Defining parameters
| Level: | \( N \) | \(=\) | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 825.c (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 19 \) | ||
| Sturm bound: | \(480\) | ||
| Trace bound: | \(14\) | ||
| Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(825, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 372 | 92 | 280 |
| Cusp forms | 348 | 92 | 256 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(825, [\chi])\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(825, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(825, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 2}\)