010 q^{95} -3.50296 q^{96} +2.37202 q^{97} +6.68267 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - q^{3} + 4 q^{4} + q^{5} - 9 q^{6} + 3 q^{8} - 3 q^{9} - 4 q^{10} + 4 q^{11} - 5 q^{12} - 2 q^{15} - 8 q^{16} - 5 q^{17} + 3 q^{18} - q^{19} - q^{20} + 5 q^{22} + q^{23} - 11 q^{24}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.268125 0.189593 0.0947966 0.995497i \(-0.469780\pi\)
0.0947966 + 0.995497i \(0.469780\pi\)
\(3\) −1.14301 −0.659917 −0.329958 0.943996i \(-0.607035\pi\)
−0.329958 + 0.943996i \(0.607035\pi\)
\(4\) −1.92811 −0.964054
\(5\) 2.56175 1.14565 0.572826 0.819677i \(-0.305847\pi\)
0.572826 + 0.819677i \(0.305847\pi\)
\(6\) −0.306470 −0.125116
\(7\) 0 0
\(8\) −1.05323 −0.372371
\(9\) −1.69353 −0.564510
\(10\) 0.686871 0.217208
\(11\) −3.94600 −1.18976 −0.594882 0.803813i \(-0.702801\pi\)
−0.594882 + 0.803813i \(0.702801\pi\)
\(12\) 2.20385 0.636195
\(13\) 0 0
\(14\) 0 0
\(15\) −2.92811 −0.756034
\(16\) 3.57382 0.893455
\(17\) 0.785100 0.190415 0.0952073 0.995457i \(-0.469649\pi\)
0.0952073 + 0.995457i \(0.469649\pi\)
\(18\) −0.454078 −0.107027
\(19\) 7.49527 1.71953 0.859767 0.510687i \(-0.170609\pi\)
0.859767 + 0.510687i \(0.170609\pi\)
\(20\) −4.93934 −1.10447
\(21\) 0 0
\(22\) −1.05802 −0.225571
\(23\) −7.95518 −1.65877 −0.829384 0.558678i \(-0.811309\pi\)
−0.829384 + 0.558678i \(0.811309\pi\)
\(24\) 1.20385 0.245734
\(25\) 1.56259 0.312518
\(26\) 0 0
\(27\) 5.36475 1.03245
\(28\) 0 0
\(29\) 2.35173 0.436705 0.218353 0.975870i \(-0.429932\pi\)
0.218353 + 0.975870i \(0.429932\pi\)
\(30\) −0.785100 −0.143339
\(31\) 2.55437 0.458778 0.229389 0.973335i \(-0.426327\pi\)
0.229389 + 0.973335i \(0.426327\pi\)
\(32\) 3.06468 0.541764
\(33\) 4.51032 0.785145
\(34\) 0.210505 0.0361013
\(35\) 0 0
\(36\) 3.26531 0.544219
\(37\) −6.75716 −1.11087 −0.555435 0.831560i \(-0.687448\pi\)
−0.555435 + 0.831560i \(0.687448\pi\)
\(38\) 2.00967 0.326012
\(39\) 0 0
\(40\) −2.69810 −0.426608
\(41\) 2.43747 0.380669 0.190335 0.981719i \(-0.439043\pi\)
0.190335 + 0.981719i \(0.439043\pi\)
\(42\) 0 0
\(43\) −2.24946 −0.343039 −0.171520 0.985181i \(-0.554868\pi\)
−0.171520 + 0.985181i \(0.554868\pi\)
\(44\) 7.60832 1.14700
\(45\) −4.33841 −0.646732
\(46\) −2.13298 −0.314491
\(47\) −1.31655 −0.192039 −0.0960195 0.995379i \(-0.530611\pi\)
−0.0960195 + 0.995379i \(0.530611\pi\)
\(48\) −4.08491 −0.589606
\(49\) 0 0
\(50\) 0.418969 0.0592512
\(51\) −0.897376 −0.125658
\(52\) 0 0
\(53\) 9.27954 1.27464 0.637321 0.770598i \(-0.280042\pi\)
0.637321 + 0.770598i \(0.280042\pi\)
\(54\) 1.43842 0.195745
\(55\) −10.1087 −1.36306
\(56\) 0 0
\(57\) −8.56716 −1.13475
\(58\) 0.630558 0.0827963
\(59\) 8.96671 1.16737 0.583683 0.811982i \(-0.301611\pi\)
0.583683 + 0.811982i \(0.301611\pi\)
\(60\) 5.64571 0.728858
\(61\) 9.44547 1.20937 0.604684 0.796465i \(-0.293299\pi\)
0.604684 + 0.796465i \(0.293299\pi\)
\(62\) 0.684890 0.0869811
\(63\) 0 0
\(64\) −6.32592 −0.790741
\(65\) 0 0
\(66\) 1.20933 0.148858
\(67\) 1.35256 0.165242 0.0826209 0.996581i \(-0.473671\pi\)
0.0826209 + 0.996581i \(0.473671\pi\)
\(68\) −1.51376 −0.183570
\(69\) 9.09284 1.09465
\(70\) 0 0
\(71\) −12.3162 −1.46166 −0.730829 0.682560i \(-0.760867\pi\)
−0.730829 + 0.682560i \(0.760867\pi\)
\(72\) 1.78367 0.210207
\(73\) −0.768590 −0.0899567 −0.0449783 0.998988i \(-0.514322\pi\)
−0.0449783 + 0.998988i \(0.514322\pi\)
\(74\) −1.81176 −0.210613
\(75\) −1.78605 −0.206236
\(76\) −14.4517 −1.65772
\(77\) 0 0
\(78\) 0 0
\(79\) 6.19284 0.696749 0.348375 0.937355i \(-0.386734\pi\)
0.348375 + 0.937355i \(0.386734\pi\)
\(80\) 9.15525 1.02359
\(81\) −1.05136 −0.116818
\(82\) 0.653548 0.0721723
\(83\) 1.07292 0.117768 0.0588841 0.998265i \(-0.481246\pi\)
0.0588841 + 0.998265i \(0.481246\pi\)
\(84\) 0 0
\(85\) 2.01123 0.218149
\(86\) −0.603137 −0.0650379
\(87\) −2.68805 −0.288189
\(88\) 4.15603 0.443034
\(89\) −7.66299 −0.812275 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(90\) −1.16324 −0.122616
\(91\) 0 0
\(92\) 15.3384 1.59914
\(93\) −2.91966 −0.302755
\(94\) −0.353001 −0.0364093
\(95\) 19.2010 1.96999
\(96\) −3.50296 −0.357519
\(97\) 2.37202 0.240842 0.120421 0.992723i \(-0.461576\pi\)
0.120421 + 0.992723i \(0.461576\pi\)
\(98\) 0 0
\(99\) 6.68267 0.671634
\(100\) −3.01284 −0.301284
\(101\) −0.797330 −0.0793373 −0.0396686 0.999213i \(-0.512630\pi\)
−0.0396686 + 0.999213i \(0.512630\pi\)
\(102\) −0.240609 −0.0238239
\(103\) 2.16618 0.213440 0.106720 0.994289i \(-0.465965\pi\)
0.106720 + 0.994289i \(0.465965\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.48808 0.241664
\(107\) −11.5262 −1.11428 −0.557141 0.830418i \(-0.688102\pi\)
−0.557141 + 0.830418i \(0.688102\pi\)
\(108\) −10.3438 −0.995334
\(109\) −8.07823 −0.773754 −0.386877 0.922131i \(-0.626446\pi\)
