Properties

Label 825.3.h.b.274.8
Level $825$
Weight $3$
Character 825.274
Analytic conductor $22.480$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [825,3,Mod(274,825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("825.274"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(825, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 825.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4796218097\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 274.8
Character \(\chi\) \(=\) 825.274
Dual form 825.3.h.b.274.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.33103 q^{2} -1.73205i q^{3} +1.43371 q^{4} +4.03747i q^{6} -6.32430 q^{7} +5.98210 q^{8} -3.00000 q^{9} +(-10.3943 + 3.59991i) q^{11} -2.48326i q^{12} +17.3965 q^{13} +14.7421 q^{14} -19.6793 q^{16} +12.2603 q^{17} +6.99310 q^{18} +10.6069i q^{19} +10.9540i q^{21} +(24.2294 - 8.39151i) q^{22} -9.16729i q^{23} -10.3613i q^{24} -40.5519 q^{26} +5.19615i q^{27} -9.06722 q^{28} +0.592304i q^{29} +17.1631 q^{31} +21.9447 q^{32} +(6.23523 + 18.0034i) q^{33} -28.5791 q^{34} -4.30114 q^{36} -55.3012i q^{37} -24.7249i q^{38} -30.1317i q^{39} -13.5046i q^{41} -25.5341i q^{42} +36.0017 q^{43} +(-14.9024 + 5.16124i) q^{44} +21.3693i q^{46} +19.2531i q^{47} +34.0856i q^{48} -9.00325 q^{49} -21.2354i q^{51} +24.9416 q^{52} +70.4442i q^{53} -12.1124i q^{54} -37.8326 q^{56} +18.3716 q^{57} -1.38068i q^{58} -14.9479 q^{59} +36.1401i q^{61} -40.0077 q^{62} +18.9729 q^{63} +27.5634 q^{64} +(-14.5345 - 41.9665i) q^{66} -127.842i q^{67} +17.5777 q^{68} -15.8782 q^{69} -27.8440 q^{71} -17.9463 q^{72} +61.3643 q^{73} +128.909i q^{74} +15.2072i q^{76} +(65.7364 - 22.7669i) q^{77} +70.2379i q^{78} -141.550i q^{79} +9.00000 q^{81} +31.4798i q^{82} -137.804 q^{83} +15.7049i q^{84} -83.9212 q^{86} +1.02590 q^{87} +(-62.1795 + 21.5350i) q^{88} -160.353 q^{89} -110.021 q^{91} -13.1433i q^{92} -29.7273i q^{93} -44.8797i q^{94} -38.0094i q^{96} +57.7240i q^{97} +20.9869 q^{98} +(31.1828 - 10.7997i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} - 96 q^{9} - 56 q^{11} - 32 q^{16} - 176 q^{26} - 192 q^{31} + 400 q^{34} - 48 q^{36} - 600 q^{44} + 992 q^{49} - 64 q^{56} + 272 q^{59} - 912 q^{64} - 360 q^{66} - 336 q^{69} + 432 q^{71}+ \cdots + 168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.33103 −1.16552 −0.582758 0.812646i \(-0.698026\pi\)
−0.582758 + 0.812646i \(0.698026\pi\)
\(3\) 1.73205i 0.577350i
\(4\) 1.43371 0.358428
\(5\) 0 0
\(6\) 4.03747i 0.672911i
\(7\) −6.32430 −0.903471 −0.451736 0.892152i \(-0.649195\pi\)
−0.451736 + 0.892152i \(0.649195\pi\)
\(8\) 5.98210 0.747763
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) −10.3943 + 3.59991i −0.944933 + 0.327265i
\(12\) 2.48326i 0.206938i
\(13\) 17.3965 1.33820 0.669098 0.743175i \(-0.266681\pi\)
0.669098 + 0.743175i \(0.266681\pi\)
\(14\) 14.7421 1.05301
\(15\) 0 0
\(16\) −19.6793 −1.22996
\(17\) 12.2603 0.721192 0.360596 0.932722i \(-0.382573\pi\)
