Properties

Label 165.4.a.g
Level $165$
Weight $4$
Character orbit 165.a
Self dual yes
Analytic conductor $9.735$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [165,4,Mod(1,165)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("165.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(165, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 165.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,-9,17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.73531515095\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1957.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 9x + 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 3 q^{3} + (2 \beta_{2} + \beta_1 + 6) q^{4} + 5 q^{5} + 3 \beta_1 q^{6} + (\beta_{2} - 3 \beta_1 + 1) q^{7} + (2 \beta_{2} - 3 \beta_1 - 2) q^{8} + 9 q^{9} - 5 \beta_1 q^{10} + 11 q^{11}+ \cdots + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} - 9 q^{3} + 17 q^{4} + 15 q^{5} - 3 q^{6} + 6 q^{7} - 3 q^{8} + 27 q^{9} + 5 q^{10} + 33 q^{11} - 51 q^{12} - 20 q^{13} + 144 q^{14} - 45 q^{15} + 25 q^{16} + 32 q^{17} + 9 q^{18} + 116 q^{19}+ \cdots + 297 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 9x + 10 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu - 7 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + \nu + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + \beta _1 + 13 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.91150
−3.04096
1.12946
−4.38835 −3.00000 11.2577 5.00000 13.1651 −11.7304 −14.2958 9.00000 −21.9418
1.2 0.793499 −3.00000 −7.37036 5.00000 −2.38050 −2.90793 −12.1964 9.00000 3.96749
1.3 4.59486 −3.00000 13.1127 5.00000 −13.7846 20.6383 23.4921 9.00000 22.9743
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 165.4.a.g 3
3.b odd 2 1 495.4.a.i 3
5.b even 2 1 825.4.a.p 3
5.c odd 4 2 825.4.c.m 6
11.b odd 2 1 1815.4.a.q 3
15.d odd 2 1 2475.4.a.z 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.4.a.g 3 1.a even 1 1 trivial
495.4.a.i 3 3.b odd 2 1
825.4.a.p 3 5.b even 2 1
825.4.c.m 6 5.c odd 4 2
1815.4.a.q 3 11.b odd 2 1
2475.4.a.z 3 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - T_{2}^{2} - 20T_{2} + 16 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(165))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - T^{2} + \cdots + 16 \) Copy content Toggle raw display
$3$ \( (T + 3)^{3} \) Copy content Toggle raw display
$5$ \( (T - 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 6 T^{2} + \cdots - 704 \) Copy content Toggle raw display
$11$ \( (T - 11)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 20 T^{2} + \cdots - 78104 \) Copy content Toggle raw display
$17$ \( T^{3} - 32 T^{2} + \cdots - 22424 \) Copy content Toggle raw display
$19$ \( T^{3} - 116 T^{2} + \cdots - 80 \) Copy content Toggle raw display
$23$ \( T^{3} - 240 T^{2} + \cdots + 180224 \) Copy content Toggle raw display
$29$ \( T^{3} - 238 T^{2} + \cdots + 428416 \) Copy content Toggle raw display
$31$ \( T^{3} - 92 T^{2} + \cdots + 6769664 \) Copy content Toggle raw display
$37$ \( T^{3} + 90 T^{2} + \cdots - 6364168 \) Copy content Toggle raw display
$41$ \( T^{3} + 46 T^{2} + \cdots - 245888 \) Copy content Toggle raw display
$43$ \( T^{3} + 134 T^{2} + \cdots - 2381360 \) Copy content Toggle raw display
$47$ \( T^{3} + 220 T^{2} + \cdots + 10980224 \) Copy content Toggle raw display
$53$ \( T^{3} + 798 T^{2} + \cdots - 17262968 \) Copy content Toggle raw display
$59$ \( T^{3} - 1236 T^{2} + \cdots - 32923904 \) Copy content Toggle raw display
$61$ \( T^{3} - 342 T^{2} + \cdots - 2655176 \) Copy content Toggle raw display
$67$ \( T^{3} - 764 T^{2} + \cdots + 153685184 \) Copy content Toggle raw display
$71$ \( T^{3} - 1816 T^{2} + \cdots - 198158720 \) Copy content Toggle raw display
$73$ \( T^{3} - 100 T^{2} + \cdots - 5132984 \) Copy content Toggle raw display
$79$ \( T^{3} + 96 T^{2} + \cdots - 167159872 \) Copy content Toggle raw display
$83$ \( T^{3} - 858 T^{2} + \cdots + 542136176 \) Copy content Toggle raw display
$89$ \( T^{3} - 838 T^{2} + \cdots + 693013592 \) Copy content Toggle raw display
$97$ \( T^{3} + 1322 T^{2} + \cdots - 354601256 \) Copy content Toggle raw display
show more
show less