−0.386877 + 0.922131i \(0.626446\pi\)
\(110\) −2.71039 −0.258426
\(111\) 7.72349 0.733081
\(112\) 0 0
\(113\) 8.04135 0.756467 0.378233 0.925710i \(-0.376532\pi\)
0.378233 + 0.925710i \(0.376532\pi\)
\(114\) −2.29707 −0.215141
\(115\) −20.3792 −1.90037
\(116\) −4.53439 −0.421007
\(117\) 0 0
\(118\) 2.40420 0.221325
\(119\) 0 0
\(120\) 3.08396 0.281526
\(121\) 4.57093 0.415539
\(122\) 2.53257 0.229288
\(123\) −2.78605 −0.251210
\(124\) −4.92510 −0.442287
\(125\) −8.80581 −0.787615
\(126\) 0 0
\(127\) 1.78805 0.158663 0.0793317 0.996848i \(-0.474721\pi\)
0.0793317 + 0.996848i \(0.474721\pi\)
\(128\) −7.82550 −0.691683
\(129\) 2.57115 0.226377
\(130\) 0 0
\(131\) −6.39091 −0.558376 −0.279188 0.960236i \(-0.590065\pi\)
−0.279188 + 0.960236i \(0.590065\pi\)
\(132\) −8.69638 −0.756923
\(133\) 0 0
\(134\) 0.362656 0.0313287
\(135\) 13.7432 1.18282
\(136\) −0.826887 −0.0709050
\(137\) −10.0365 −0.857480 −0.428740 0.903428i \(-0.641042\pi\)
−0.428740 + 0.903428i \(0.641042\pi\)
\(138\) 2.43802 0.207538
\(139\) −5.54557 −0.470369 −0.235184 0.971951i \(-0.575569\pi\)
−0.235184 + 0.971951i \(0.575569\pi\)
\(140\) 0 0
\(141\) 1.50483 0.126730
\(142\) −3.30227 −0.277121
\(143\) 0 0
\(144\) −6.05238 −0.504365
\(145\) 6.02455 0.500312
\(146\) −0.206078 −0.0170552
\(147\) 0 0
\(148\) 13.0285 1.07094
\(149\) −18.4651 −1.51272 −0.756359 0.654157i \(-0.773024\pi\)
−0.756359 + 0.654157i \(0.773024\pi\)
\(150\) −0.478886 −0.0391009
\(151\) −1.60736 −0.130805 −0.0654024 0.997859i \(-0.520833\pi\)
−0.0654024 + 0.997859i \(0.520833\pi\)
\(152\) −7.89421 −0.640305
\(153\) −1.32959 −0.107491
\(154\) 0 0
\(155\) 6.54366 0.525600
\(156\) 0 0
\(157\) −1.64593 −0.131360 −0.0656799 0.997841i \(-0.520922\pi\)
−0.0656799 + 0.997841i \(0.520922\pi\)
\(158\) 1.66046 0.132099
\(159\) −10.6066 −0.841158
\(160\) 7.85096 0.620673
\(161\) 0 0
\(162\) −0.281897 −0.0221479
\(163\) 6.54819 0.512894 0.256447 0.966558i \(-0.417448\pi\)
0.256447 + 0.966558i \(0.417448\pi\)
\(164\) −4.69971 −0.366986
\(165\) 11.5543 0.899503
\(166\) 0.287677 0.0223281
\(167\) −9.54880 −0.738908 −0.369454 0.929249i \(-0.620455\pi\)
−0.369454 + 0.929249i \(0.620455\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0.539262 0.0413595
\(171\) −12.6935 −0.970694
\(172\) 4.33720 0.330709
\(173\) 11.1316 0.846322 0.423161 0.906054i \(-0.360920\pi\)
0.423161 + 0.906054i \(0.360920\pi\)
\(174\) −0.720733 −0.0546386
\(175\) 0 0
\(176\) −14.1023 −1.06300
\(177\) −10.2490 −0.770364
\(178\) −2.05464 −0.154002
\(179\) −12.6435 −0.945017 −0.472508 0.881326i \(-0.656651\pi\)
−0.472508 + 0.881326i \(0.656651\pi\)
\(180\) 8.36493 0.623485
\(181\) 14.9158 1.10868 0.554341 0.832289i \(-0.312970\pi\)
0.554341 + 0.832289i \(0.312970\pi\)
\(182\) 0 0
\(183\) −10.7963 −0.798082
\(184\) 8.37859 0.617678
\(185\) −17.3102 −1.27267
\(186\) −0.782836 −0.0574003
\(187\) −3.09801 −0.226549
\(188\) 2.53846 0.185136
\(189\) 0 0
\(190\) 5.14829 0.373496
\(191\) −14.1306 −1.02245 −0.511226 0.859447i \(-0.670808\pi\)
−0.511226 + 0.859447i \(0.670808\pi\)
\(192\) 7.23059 0.521823
\(193\) −3.89454 −0.280335 −0.140167 0.990128i \(-0.544764\pi\)
−0.140167 + 0.990128i \(0.544764\pi\)
\(194\) 0.635998 0.0456620
\(195\) 0 0
\(196\) 0 0
\(197\) 11.7089 0.834224 0.417112 0.908855i \(-0.363042\pi\)
0.417112 + 0.908855i \(0.363042\pi\)
\(198\) 1.79179 0.127337
\(199\) 3.49684 0.247884 0.123942 0.992289i \(-0.460446\pi\)
0.123942 + 0.992289i \(0.460446\pi\)
\(200\) −1.64576 −0.116373
\(201\) −1.54599 −0.109046
\(202\) −0.213784 −0.0150418
\(203\) 0 0
\(204\) 1.73024 0.121141
\(205\) 6.24421 0.436114
\(206\) 0.580807 0.0404667
\(207\) 13.4723 0.936392
\(208\) 0 0
\(209\) −29.5764 −2.04584
\(210\) 0 0
\(211\) 19.0052 1.30837 0.654184 0.756335i \(-0.273012\pi\)
0.654184 + 0.756335i \(0.273012\pi\)
\(212\) −17.8920 −1.22882
\(213\) 14.0775 0.964573
\(214\) −3.09047 −0.211260
\(215\) −5.76256 −0.393004
\(216\) −5.65029 −0.384453
\(217\) 0 0
\(218\) −2.16598 −0.146698
\(219\) 0.878506 0.0593639
\(220\) 19.4907 1.31406
\(221\) 0 0
\(222\) 2.07086 0.138987
\(223\) 11.9662 0.801317 0.400658 0.916228i \(-0.368781\pi\)
0.400658 + 0.916228i \(0.368781\pi\)
\(224\) 0 0
\(225\) −2.64629 −0.176419
\(226\) 2.15609 0.143421
\(227\) −15.3842 −1.02108 −0.510542 0.859853i \(-0.670555\pi\)
−0.510542 + 0.859853i \(0.670555\pi\)
\(228\) 16.5184 1.09396
\(229\) −8.66168 −0.572380 −0.286190 0.958173i \(-0.592389\pi\)
−0.286190 + 0.958173i \(0.592389\pi\)
\(230\) −5.46418 −0.360297
\(231\) 0 0
\(232\) −2.47690 −0.162616
\(233\) 20.2507 1.32667 0.663333 0.748325i \(-0.269141\pi\)
0.663333 + 0.748325i \(0.269141\pi\)
\(234\) 0 0
\(235\) −3.37269 −0.220010
\(236\) −17.2888 −1.12540