0.360596 + 0.932722i \(0.382573\pi\)
\(18\) 6.99310 0.388505
\(19\) 10.6069i 0.558256i 0.960254 + 0.279128i \(0.0900454\pi\)
−0.960254 + 0.279128i \(0.909955\pi\)
\(20\) 0 0
\(21\) 10.9540i 0.521619i
\(22\) 24.2294 8.39151i 1.10133 0.381432i
\(23\) 9.16729i 0.398578i −0.979941 0.199289i \(-0.936137\pi\)
0.979941 0.199289i \(-0.0638632\pi\)
\(24\) 10.3613i 0.431721i
\(25\) 0 0
\(26\) −40.5519 −1.55969
\(27\) 5.19615i 0.192450i
\(28\) −9.06722 −0.323829
\(29\) 0.592304i 0.0204243i 0.999948 + 0.0102121i \(0.00325068\pi\)
−0.999948 + 0.0102121i \(0.996749\pi\)
\(30\) 0 0
\(31\) 17.1631 0.553648 0.276824 0.960921i \(-0.410718\pi\)
0.276824 + 0.960921i \(0.410718\pi\)
\(32\) 21.9447 0.685773
\(33\) 6.23523 + 18.0034i 0.188946 + 0.545557i
\(34\) −28.5791 −0.840561
\(35\) 0 0
\(36\) −4.30114 −0.119476
\(37\) 55.3012i 1.49463i −0.664472 0.747314i \(-0.731343\pi\)
0.664472 0.747314i \(-0.268657\pi\)
\(38\) 24.7249i 0.650656i
\(39\) 30.1317i 0.772607i
\(40\) 0 0
\(41\) 13.5046i 0.329382i −0.986345 0.164691i \(-0.947337\pi\)
0.986345 0.164691i \(-0.0526626\pi\)
\(42\) 25.5341i 0.607956i
\(43\) 36.0017 0.837249 0.418625 0.908159i \(-0.362512\pi\)
0.418625 + 0.908159i \(0.362512\pi\)
\(44\) −14.9024 + 5.16124i −0.338690 + 0.117301i
\(45\) 0 0
\(46\) 21.3693i 0.464549i
\(47\) 19.2531i 0.409641i 0.978800 + 0.204821i \(0.0656611\pi\)
−0.978800 + 0.204821i \(0.934339\pi\)
\(48\) 34.0856i 0.710116i
\(49\) −9.00325 −0.183740
\(50\) 0 0
\(51\) 21.2354i 0.416380i
\(52\) 24.9416 0.479646
\(53\) 70.4442i 1.32914i 0.747228 + 0.664568i \(0.231384\pi\)
−0.747228 + 0.664568i \(0.768616\pi\)
\(54\) 12.1124i 0.224304i
\(55\) 0 0
\(56\) −37.8326 −0.675582
\(57\) 18.3716 0.322309
\(58\) 1.38068i 0.0238048i
\(59\) −14.9479 −0.253354 −0.126677 0.991944i \(-0.540431\pi\)
−0.126677 + 0.991944i \(0.540431\pi\)
\(60\) 0 0
\(61\) 36.1401i 0.592461i 0.955116 + 0.296231i \(0.0957297\pi\)
−0.955116 + 0.296231i \(0.904270\pi\)
\(62\) −40.0077 −0.645285
\(63\) 18.9729 0.301157
\(64\) 27.5634 0.430678
\(65\) 0 0
\(66\) −14.5345 41.9665i −0.220220 0.635856i
\(67\) 127.842i 1.90809i −0.299660 0.954046i \(-0.596873\pi\)
0.299660 0.954046i \(-0.403127\pi\)
\(68\) 17.5777 0.258495
\(69\) −15.8782 −0.230119
\(70\) 0 0
\(71\) −27.8440 −0.392169 −0.196084 0.980587i \(-0.562823\pi\)
−0.196084 + 0.980587i \(0.562823\pi\)
\(72\) −17.9463 −0.249254
\(73\) 61.3643 0.840607 0.420304 0.907383i \(-0.361924\pi\)
0.420304 + 0.907383i \(0.361924\pi\)
\(74\) 128.909i 1.74201i
\(75\) 0 0
\(76\) 15.2072i 0.200095i
\(77\) 65.7364 22.7669i 0.853719 0.295674i
\(78\) 70.2379i 0.900486i
\(79\) 141.550i 1.79177i −0.444289 0.895884i \(-0.646544\pi\)
0.444289 0.895884i \(-0.353456\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 31.4798i 0.383900i
\(83\) −137.804 −1.66028 −0.830142 0.557552i \(-0.811741\pi\)
−0.830142 + 0.557552i \(0.811741\pi\)
\(84\) 15.7049i 0.186963i
\(85\) 0 0
\(86\) −83.9212 −0.975828
