Newspace parameters
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(9.73531515095\) |
Analytic rank: | \(0\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.1957.1 |
Defining polynomial: |
\( x^{3} - x^{2} - 9x + 10 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | yes |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - x^{2} - 9x + 10 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu^{2} + \nu - 7 \)
|
\(\beta_{2}\) | \(=\) |
\( -\nu^{2} + \nu + 6 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{2} + \beta _1 + 1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -\beta_{2} + \beta _1 + 13 ) / 2 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−4.38835 | −3.00000 | 11.2577 | 5.00000 | 13.1651 | −11.7304 | −14.2958 | 9.00000 | −21.9418 | |||||||||||||||||||||||||||
1.2 | 0.793499 | −3.00000 | −7.37036 | 5.00000 | −2.38050 | −2.90793 | −12.1964 | 9.00000 | 3.96749 | ||||||||||||||||||||||||||||
1.3 | 4.59486 | −3.00000 | 13.1127 | 5.00000 | −13.7846 | 20.6383 | 23.4921 | 9.00000 | 22.9743 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(1\) |
\(5\) | \(-1\) |
\(11\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 165.4.a.g | ✓ | 3 |
3.b | odd | 2 | 1 | 495.4.a.i | 3 | ||
5.b | even | 2 | 1 | 825.4.a.p | 3 | ||
5.c | odd | 4 | 2 | 825.4.c.m | 6 | ||
11.b | odd | 2 | 1 | 1815.4.a.q | 3 | ||
15.d | odd | 2 | 1 | 2475.4.a.z | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
165.4.a.g | ✓ | 3 | 1.a | even | 1 | 1 | trivial |
495.4.a.i | 3 | 3.b | odd | 2 | 1 | ||
825.4.a.p | 3 | 5.b | even | 2 | 1 | ||
825.4.c.m | 6 | 5.c | odd | 4 | 2 | ||
1815.4.a.q | 3 | 11.b | odd | 2 | 1 | ||
2475.4.a.z | 3 | 15.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} - T_{2}^{2} - 20T_{2} + 16 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(165))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} - T^{2} - 20 T + 16 \)
$3$
\( (T + 3)^{3} \)
$5$
\( (T - 5)^{3} \)
$7$
\( T^{3} - 6 T^{2} - 268 T - 704 \)
$11$
\( (T - 11)^{3} \)
$13$
\( T^{3} + 20 T^{2} - 4920 T - 78104 \)
$17$
\( T^{3} - 32 T^{2} - 2680 T - 22424 \)
$19$
\( T^{3} - 116 T^{2} + 3356 T - 80 \)
$23$
\( T^{3} - 240 T^{2} + 9728 T + 180224 \)
$29$
\( T^{3} - 238 T^{2} + 5136 T + 428416 \)
$31$
\( T^{3} - 92 T^{2} - 53552 T + 6769664 \)
$37$
\( T^{3} + 90 T^{2} - 95700 T - 6364168 \)
$41$
\( T^{3} + 46 T^{2} - 9136 T - 245888 \)
$43$
\( T^{3} + 134 T^{2} - 18068 T - 2381360 \)
$47$
\( T^{3} + 220 T^{2} + \cdots + 10980224 \)
$53$
\( T^{3} + 798 T^{2} + \cdots - 17262968 \)
$59$
\( T^{3} - 1236 T^{2} + \cdots - 32923904 \)
$61$
\( T^{3} - 342 T^{2} - 68308 T - 2655176 \)
$67$
\( T^{3} - 764 T^{2} + \cdots + 153685184 \)
$71$
\( T^{3} - 1816 T^{2} + \cdots - 198158720 \)
$73$
\( T^{3} - 100 T^{2} - 73616 T - 5132984 \)
$79$
\( T^{3} + 96 T^{2} + \cdots - 167159872 \)
$83$
\( T^{3} - 858 T^{2} + \cdots + 542136176 \)
$89$
\( T^{3} - 838 T^{2} + \cdots + 693013592 \)
$97$
\( T^{3} + 1322 T^{2} + \cdots - 354601256 \)
show more
show less