\(237\) −7.07847 −0.459796
\(238\) 0 0
\(239\) −16.5526 −1.07070 −0.535350 0.844630i \(-0.679820\pi\)
−0.535350 + 0.844630i \(0.679820\pi\)
\(240\) −10.4645 −0.675483
\(241\) 16.4008 1.05647 0.528233 0.849100i \(-0.322855\pi\)
0.528233 + 0.849100i \(0.322855\pi\)
\(242\) 1.22558 0.0787834
\(243\) −14.8925 −0.955356
\(244\) −18.2119 −1.16590
\(245\) 0 0
\(246\) −0.747011 −0.0476277
\(247\) 0 0
\(248\) −2.69032 −0.170836
\(249\) −1.22636 −0.0777172
\(250\) −2.36106 −0.149326
\(251\) −20.4307 −1.28958 −0.644788 0.764362i \(-0.723054\pi\)
−0.644788 + 0.764362i \(0.723054\pi\)
\(252\) 0 0
\(253\) 31.3911 1.97354
\(254\) 0.479420 0.0300815
\(255\) −2.29886 −0.143960
\(256\) 10.5536 0.659602
\(257\) 13.7779 0.859442 0.429721 0.902962i \(-0.358612\pi\)
0.429721 + 0.902962i \(0.358612\pi\)
\(258\) 0.689391 0.0429196
\(259\) 0 0
\(260\) 0 0
\(261\) −3.98272 −0.246524
\(262\) −1.71356 −0.105864
\(263\) 25.9173 1.59813 0.799065 0.601244i \(-0.205328\pi\)
0.799065 + 0.601244i \(0.205328\pi\)
\(264\) −4.75038 −0.292366
\(265\) 23.7719 1.46030
\(266\) 0 0
\(267\) 8.75887 0.536034
\(268\) −2.60789 −0.159302
\(269\) −30.0666 −1.83319 −0.916596 0.399814i \(-0.869075\pi\)
−0.916596 + 0.399814i \(0.869075\pi\)
\(270\) 3.68489 0.224255
\(271\) −14.4505 −0.877808 −0.438904 0.898534i \(-0.644633\pi\)
−0.438904 + 0.898534i \(0.644633\pi\)
\(272\) 2.80581 0.170127
\(273\) 0 0
\(274\) −2.69105 −0.162572
\(275\) −6.16598 −0.371822
\(276\) −17.5320 −1.05530
\(277\) −15.3255 −0.920819 −0.460409 0.887707i \(-0.652297\pi\)
−0.460409 + 0.887707i \(0.652297\pi\)
\(278\) −1.48691 −0.0891787
\(279\) −4.32590 −0.258985
\(280\) 0 0
\(281\) −5.29279 −0.315741 −0.157871 0.987460i \(-0.550463\pi\)
−0.157871 + 0.987460i \(0.550463\pi\)
\(282\) 0.403483 0.0240271
\(283\) −30.7845 −1.82995 −0.914975 0.403511i \(-0.867790\pi\)
−0.914975 + 0.403511i \(0.867790\pi\)
\(284\) 23.7469 1.40912
\(285\) −21.9470 −1.30003
\(286\) 0 0
\(287\) 0 0
\(288\) −5.19013 −0.305831
\(289\) −16.3836 −0.963742
\(290\) 1.61533 0.0948557
\(291\) −2.71124 −0.158935
\(292\) 1.48193 0.0867231
\(293\) 17.5173 1.02337 0.511685 0.859173i \(-0.329021\pi\)
0.511685 + 0.859173i \(0.329021\pi\)
\(294\) 0 0
\(295\) 22.9705 1.33739
\(296\) 7.11681 0.413656
\(297\) −21.1693 −1.22837
\(298\) −4.95095 −0.286801
\(299\) 0 0
\(300\) 3.44370 0.198822
\(301\) 0 0
\(302\) −0.430973 −0.0247997
\(303\) 0.911355 0.0523560
\(304\) 26.7868 1.53633
\(305\) 24.1970 1.38551
\(306\) −0.356497 −0.0203796
\(307\) 8.63573 0.492867 0.246434 0.969160i \(-0.420741\pi\)
0.246434 + 0.969160i \(0.420741\pi\)
\(308\) 0 0
\(309\) −2.47596 −0.140852
\(310\) 1.75452 0.0996501
\(311\) −16.4226 −0.931240 −0.465620 0.884985i \(-0.654169\pi\)
−0.465620 + 0.884985i \(0.654169\pi\)
\(312\) 0 0
\(313\) 10.0462 0.567843 0.283921 0.958848i \(-0.408364\pi\)
0.283921 + 0.958848i \(0.408364\pi\)
\(314\) −0.441316 −0.0249049
\(315\) 0 0
\(316\) −11.9405 −0.671704
\(317\) −10.1450 −0.569799 −0.284899 0.958557i \(-0.591960\pi\)
−0.284899 + 0.958557i \(0.591960\pi\)
\(318\) −2.84390 −0.159478
\(319\) −9.27992 −0.519576
\(320\) −16.2055 −0.905913
\(321\) 13.1746 0.735333
\(322\) 0 0
\(323\) 5.88454 0.327424
\(324\) 2.02714 0.112619
\(325\) 0 0
\(326\) 1.75573 0.0972411
\(327\) 9.23349 0.510613
\(328\) −2.56721 −0.141750
\(329\) 0 0
\(330\) 3.09801 0.170540
\(331\) −2.31916 −0.127473 −0.0637363 0.997967i \(-0.520302\pi\)
−0.0637363 + 0.997967i \(0.520302\pi\)
\(332\) −2.06871 −0.113535
\(333\) 11.4434 0.627097
\(334\) −2.56027 −0.140092
\(335\) 3.46493 0.189309
\(336\) 0 0
\(337\) −15.9998 −0.871565 −0.435783 0.900052i \(-0.643528\pi\)
−0.435783 + 0.900052i \(0.643528\pi\)
\(338\) 0 0
\(339\) −9.19133 −0.499205
\(340\) −3.87788 −0.210307
\(341\) −10.0795 −0.545837
\(342\) −3.40344 −0.184037
\(343\) 0 0
\(344\) 2.36919 0.127738
\(345\) 23.2936 1.25409
\(346\) 2.98467 0.160457
\(347\) −22.8208 −1.22509 −0.612543 0.790437i \(-0.709853\pi\)
−0.612543 + 0.790437i \(0.709853\pi\)
\(348\) 5.18285 0.277830
\(349\) 22.7022 1.21522 0.607612 0.794234i \(-0.292128\pi\)
0.607612 + 0.794234i \(0.292128\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −12.0932 −0.644572
\(353\) 27.2644 1.45114 0.725568 0.688150i \(-0.241577\pi\)
0.725568 + 0.688150i \(0.241577\pi\)
\(354\) −2.74802 −0.146056
\(355\) −31.5510 −1.67455
\(356\) 14.7751 0.783077
\(357\) 0 0
\(358\) −3.39003 −0.179169
\(359\) 14.4262 0.761385 0.380692 0.924702i \(-0.375686\pi\)
0.380692 + 0.924702i \(0.375686\pi\)
\(360\) 4.56932 0.240824
\(361\) 37.1791 1.95679
\(362\) 3.99930 0.210199
\(363\) −5.22461 −0.274221
\(364\) 0 0
\(365\) −1.96894 −0.103059
\(366\) −2.89475 −0.151311
\(367\) −11.3917 −0.594643 −0.297322 0.954777i \(-0.596093\pi\)
−0.297322 + 0.954777i \(0.596093\pi\)
