Properties

Label 825.4.c.m
Level $825$
Weight $4$
Character orbit 825.c
Analytic conductor $48.677$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [825,4,Mod(199,825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("825.199"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(825, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-34,0,-6,0,0,-54,0,66,0,0,-288] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.245110336.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 19x^{4} + 101x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + 3 \beta_1 q^{3} + (\beta_{5} - 2 \beta_{3} - 6) q^{4} - 3 \beta_{5} q^{6} + ( - \beta_{4} - 3 \beta_{2} + \beta_1) q^{7} + (2 \beta_{4} + 3 \beta_{2} + 2 \beta_1) q^{8} - 9 q^{9}+ \cdots - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 34 q^{4} - 6 q^{6} - 54 q^{9} + 66 q^{11} - 288 q^{14} + 50 q^{16} - 232 q^{19} - 36 q^{21} - 18 q^{24} + 604 q^{26} - 476 q^{29} + 184 q^{31} - 708 q^{34} + 306 q^{36} - 120 q^{39} - 92 q^{41} - 374 q^{44}+ \cdots - 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 19x^{4} + 101x^{2} + 100 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + 9\nu^{3} + \nu ) / 10 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3\nu^{5} + 37\nu^{3} + 83\nu ) / 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{4} - 9\nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 2\nu^{5} + 23\nu^{3} + 52\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{4} + 11\nu^{2} + 17 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} - \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + \beta_{3} - 13 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -4\beta_{4} + 5\beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -9\beta_{5} - 11\beta_{3} + 109 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 71\beta_{4} - 89\beta_{2} + 3\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
1.12946i
2.91150i
3.04096i
3.04096i
2.91150i
1.12946i
4.59486i 3.00000i −13.1127 0 −13.7846 20.6383i 23.4921i −9.00000 0
199.2 4.38835i 3.00000i −11.2577 0 13.1651 11.7304i 14.2958i −9.00000 0
199.3 0.793499i 3.00000i 7.37036 0 −2.38050 2.90793i 12.1964i −9.00000 0
199.4 0.793499i 3.00000i 7.37036 0 −2.38050 2.90793i 12.1964i −9.00000 0
199.5 4.38835i 3.00000i −11.2577 0 13.1651 11.7304i 14.2958i −9.00000 0
199.6 4.59486i 3.00000i −13.1127 0 −13.7846 20.6383i 23.4921i −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 199.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.4.c.m 6
5.b even 2 1 inner 825.4.c.m 6
5.c odd 4 1 165.4.a.g 3
5.c odd 4 1 825.4.a.p 3
15.e even 4 1 495.4.a.i 3
15.e even 4 1 2475.4.a.z 3
55.e even 4 1 1815.4.a.q 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.4.a.g 3 5.c odd 4 1
495.4.a.i 3 15.e even 4 1
825.4.a.p 3 5.c odd 4 1
825.4.c.m 6 1.a even 1 1 trivial
825.4.c.m 6 5.b even 2 1 inner
1815.4.a.q 3 55.e even 4 1
2475.4.a.z 3 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(825, [\chi])\):

\( T_{2}^{6} + 41T_{2}^{4} + 432T_{2}^{2} + 256 \) Copy content Toggle raw display
\( T_{7}^{6} + 572T_{7}^{4} + 63376T_{7}^{2} + 495616 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 41 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 572 T^{4} + \cdots + 495616 \) Copy content Toggle raw display
$11$ \( (T - 11)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 6100234816 \) Copy content Toggle raw display
$17$ \( T^{6} + 6384 T^{4} + \cdots + 502835776 \) Copy content Toggle raw display
$19$ \( (T^{3} + 116 T^{2} + \cdots + 80)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 32480690176 \) Copy content Toggle raw display
$29$ \( (T^{3} + 238 T^{2} + \cdots - 428416)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} - 92 T^{2} + \cdots + 6769664)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 40502634332224 \) Copy content Toggle raw display
$41$ \( (T^{3} + 46 T^{2} + \cdots - 245888)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 5670875449600 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 120565319090176 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 298010064169024 \) Copy content Toggle raw display
$59$ \( (T^{3} + 1236 T^{2} + \cdots + 32923904)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} - 342 T^{2} + \cdots - 2655176)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 23\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( (T^{3} - 1816 T^{2} + \cdots - 198158720)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 26347524744256 \) Copy content Toggle raw display
$79$ \( (T^{3} - 96 T^{2} + \cdots + 167159872)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 29\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( (T^{3} + 838 T^{2} + \cdots - 693013592)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 12\!\cdots\!36 \) Copy content Toggle raw display
show more
show less