\(87\) 1.02590 0.0117920
\(88\) −62.1795 + 21.5350i −0.706585 + 0.244716i
\(89\) −160.353 −1.80172 −0.900858 0.434113i \(-0.857062\pi\)
−0.900858 + 0.434113i \(0.857062\pi\)
\(90\) 0 0
\(91\) −110.021 −1.20902
\(92\) 13.1433i 0.142861i
\(93\) 29.7273i 0.319649i
\(94\) 44.8797i 0.477443i
\(95\) 0 0
\(96\) 38.0094i 0.395931i
\(97\) 57.7240i 0.595092i 0.954707 + 0.297546i \(0.0961682\pi\)
−0.954707 + 0.297546i \(0.903832\pi\)
\(98\) 20.9869 0.214152
\(99\) 31.1828 10.7997i 0.314978 0.109088i
\(100\) 0 0
\(101\) 147.055i 1.45599i 0.685585 + 0.727993i \(0.259547\pi\)
−0.685585 + 0.727993i \(0.740453\pi\)
\(102\) 49.5004i 0.485298i
\(103\) 98.7792i 0.959022i −0.877536 0.479511i \(-0.840814\pi\)
0.877536 0.479511i \(-0.159186\pi\)
\(104\) 104.068 1.00065
\(105\) 0 0
\(106\) 164.208i 1.54913i
\(107\) −107.953 −1.00891 −0.504453 0.863439i \(-0.668306\pi\)
−0.504453 + 0.863439i \(0.668306\pi\)
\(108\) 7.44978i 0.0689795i
\(109\) 33.0995i 0.303666i −0.988406 0.151833i \(-0.951482\pi\)
0.988406 0.151833i \(-0.0485175\pi\)
\(110\) 0 0
\(111\) −95.7845 −0.862923
\(112\) 124.458 1.11123
\(113\) 163.297i 1.44510i −0.691316 0.722552i \(-0.742969\pi\)
0.691316 0.722552i \(-0.257031\pi\)
\(114\) −42.8249 −0.375657
\(115\) 0 0
\(116\) 0.849193i 0.00732063i
\(117\) −52.1896 −0.446065
\(118\) 34.8441 0.295289
\(119\) −77.5376 −0.651576
\(120\) 0 0
\(121\) 95.0813 74.8369i 0.785795 0.618486i
\(122\) 84.2438i 0.690523i
\(123\) −23.3907 −0.190169
\(124\) 24.6069 0.198443
\(125\) 0 0
\(126\) −44.2264 −0.351003
\(127\) −204.213 −1.60798 −0.803988 0.594645i \(-0.797293\pi\)
−0.803988 + 0.594645i \(0.797293\pi\)
\(128\) −152.030 −1.18774
\(129\) 62.3568i 0.483386i
\(130\) 0 0
\(131\) 243.373i 1.85781i −0.370316 0.928906i \(-0.620751\pi\)
0.370316 0.928906i \(-0.379249\pi\)
\(132\) 8.93953 + 25.8117i 0.0677237 + 0.195543i
\(133\) 67.0810i 0.504368i
\(134\) 298.004i 2.22391i
\(135\) 0 0
\(136\) 73.3421 0.539280
\(137\) 68.3154i 0.498652i −0.968420 0.249326i \(-0.919791\pi\)
0.968420 0.249326i \(-0.0802091\pi\)
\(138\) 37.0126 0.268208
\(139\) 21.5172i 0.154800i 0.997000 + 0.0774001i \(0.0246619\pi\)
−0.997000 + 0.0774001i \(0.975338\pi\)
\(140\) 0 0
\(141\) 33.3474 0.236506
\(142\) 64.9052 0.457079
\(143\) −180.824 + 62.6260i −1.26450 + 0.437944i
\(144\) 59.0380 0.409986
\(145\) 0 0
\(146\) −143.042 −0.979742
\(147\) 15.5941i 0.106082i
\(148\) 79.2860i 0.535716i
\(149\) 45.9449i 0.308355i −0.988043 0.154178i \(-0.950727\pi\)
0.988043 0.154178i \(-0.0492728\pi\)
\(150\) 0 0
\(151\) 123.582i 0.818425i −0.912439 0.409212i \(-0.865803\pi\)
0.912439 0.409212i \(-0.134197\pi\)
\(152\) 63.4513i 0.417443i
\(153\) −36.7808 −0.240397
\(154\) −153.234 + 53.0704i −0.995024 + 0.344613i
\(155\) 0 0
\(156\) 43.2001i 0.276924i
\(157\) 65.4047i 0.416590i −0.978066 0.208295i \(-0.933209\pi\)
0.978066 0.208295i \(-0.0667914\pi\)
\(158\) 329.957i 2.08833i
\(159\) 122.013 0.767377
\(160\) 0 0