\(368\) −28.4304 −1.48204
\(369\) −4.12793 −0.214892
\(370\) −4.64130 −0.241289
\(371\) 0 0
\(372\) 5.62943 0.291872
\(373\) −30.9629 −1.60320 −0.801599 0.597862i \(-0.796017\pi\)
−0.801599 + 0.597862i \(0.796017\pi\)
\(374\) −0.830653 −0.0429521
\(375\) 10.0651 0.519760
\(376\) 1.38663 0.0715098
\(377\) 0 0
\(378\) 0 0
\(379\) −10.5866 −0.543797 −0.271898 0.962326i \(-0.587651\pi\)
−0.271898 + 0.962326i \(0.587651\pi\)
\(380\) −37.0217 −1.89917
\(381\) −2.04375 −0.104705
\(382\) −3.78876 −0.193850
\(383\) −30.7517 −1.57134 −0.785668 0.618648i \(-0.787681\pi\)
−0.785668 + 0.618648i \(0.787681\pi\)
\(384\) 8.94462 0.456453
\(385\) 0 0
\(386\) −1.04422 −0.0531496
\(387\) 3.80953 0.193649
\(388\) −4.57351 −0.232185
\(389\) −16.3796 −0.830477 −0.415239 0.909713i \(-0.636302\pi\)
−0.415239 + 0.909713i \(0.636302\pi\)
\(390\) 0 0
\(391\) −6.24561 −0.315854
\(392\) 0 0
\(393\) 7.30486 0.368482
\(394\) 3.13945 0.158163
\(395\) 15.8645 0.798232
\(396\) −12.8849 −0.647492
\(397\) 15.8827 0.797127 0.398564 0.917141i \(-0.369509\pi\)
0.398564 + 0.917141i \(0.369509\pi\)
\(398\) 0.937591 0.0469972
\(399\) 0 0
\(400\) 5.58441 0.279221
\(401\) −6.63573 −0.331373 −0.165686 0.986178i \(-0.552984\pi\)
−0.165686 + 0.986178i \(0.552984\pi\)
\(402\) −0.414519 −0.0206743
\(403\) 0 0
\(404\) 1.53734 0.0764855
\(405\) −2.69334 −0.133833
\(406\) 0 0
\(407\) 26.6637 1.32167
\(408\) 0.945139 0.0467914
\(409\) −5.87235 −0.290369 −0.145184 0.989405i \(-0.546378\pi\)
−0.145184 + 0.989405i \(0.546378\pi\)
\(410\) 1.67423 0.0826843
\(411\) 11.4719 0.565865
\(412\) −4.17663 −0.205768
\(413\) 0 0
\(414\) 3.61227 0.177533
\(415\) 2.74856 0.134921
\(416\) 0 0
\(417\) 6.33863 0.310404
\(418\) −7.93017 −0.387877
\(419\) −30.1423 −1.47255 −0.736274 0.676683i \(-0.763417\pi\)
−0.736274 + 0.676683i \(0.763417\pi\)
\(420\) 0 0
\(421\) −40.0580 −1.95231 −0.976153 0.217083i \(-0.930346\pi\)
−0.976153 + 0.217083i \(0.930346\pi\)
\(422\) 5.09576 0.248058
\(423\) 2.22962 0.108408
\(424\) −9.77344 −0.474640
\(425\) 1.22679 0.0595079
\(426\) 3.77453 0.182876
\(427\) 0 0
\(428\) 22.2238 1.07423
\(429\) 0 0
\(430\) −1.54509 −0.0745108
\(431\) 3.91587 0.188621 0.0943104 0.995543i \(-0.469935\pi\)
0.0943104 + 0.995543i \(0.469935\pi\)
\(432\) 19.1726 0.922445
\(433\) −40.7925 −1.96036 −0.980182 0.198100i \(-0.936523\pi\)
−0.980182 + 0.198100i \(0.936523\pi\)
\(434\) 0 0
\(435\) −6.88612 −0.330164
\(436\) 15.5757 0.745941
\(437\) −59.6262 −2.85231
\(438\) 0.235549 0.0112550
\(439\) −25.5623 −1.22002 −0.610010 0.792394i \(-0.708835\pi\)
−0.610010 + 0.792394i \(0.708835\pi\)
\(440\) 10.6467 0.507563
\(441\) 0 0
\(442\) 0 0
\(443\) −27.4564 −1.30449 −0.652247 0.758007i \(-0.726173\pi\)
−0.652247 + 0.758007i \(0.726173\pi\)
\(444\) −14.8917 −0.706730
\(445\) −19.6307 −0.930584
\(446\) 3.20844 0.151924
\(447\) 21.1057 0.998267
\(448\) 0 0
\(449\) 14.8036 0.698626 0.349313 0.937006i \(-0.386415\pi\)
0.349313 + 0.937006i \(0.386415\pi\)
\(450\) −0.709537 −0.0334479
\(451\) −9.61827 −0.452907
\(452\) −15.5046 −0.729275
\(453\) 1.83722 0.0863203
\(454\) −4.12489 −0.193590
\(455\) 0 0
\(456\) 9.02315 0.422548
\(457\) 0.651951 0.0304970 0.0152485 0.999884i \(-0.495146\pi\)
0.0152485 + 0.999884i \(0.495146\pi\)
\(458\) −2.32241 −0.108519
\(459\) 4.21186 0.196593
\(460\) 39.2933 1.83206
\(461\) −12.4955 −0.581972 −0.290986 0.956727i \(-0.593983\pi\)
−0.290986 + 0.956727i \(0.593983\pi\)
\(462\) 0 0
\(463\) 0.309503 0.0143838 0.00719190 0.999974i \(-0.497711\pi\)
0.00719190 + 0.999974i \(0.497711\pi\)
\(464\) 8.40466 0.390176
\(465\) −7.47946 −0.346852
\(466\) 5.42972 0.251527
\(467\) 24.4773 1.13268 0.566338 0.824173i \(-0.308360\pi\)
0.566338 + 0.824173i \(0.308360\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.904302 −0.0417123
\(471\) 1.88132 0.0866865
\(472\) −9.44396 −0.434694
\(473\) 8.87637 0.408136
\(474\) −1.89792 −0.0871742
\(475\) 11.7120 0.537384
\(476\) 0 0
\(477\) −15.7152 −0.719549
\(478\) −4.43817 −0.202997
\(479\) −8.13850 −0.371858 −0.185929 0.982563i \(-0.559529\pi\)
−0.185929 + 0.982563i \(0.559529\pi\)
\(480\) −8.97372 −0.409593
\(481\) 0 0
\(482\) 4.39746 0.200299
\(483\) 0 0
\(484\) −8.81325 −0.400602
\(485\) 6.07653 0.275921
\(486\) −3.99306 −0.181129
\(487\) −4.60960 −0.208881 −0.104440 0.994531i \(-0.533305\pi\)
−0.104440 + 0.994531i \(0.533305\pi\)
\(488\) −9.94821 −0.450334
\(489\) −7.48464 −0.338467
\(490\) 0 0
\(491\) 13.0189 0.587537 0.293768 0.955877i \(-0.405091\pi\)
0.293768 + 0.955877i \(0.405091\pi\)
\(492\) 5.37181 0.242180
\(493\) 1.84634 0.0831551
\(494\) 0 0
\(495\) 17.1194 0.769459
\(496\) 9.12885 0.409897
\(497\) 0 0
\(498\) −0.328817 −0.0147347
\(499\) 32.3207 1.44687 0.723436 0.690391i \(-0.242562\pi\)
0.723436 + 0.690391i \(0.242562\pi\)
\(500\) 16.9786 0.759304
\(501\) 10.9144 0.487618
\(502\) −5.47799 −0.244495
\(503\) −31.8253 −1.41902 −0.709509 0.704696i \(-0.751083\pi\)
−0.709509 + 0.704696i \(0.751083\pi\)
\(504\) 0 0
\(505\) −2.04256 −0.0908929
\(506\) 8.41676 0.374170
\(507\) 0 0
\(508\) −3.44755 −0.152960
\(509\) −2.25575 −0.0999845 −0.0499922 0.998750i \(-0.515920\pi\)
−0.0499922 + 0.998750i \(0.515920\pi\)
\(510\) −0.616382 −0.0272938
\(511\) 0 0
\(512\) 18.4807 0.816739
\(513\) 40.2102 1.77533
\(514\) 3.69420 0.162944
\(515\) 5.54922 0.244528
\(516\) −4.95746 −0.218240
\(517\) 5.19512 0.228481
\(518\) 0 0
\(519\) −12.7236 −0.558502
\(520\) 0 0
\(521\) 10.7712 0.471897 0.235948 0.971766i \(-0.424180\pi\)
0.235948 + 0.971766i \(0.424180\pi\)
\(522\) −1.06787 −0.0467393
\(523\) 7.40793 0.323926 0.161963 0.986797i \(-0.448217\pi\)
0.161963 + 0.986797i \(0.448217\pi\)
\(524\) 12.3224 0.538305
\(525\) 0 0
\(526\) 6.94909 0.302995
\(527\) 2.00543 0.0873580
\(528\) 16.1191 0.701492
\(529\) 40.2848 1.75151
\(530\) 6.37385 0.276862
\(531\) −15.1854 −0.658990
\(532\) 0 0
\(533\) 0 0
\(534\) 2.34847 0.101628
\(535\) −29.5274 −1.27658
\(536\) −1.42455 −0.0615313
\(537\) 14.4516 0.623632
\(538\) −8.06161 −0.347561
\(539\) 0 0
\(540\) −26.4983 −1.14031
\(541\) −32.5481 −1.39935 −0.699676 0.714460i \(-0.746673\pi\)
−0.699676 + 0.714460i \(0.746673\pi\)
\(542\) −3.87455 −0.166426
\(543\) −17.0489 −0.731638
\(544\) 2.40608 0.103160
\(545\) −20.6944 −0.886453
\(546\) 0 0
\(547\) −13.4997 −0.577206 −0.288603 0.957449i \(-0.593191\pi\)
−0.288603 + 0.957449i \(0.593191\pi\)
\(548\) 19.3515 0.826657
\(549\) −15.9962 −0.682701
\(550\) −1.65325 −0.0704950
\(551\) 17.6268 0.750929
\(552\) −9.57680 −0.407616
\(553\) 0 0
\(554\) −4.10915 −0.174581
\(555\) 19.7857 0.839856
\(556\) 10.6925 0.453461
\(557\) 29.7703 1.26141 0.630703 0.776024i \(-0.282767\pi\)
0.630703 + 0.776024i \(0.282767\pi\)
\(558\) −1.15988 −0.0491017
\(559\) 0 0
\(560\) 0 0
\(561\) 3.54105 0.149503
\(562\) −1.41913 −0.0598624
\(563\) 14.1326 0.595617 0.297809 0.954626i \(-0.403744\pi\)
0.297809 + 0.954626i \(0.403744\pi\)
\(564\) −2.90148 −0.122174
\(565\) 20.6000 0.866647
\(566\) −8.25410 −0.346946
\(567\) 0 0
\(568\) 12.9717 0.544280
\(569\) −24.2540 −1.01678 −0.508391 0.861127i \(-0.669759\pi\)
−0.508391 + 0.861127i \(0.669759\pi\)
\(570\) −5.88454 −0.246476
\(571\) 1.20832 0.0505665 0.0252832 0.999680i \(-0.491951\pi\)
0.0252832 + 0.999680i \(0.491951\pi\)
\(572\) 0 0
\(573\) 16.1514 0.674732
\(574\) 0 0
\(575\) −12.4307 −0.518394
\(576\) 10.7131 0.446381
\(577\) 14.6104 0.608237 0.304119 0.952634i \(-0.401638\pi\)
0.304119 + 0.952634i \(0.401638\pi\)
\(578\) −4.39286 −0.182719
\(579\) 4.45149 0.184998
\(580\) −11.6160 −0.482328
\(581\) 0 0
\(582\) −0.726951 −0.0301331
\(583\) −36.6171 −1.51652
\(584\) 0.809498 0.0334973
\(585\) 0 0
\(586\) 4.69683 0.194024
\(587\) −21.5095 −0.887793 −0.443897 0.896078i \(-0.646404\pi\)
−0.443897 + 0.896078i \(0.646404\pi\)
\(588\) 0 0
\(589\) 19.1457 0.788884
\(590\) 6.15897 0.253561
\(591\) −13.3834 −0.550518
\(592\) −24.1489 −0.992512
\(593\) 2.64857 0.108764 0.0543820 0.998520i \(-0.482681\pi\)
0.0543820 + 0.998520i \(0.482681\pi\)
\(594\) −5.67602 −0.232890
\(595\) 0 0
\(596\) 35.6027 1.45834
\(597\) −3.99692 −0.163583
\(598\) 0 0
\(599\) −40.2501 −1.64457 −0.822287 0.569074i \(-0.807302\pi\)
−0.822287 + 0.569074i \(0.807302\pi\)
\(600\) 1.88112 0.0767962
\(601\) 38.3449 1.56412 0.782061 0.623202i \(-0.214169\pi\)
0.782061 + 0.623202i \(0.214169\pi\)
\(602\) 0 0
\(603\) −2.29060 −0.0932806
\(604\) 3.09916 0.126103
\(605\) 11.7096 0.476063
\(606\) 0.244357 0.00992634
\(607\) 42.5547 1.72724 0.863620 0.504143i \(-0.168192\pi\)
0.863620 + 0.504143i \(0.168192\pi\)
\(608\) 22.9706 0.931582
\(609\) 0 0
\(610\) 6.48782 0.262684
\(611\) 0 0
\(612\) 2.56360 0.103627
\(613\) −15.2652 −0.616556 −0.308278 0.951296i \(-0.599753\pi\)
−0.308278 + 0.951296i \(0.599753\pi\)
\(614\) 2.31546 0.0934442
\(615\) −7.13718 −0.287799
\(616\) 0 0
\(617\) −13.9812 −0.562863 −0.281431 0.959581i \(-0.590809\pi\)
−0.281431 + 0.959581i \(0.590809\pi\)
\(618\) −0.663868 −0.0267047
\(619\) 8.51585 0.342281 0.171140 0.985247i \(-0.445255\pi\)
0.171140 + 0.985247i \(0.445255\pi\)
\(620\) −12.6169 −0.506707
\(621\) −42.6775 −1.71259
\(622\) −4.40331 −0.176557
\(623\) 0 0
\(624\) 0 0
\(625\) −30.3713 −1.21485
\(626\) 2.69363 0.107659
\(627\) 33.8060 1.35008
\(628\) 3.17354 0.126638
\(629\) −5.30504 −0.211526
\(630\) 0 0
\(631\) −36.8292 −1.46615 −0.733074 0.680149i \(-0.761915\pi\)
−0.733074 + 0.680149i \(0.761915\pi\)
\(632\) −6.52246 −0.259449
\(633\) −21.7231 −0.863414
\(634\) −2.72013 −0.108030