\(161\) 57.9767i 0.360104i
\(162\) −20.9793 −0.129502
\(163\) 318.348i 1.95305i −0.215395 0.976527i \(-0.569104\pi\)
0.215395 0.976527i \(-0.430896\pi\)
\(164\) 19.3618i 0.118060i
\(165\) 0 0
\(166\) 321.225 1.93509
\(167\) −17.2478 −0.103280 −0.0516400 0.998666i \(-0.516445\pi\)
−0.0516400 + 0.998666i \(0.516445\pi\)
\(168\) 65.5280i 0.390047i
\(169\) 133.639 0.790766
\(170\) 0 0
\(171\) 31.8206i 0.186085i
\(172\) 51.6161 0.300094
\(173\) −322.103 −1.86187 −0.930933 0.365190i \(-0.881004\pi\)
−0.930933 + 0.365190i \(0.881004\pi\)
\(174\) −2.39141 −0.0137437
\(175\) 0 0
\(176\) 204.552 70.8438i 1.16223 0.402522i
\(177\) 25.8905i 0.146274i
\(178\) 373.788 2.09993
\(179\) −45.5484 −0.254460 −0.127230 0.991873i \(-0.540609\pi\)
−0.127230 + 0.991873i \(0.540609\pi\)
\(180\) 0 0
\(181\) 134.271 0.741830 0.370915 0.928667i \(-0.379044\pi\)
0.370915 + 0.928667i \(0.379044\pi\)
\(182\) 256.462 1.40913
\(183\) 62.5965 0.342058
\(184\) 54.8397i 0.298042i
\(185\) 0 0
\(186\) 69.2954i 0.372556i
\(187\) −127.436 + 44.1359i −0.681478 + 0.236021i
\(188\) 27.6034i 0.146827i
\(189\) 32.8620i 0.173873i
\(190\) 0 0
\(191\) −68.0366 −0.356212 −0.178106 0.984011i \(-0.556997\pi\)
−0.178106 + 0.984011i \(0.556997\pi\)
\(192\) 47.7412i 0.248652i
\(193\) 127.465 0.660443 0.330221 0.943904i \(-0.392877\pi\)
0.330221 + 0.943904i \(0.392877\pi\)
\(194\) 134.556i 0.693590i
\(195\) 0 0
\(196\) −12.9081 −0.0658575
\(197\) −148.516 −0.753888 −0.376944 0.926236i \(-0.623025\pi\)
−0.376944 + 0.926236i \(0.623025\pi\)
\(198\) −72.6881 + 25.1745i −0.367111 + 0.127144i
\(199\) −63.0543 −0.316856 −0.158428 0.987371i \(-0.550643\pi\)
−0.158428 + 0.987371i \(0.550643\pi\)
\(200\) 0 0
\(201\) −221.429 −1.10164
\(202\) 342.789i 1.69697i
\(203\) 3.74591i 0.0184527i
\(204\) 30.4454i 0.149242i
\(205\) 0 0
\(206\) 230.258i 1.11776i
\(207\) 27.5019i 0.132859i
\(208\) −342.352 −1.64592
\(209\) −38.1838 110.250i −0.182698 0.527514i
\(210\) 0 0
\(211\) 228.972i 1.08517i 0.840000 + 0.542587i \(0.182555\pi\)
−0.840000 + 0.542587i \(0.817445\pi\)
\(212\) 100.997i 0.476400i
\(213\) 48.2272i 0.226419i
\(214\) 251.642 1.17590
\(215\) 0 0
\(216\) 31.0839i 0.143907i
\(217\) −108.544 −0.500205
\(218\) 77.1561i 0.353927i
\(219\) 106.286i 0.485325i
\(220\) 0 0
\(221\) 213.286 0.965096
\(222\) 223.277 1.00575
\(223\) 101.764i 0.456339i −0.973621 0.228169i \(-0.926726\pi\)
0.973621 0.228169i \(-0.0732740\pi\)
\(224\) −138.785 −0.619576
\(225\) 0 0
\(226\) 380.650i 1.68429i
\(227\) 351.517 1.54853 0.774266 0.632861i \(-0.218119\pi\)
0.774266 + 0.632861i \(0.218119\pi\)
\(228\) 26.3396 0.115525
\(229\) −141.322 −0.617125 −0.308563 0.951204i \(-0.599848\pi\)
−0.308563 + 0.951204i \(0.599848\pi\)
\(230\) 0 0
\(231\) −39.4335 113.859i −0.170708 0.492895i
\(232\) 3.54322i 0.0152725i
\(233\) 370.243 1.58903 0.794514 0.607246i \(-0.207726\pi\)
0.794514 + 0.607246i \(0.207726\pi\)
\(234\) 121.656 0.519896
\(235\) 0 0