\(635\) 4.58053 0.181773
\(636\) 20.4507 0.810922
\(637\) 0 0
\(638\) −2.48818 −0.0985081
\(639\) 20.8578 0.825121
\(640\) −20.0470 −0.792428
\(641\) 25.8747 1.02199 0.510996 0.859583i \(-0.329277\pi\)
0.510996 + 0.859583i \(0.329277\pi\)
\(642\) 3.53244 0.139414
\(643\) −40.5252 −1.59816 −0.799078 0.601227i \(-0.794679\pi\)
−0.799078 + 0.601227i \(0.794679\pi\)
\(644\) 0 0
\(645\) 6.58666 0.259350
\(646\) 1.57779 0.0620774
\(647\) 1.78400 0.0701364 0.0350682 0.999385i \(-0.488835\pi\)
0.0350682 + 0.999385i \(0.488835\pi\)
\(648\) 1.10732 0.0434997
\(649\) −35.3826 −1.38889
\(650\) 0 0
\(651\) 0 0
\(652\) −12.6256 −0.494457
\(653\) 12.4042 0.485414 0.242707 0.970100i \(-0.421965\pi\)
0.242707 + 0.970100i \(0.421965\pi\)
\(654\) 2.47573 0.0968088
\(655\) −16.3719 −0.639704
\(656\) 8.71109 0.340111
\(657\) 1.30163 0.0507815
\(658\) 0 0
\(659\) −1.12867 −0.0439668 −0.0219834 0.999758i \(-0.506998\pi\)
−0.0219834 + 0.999758i \(0.506998\pi\)
\(660\) −22.2780 −0.867170
\(661\) 28.9254 1.12507 0.562534 0.826774i \(-0.309826\pi\)
0.562534 + 0.826774i \(0.309826\pi\)
\(662\) −0.621826 −0.0241680
\(663\) 0 0
\(664\) −1.13003 −0.0438535
\(665\) 0 0
\(666\) 3.06828 0.118893
\(667\) −18.7084 −0.724393
\(668\) 18.4111 0.712348
\(669\) −13.6775 −0.528802
\(670\) 0.929036 0.0358918
\(671\) −37.2718 −1.43886
\(672\) 0 0
\(673\) −7.09960 −0.273669 −0.136835 0.990594i \(-0.543693\pi\)
−0.136835 + 0.990594i \(0.543693\pi\)
\(674\) −4.28995 −0.165243
\(675\) 8.38289 0.322658
\(676\) 0 0
\(677\) −50.4020 −1.93710 −0.968552 0.248811i \(-0.919960\pi\)
−0.968552 + 0.248811i \(0.919960\pi\)
\(678\) −2.46443 −0.0946458
\(679\) 0 0
\(680\) −2.11828 −0.0812324
\(681\) 17.5843 0.673830
\(682\) −2.70258 −0.103487
\(683\) −27.5282 −1.05334 −0.526669 0.850070i \(-0.676559\pi\)
−0.526669 + 0.850070i \(0.676559\pi\)
\(684\) 24.4744 0.935802
\(685\) −25.7112 −0.982373
\(686\) 0 0
\(687\) 9.90037 0.377723
\(688\) −8.03917 −0.306490
\(689\) 0 0
\(690\) 6.24561 0.237766
\(691\) 24.3338 0.925702 0.462851 0.886436i \(-0.346826\pi\)
0.462851 + 0.886436i \(0.346826\pi\)
\(692\) −21.4630 −0.815901
\(693\) 0 0
\(694\) −6.11884 −0.232268
\(695\) −14.2064 −0.538879
\(696\) 2.83112 0.107313
\(697\) 1.91366 0.0724850
\(698\) 6.08704 0.230398
\(699\) −23.1467 −0.875488
\(700\) 0 0
\(701\) −20.5588 −0.776495 −0.388248 0.921555i \(-0.626919\pi\)
−0.388248 + 0.921555i \(0.626919\pi\)
\(702\) 0 0
\(703\) −50.6467 −1.91018
\(704\) 24.9621 0.940795
\(705\) 3.85501 0.145188
\(706\) 7.31027 0.275126
\(707\) 0 0
\(708\) 19.7612 0.742673
\(709\) −40.9089 −1.53637 −0.768183 0.640230i \(-0.778839\pi\)
−0.768183 + 0.640230i \(0.778839\pi\)
\(710\) −8.45961 −0.317484
\(711\) −10.4878 −0.393322
\(712\) 8.07085 0.302468
\(713\) −20.3204 −0.761006
\(714\) 0 0
\(715\) 0 0
\(716\) 24.3780 0.911048
\(717\) 18.9198 0.706572
\(718\) 3.86802 0.144353
\(719\) −1.19947 −0.0447326 −0.0223663 0.999750i \(-0.507120\pi\)
−0.0223663 + 0.999750i \(0.507120\pi\)
\(720\) −15.5047 −0.577826
\(721\) 0 0
\(722\) 9.96865 0.370995
\(723\) −18.7462 −0.697179
\(724\) −28.7593 −1.06883
\(725\) 3.67478 0.136478
\(726\) −1.40085 −0.0519904
\(727\) −2.06230 −0.0764865 −0.0382433 0.999268i \(-0.512176\pi\)
−0.0382433 + 0.999268i \(0.512176\pi\)
\(728\) 0 0
\(729\) 20.1764 0.747273
\(730\) −0.527922 −0.0195393
\(731\) −1.76605 −0.0653197
\(732\) 20.8164 0.769395
\(733\) −30.0621 −1.11037 −0.555184 0.831728i \(-0.687352\pi\)
−0.555184 + 0.831728i \(0.687352\pi\)
\(734\) −3.05441 −0.112740
\(735\) 0 0
\(736\) −24.3801 −0.898662
\(737\) −5.33721 −0.196599
\(738\) −1.10680 −0.0407420
\(739\) −44.2548 −1.62794 −0.813969 0.580908i \(-0.802697\pi\)
−0.813969 + 0.580908i \(0.802697\pi\)
\(740\) 33.3759 1.22692
\(741\) 0 0
\(742\) 0 0
\(743\) 8.62651 0.316476 0.158238 0.987401i \(-0.449419\pi\)
0.158238 + 0.987401i \(0.449419\pi\)
\(744\) 3.07506 0.112737
\(745\) −47.3030 −1.73305
\(746\) −8.30194 −0.303955
\(747\) −1.81702 −0.0664814
\(748\) 5.97329 0.218405
\(749\) 0 0
\(750\) 2.69871 0.0985430
\(751\) 5.72211 0.208803 0.104401 0.994535i \(-0.466707\pi\)
0.104401 + 0.994535i \(0.466707\pi\)
\(752\) −4.70512 −0.171578
\(753\) 23.3525 0.851012
\(754\) 0 0
\(755\) −4.11765 −0.149857
\(756\) 0 0
\(757\) −34.7222 −1.26200 −0.631000 0.775783i \(-0.717355\pi\)
−0.631000 + 0.775783i \(0.717355\pi\)
\(758\) −2.83853 −0.103100
\(759\) −35.8803 −1.30237
\(760\) −20.2230 −0.733566
\(761\) 53.1735 1.92754 0.963768 0.266741i \(-0.0859467\pi\)
0.963768 + 0.266741i \(0.0859467\pi\)
\(762\) −0.547981 −0.0198513
\(763\) 0 0
\(764\) 27.2452 0.985699
\(765\) −3.40609 −0.123147
\(766\) −8.24529 −0.297915
\(767\) 0 0
\(768\) −12.0629 −0.435282
\(769\) −4.91157 −0.177116 −0.0885578 0.996071i \(-0.528226\pi\)
−0.0885578 + 0.996071i \(0.528226\pi\)
\(770\) 0 0
\(771\) −15.7483 −0.567160
\(772\) 7.50909 0.270258
\(773\) 22.9807 0.826557 0.413279 0.910605i \(-0.364384\pi\)
0.413279 + 0.910605i \(0.364384\pi\)
\(774\) 1.02143 0.0367146
\(775\) 3.99142 0.143376
\(776\) −2.49827 −0.0896826
\(777\) 0 0
\(778\) −4.39178 −0.157453
\(779\) 18.2695 0.654573
\(780\) 0 0
\(781\) 48.5996 1.73903
\(782\) −1.67460 −0.0598837
\(783\) 12.6164 0.450874
\(784\) 0 0
\(785\) −4.21648 −0.150493
\(786\) 1.95862 0.0698616
\(787\) 3.18774 0.113631 0.0568154 0.998385i \(-0.481905\pi\)
0.0568154 + 0.998385i \(0.481905\pi\)
\(788\) −22.5760 −0.804237
\(789\) −29.6237 −1.05463
\(790\) 4.25368 0.151339
\(791\) 0 0
\(792\) −7.03836 −0.250097
\(793\) 0 0
\(794\) 4.25854 0.151130
\(795\) −27.1715 −0.963674
\(796\) −6.74229 −0.238974
\(797\) 54.6509 1.93584 0.967918 0.251267i \(-0.0808472\pi\)
0.967918 + 0.251267i \(0.0808472\pi\)
\(798\) 0 0
\(799\) −1.03363 −0.0365670
\(800\) 4.78884 0.169311
\(801\) 12.9775 0.458538
\(802\) −1.77921 −0.0628260
\(803\) 3.03286 0.107027
\(804\) 2.98084 0.105126
\(805\) 0 0
\(806\) 0 0
\(807\) 34.3664 1.20975
\(808\) 0.839768 0.0295429
\(809\) −20.2995 −0.713694 −0.356847 0.934163i \(-0.616148\pi\)
−0.356847 + 0.934163i \(0.616148\pi\)
\(810\) −0.722151 −0.0253738
\(811\) −2.43587 −0.0855350 −0.0427675 0.999085i \(-0.513617\pi\)
−0.0427675 + 0.999085i \(0.513617\pi\)
\(812\) 0 0
\(813\) 16.5171 0.579280
\(814\) 7.14922 0.250580
\(815\) 16.7748 0.587597
\(816\) −3.20706 −0.112270
\(817\) −16.8603 −0.589867
\(818\) −1.57452 −0.0550519
\(819\) 0 0
\(820\) −12.0395 −0.420438
\(821\) −45.3524 −1.58281 −0.791405 0.611292i \(-0.790650\pi\)
−0.791405 + 0.611292i \(0.790650\pi\)
\(822\) 3.07589 0.107284
\(823\) −2.75742 −0.0961177 −0.0480588 0.998845i \(-0.515303\pi\)
−0.0480588 + 0.998845i \(0.515303\pi\)
\(824\) −2.28147 −0.0794789
\(825\) 7.04776 0.245372
\(826\) 0 0
\(827\) 8.64504 0.300618 0.150309 0.988639i \(-0.451973\pi\)
0.150309 + 0.988639i \(0.451973\pi\)
\(828\) −25.9761 −0.902733
\(829\) −29.5741 −1.02715 −0.513576 0.858044i \(-0.671680\pi\)
−0.513576 + 0.858044i \(0.671680\pi\)
\(830\) 0.736958 0.0255802
\(831\) 17.5172 0.607663
\(832\) 0 0
\(833\) 0 0
\(834\) 1.69955 0.0588505
\(835\) −24.4617 −0.846531
\(836\) 57.0264 1.97230
\(837\) 13.7035 0.473663
\(838\) −8.08191 −0.279185
\(839\) −25.2473 −0.871633 −0.435817 0.900035i \(-0.643540\pi\)
−0.435817 + 0.900035i \(0.643540\pi\)
\(840\) 0 0
\(841\) −23.4694 −0.809289
\(842\) −10.7406 −0.370144
\(843\) 6.04971 0.208363
\(844\) −36.6440 −1.26134
\(845\) 0 0
\(846\) 0.597818 0.0205534
\(847\) 0 0
\(848\) 33.1634 1.13884
\(849\) 35.1870 1.20761
\(850\) 0.328933 0.0112823
\(851\) 53.7544 1.84268
\(852\) −27.1429 −0.929901
\(853\) 35.1368 1.20306 0.601531 0.798850i \(-0.294558\pi\)
0.601531 + 0.798850i \(0.294558\pi\)
\(854\) 0 0
\(855\) −32.5176 −1.11208
\(856\) 12.1397 0.414927
\(857\) −1.34269 −0.0458654 −0.0229327 0.999737i \(-0.507300\pi\)
−0.0229327 + 0.999737i \(0.507300\pi\)
\(858\) 0 0
\(859\) 4.76772 0.162673 0.0813363 0.996687i \(-0.474081\pi\)
0.0813363 + 0.996687i \(0.474081\pi\)
\(860\) 11.1108 0.378877
\(861\) 0 0
\(862\) 1.04994 0.0357612
\(863\) 26.6105 0.905830 0.452915 0.891554i \(-0.350384\pi\)
0.452915 + 0.891554i \(0.350384\pi\)
\(864\) 16.4412 0.559343
\(865\) 28.5165 0.969591
\(866\) −10.9375 −0.371672
\(867\) 18.7266 0.635989
\(868\) 0 0
\(869\) −24.4370 −0.828967
\(870\) −1.84634 −0.0625968
\(871\) 0 0
\(872\) 8.50819 0.288124
\(873\) −4.01708 −0.135958
\(874\) −15.9873 −0.540778
\(875\) 0 0
\(876\) −1.69385 −0.0572300
\(877\) −8.03696 −0.271389 −0.135695 0.990751i \(-0.543327\pi\)
−0.135695 + 0.990751i \(0.543327\pi\)
\(878\) −6.85389 −0.231307
\(879\) −20.0224 −0.675339
\(880\) −36.1266 −1.21783
\(881\) −54.6697 −1.84187 −0.920935 0.389716i \(-0.872573\pi\)
−0.920935 + 0.389716i \(0.872573\pi\)
\(882\) 0 0
\(883\) −8.45085 −0.284394 −0.142197 0.989838i \(-0.545417\pi\)
−0.142197 + 0.989838i \(0.545417\pi\)
\(884\) 0 0
\(885\) −26.2555 −0.882569
\(886\) −7.36176 −0.247323
\(887\) −10.3557 −0.347710 −0.173855 0.984771i \(-0.555622\pi\)
−0.173855 + 0.984771i \(0.555622\pi\)
\(888\) −8.13457 −0.272978
\(889\) 0 0
\(890\) −5.26349 −0.176432
\(891\) 4.14868 0.138986
\(892\) −23.0722 −0.772513
\(893\) −9.86792 −0.330217
\(894\) 5.65898 0.189265
\(895\) −32.3895 −1.08266
\(896\) 0 0
\(897\) 0 0
\(898\) 3.96922 0.132455
\(899\) 6.00718 0.200351
\(900\) 5.10234 0.170078
\(901\) 7.28536 0.242711
\(902\) −2.57890 −0.0858680
\(903\) 0 0
\(904\) −8.46935 −0.281686
\(905\) 38.2106 1.27016
\(906\) 0.492606 0.0163657
\(907\) 18.4804 0.613631 0.306815 0.951769i \(-0.400737\pi\)
0.306815 + 0.951769i \(0.400737\pi\)
\(908\) 29.6624 0.984380
\(909\) 1.35030 0.0447867
\(910\) 0 0
\(911\) −26.6282 −0.882230 −0.441115 0.897451i \(-0.645417\pi\)
−0.441115 + 0.897451i \(0.645417\pi\)
\(912\) −30.6175 −1.01385
\(913\) −4.23374 −0.140116
\(914\) 0.174804 0.00578202
\(915\) −27.6574 −0.914324
\(916\) 16.7007 0.551805
\(917\) 0 0
\(918\) 1.12931 0.0372727
\(919\) −11.1493 −0.367783 −0.183891 0.982947i \(-0.558869\pi\)
−0.183891 + 0.982947i \(0.558869\pi\)
\(920\) 21.4639 0.707644
\(921\) −9.87072 −0.325251
\(922\) −3.35035 −0.110338
\(923\) 0 0
\(924\) 0 0
\(925\) −10.5587 −0.347166
\(926\) 0.0829855 0.00272707
\(927\) −3.66849 −0.120489
\(928\) 7.20730 0.236591
\(929\) −7.74510 −0.254108 −0.127054 0.991896i \(-0.540552\pi\)
−0.127054 + 0.991896i \(0.540552\pi\)
\(930\) −2.00543 −0.0657607
\(931\) 0 0
\(932\) −39.0455 −1.27898
\(933\) 18.7712 0.614541
\(934\) 6.56299 0.214748
\(935\) −7.93633 −0.259546
\(936\) 0 0
\(937\) 36.4239 1.18992 0.594959 0.803756i \(-0.297168\pi\)
0.594959 + 0.803756i \(0.297168\pi\)
\(938\) 0 0
\(939\) −11.4829 −0.374729
\(940\) 6.50291 0.212101
\(941\) 19.7893 0.645114 0.322557 0.946550i \(-0.395458\pi\)
0.322557 + 0.946550i \(0.395458\pi\)
\(942\) 0.504429 0.0164352
\(943\) −19.3905 −0.631442
\(944\) 32.0454 1.04299
\(945\) 0 0
\(946\) 2.37998 0.0773798
\(947\) −9.94796 −0.323265 −0.161633 0.986851i \(-0.551676\pi\)
−0.161633 + 0.986851i \(0.551676\pi\)
\(948\) 13.6481 0.443269
\(949\) 0 0
\(950\) 3.14029 0.101884
\(951\) 11.5958 0.376020
\(952\) 0 0
\(953\) 0.0211134 0.000683929 0 0.000341965 1.00000i \(-0.499891\pi\)
0.000341965 1.00000i \(0.499891\pi\)
\(954\) −4.21364 −0.136422
\(955\) −36.1990 −1.17137
\(956\) 31.9152 1.03221
\(957\) 10.6070 0.342877
\(958\) −2.18214 −0.0705017
\(959\) 0 0
\(960\) 18.5230 0.597827
\(961\) −24.4752 −0.789523
\(962\) 0 0
\(963\) 19.5200 0.629024
\(964\) −31.6224 −1.01849
\(965\) −9.97685 −0.321166
\(966\) 0 0
\(967\) 19.8102 0.637053 0.318526 0.947914i \(-0.396812\pi\)
0.318526 + 0.947914i \(0.396812\pi\)
\(968\) −4.81422 −0.154735
\(969\) −6.72608 −0.216073
\(970\) 1.62927 0.0523127
\(971\) −3.61774 −0.116099 −0.0580493 0.998314i \(-0.518488\pi\)
−0.0580493 + 0.998314i \(0.518488\pi\)
\(972\) 28.7144 0.921015
\(973\) 0 0
\(974\) −1.23595 −0.0396024
\(975\) 0 0
\(976\) 33.7564 1.08052
\(977\) −2.16169 −0.0691586 −0.0345793 0.999402i \(-0.511009\pi\)
−0.0345793 + 0.999402i \(0.511009\pi\)
\(978\) −2.00682 −0.0641710
\(979\) 30.2382 0.966416
\(980\) 0 0
\(981\) 13.6807 0.436792
\(982\) 3.49071 0.111393
\(983\) 30.1091 0.960331 0.480165 0.877178i \(-0.340577\pi\)
0.480165 + 0.877178i \(0.340577\pi\)
\(984\) 2.93434 0.0935433
\(985\) 29.9953 0.955730
\(986\) 0.495051 0.0157656
\(987\) 0 0
\(988\) 0 0
\(989\) 17.8948 0.569023
\(990\) 4.59014 0.145884
\(991\) −27.1460 −0.862323 −0.431161 0.902275i \(-0.641896\pi\)
−0.431161 + 0.902275i \(0.641896\pi\)
\(992\) 7.82832 0.248549
\(993\) 2.65082 0.0841213
\(994\) 0 0
\(995\) 8.95805 0.283989
\(996\) 2.36455 0.0749236
\(997\) 50.8009 1.60888 0.804441 0.594033i \(-0.202465\pi\)
0.804441 + 0.594033i \(0.202465\pi\)
\(998\) 8.66599 0.274317
\(999\) −36.2504 −1.14691
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.ce.1.3 6
7.2 even 3 1183.2.e.g.508.4 12
7.4 even 3 1183.2.e.g.170.4 12
7.6 odd 2 8281.2.a.cf.1.3 6
13.4 even 6 637.2.f.k.393.3 12
13.10 even 6 637.2.f.k.295.3 12
13.12 even 2 8281.2.a.bz.1.4 6
91.4 even 6 91.2.h.b.16.4 yes 12
91.10 odd 6 637.2.g.l.373.3 12
91.17 odd 6 637.2.h.l.471.4 12
91.23 even 6 91.2.h.b.74.4 yes 12
91.25 even 6 1183.2.e.h.170.3 12
91.30 even 6 91.2.g.b.81.3 yes 12
91.51 even 6 1183.2.e.h.508.3 12
91.62 odd 6 637.2.f.j.295.3 12
91.69 odd 6 637.2.f.j.393.3 12
91.75 odd 6 637.2.h.l.165.4 12
91.82 odd 6 637.2.g.l.263.3 12
91.88 even 6 91.2.g.b.9.3 12
91.90 odd 2 8281.2.a.ca.1.4 6
273.23 odd 6 819.2.s.d.802.3 12
273.95 odd 6 819.2.s.d.289.3 12
273.179 odd 6 819.2.n.d.100.4 12
273.212 odd 6 819.2.n.d.172.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.3 12 91.88 even 6
91.2.g.b.81.3 yes 12 91.30 even 6
91.2.h.b.16.4 yes 12 91.4 even 6
91.2.h.b.74.4 yes 12 91.23 even 6
637.2.f.j.295.3 12 91.62 odd 6
637.2.f.j.393.3 12 91.69 odd 6
637.2.f.k.295.3 12 13.10 even 6
637.2.f.k.393.3 12 13.4 even 6
637.2.g.l.263.3 12 91.82 odd 6
637.2.g.l.373.3 12 91.10 odd 6
637.2.h.l.165.4 12 91.75 odd 6
637.2.h.l.471.4 12 91.17 odd 6
819.2.n.d.100.4 12 273.179 odd 6
819.2.n.d.172.4 12 273.212 odd 6
819.2.s.d.289.3 12 273.95 odd 6
819.2.s.d.802.3 12 273.23 odd 6
1183.2.e.g.170.4 12 7.4 even 3
1183.2.e.g.508.4 12 7.2 even 3
1183.2.e.h.170.3 12 91.25 even 6
1183.2.e.h.508.3 12 91.51 even 6
8281.2.a.bz.1.4 6 13.12 even 2
8281.2.a.ca.1.4 6 91.90 odd 2
8281.2.a.ce.1.3 6 1.1 even 1 trivial
8281.2.a.cf.1.3 6 7.6 odd 2