\(236\) −21.4310 −0.0908093
\(237\) −245.171 −1.03448
\(238\) 180.743 0.759423
\(239\) 68.3043i 0.285792i 0.989738 + 0.142896i \(0.0456414\pi\)
−0.989738 + 0.142896i \(0.954359\pi\)
\(240\) 0 0
\(241\) 200.283i 0.831052i 0.909581 + 0.415526i \(0.136402\pi\)
−0.909581 + 0.415526i \(0.863598\pi\)
\(242\) −221.637 + 174.447i −0.915857 + 0.720856i
\(243\) 15.5885i 0.0641500i
\(244\) 51.8145i 0.212355i
\(245\) 0 0
\(246\) 54.5246 0.221645
\(247\) 184.523i 0.747055i
\(248\) 102.671 0.413997
\(249\) 238.683i 0.958565i
\(250\) 0 0
\(251\) 213.104 0.849019 0.424510 0.905423i \(-0.360447\pi\)
0.424510 + 0.905423i \(0.360447\pi\)
\(252\) 27.2017 0.107943
\(253\) 33.0015 + 95.2872i 0.130441 + 0.376629i
\(254\) 476.027 1.87412
\(255\) 0 0
\(256\) 244.133 0.953646
\(257\) 30.3594i 0.118130i 0.998254 + 0.0590650i \(0.0188119\pi\)
−0.998254 + 0.0590650i \(0.981188\pi\)
\(258\) 145.356i 0.563394i
\(259\) 349.741i 1.35035i
\(260\) 0 0
\(261\) 1.77691i 0.00680809i
\(262\) 567.311i 2.16531i
\(263\) 359.742 1.36784 0.683920 0.729557i \(-0.260274\pi\)
0.683920 + 0.729557i \(0.260274\pi\)
\(264\) 37.2998 + 107.698i 0.141287 + 0.407947i
\(265\) 0 0
\(266\) 156.368i 0.587849i
\(267\) 277.739i 1.04022i
\(268\) 183.289i 0.683914i
\(269\) 320.990 1.19327 0.596637 0.802512i \(-0.296503\pi\)
0.596637 + 0.802512i \(0.296503\pi\)
\(270\) 0 0
\(271\) 419.497i 1.54796i 0.633211 + 0.773979i \(0.281736\pi\)
−0.633211 + 0.773979i \(0.718264\pi\)
\(272\) −241.274 −0.887036
\(273\) 190.562i 0.698028i
\(274\) 159.245i 0.581187i
\(275\) 0 0
\(276\) −22.7648 −0.0824811
\(277\) 86.8213 0.313434 0.156717 0.987644i \(-0.449909\pi\)
0.156717 + 0.987644i \(0.449909\pi\)
\(278\) 50.1574i 0.180422i
\(279\) −51.4892 −0.184549
\(280\) 0 0
\(281\) 300.755i 1.07030i −0.844756 0.535152i \(-0.820255\pi\)
0.844756 0.535152i \(-0.179745\pi\)
\(282\) −77.7339 −0.275652
\(283\) −319.781 −1.12997 −0.564984 0.825102i \(-0.691118\pi\)
−0.564984 + 0.825102i \(0.691118\pi\)
\(284\) −39.9202 −0.140564
\(285\) 0 0
\(286\) 421.507 145.983i 1.47380 0.510431i
\(287\) 85.4074i 0.297587i
\(288\) −65.8342 −0.228591
\(289\) −138.686 −0.479882
\(290\) 0 0
\(291\) 99.9808 0.343577
\(292\) 87.9788 0.301297
\(293\) 421.749 1.43942 0.719709 0.694276i \(-0.244275\pi\)
0.719709 + 0.694276i \(0.244275\pi\)
\(294\) 36.3503i 0.123641i
\(295\) 0 0
\(296\) 330.817i 1.11763i
\(297\) −18.7057 54.0102i −0.0629821 0.181852i
\(298\) 107.099i 0.359393i
\(299\) 159.479i 0.533375i
\(300\) 0 0
\(301\) −227.686 −0.756431
\(302\) 288.074i 0.953887i
\(303\) 254.706 0.840614
\(304\) 208.736i 0.686631i
\(305\) 0 0
\(306\) 85.7372 0.280187
\(307\) 65.1772 0.212303 0.106152 0.994350i \(-0.466147\pi\)
0.106152 + 0.994350i \(0.466147\pi\)
\(308\) 94.2470 32.6412i 0.305997 0.105978i
\(309\) −171.091 −0.553691
\(310\) 0 0
\(311\) −296.311 −0.952768 −0.476384 0.879237i \(-0.658053\pi\)
−0.476384 + 0.879237i \(0.658053\pi\)
\(312\) 180.251i 0.577727i
\(313\) 430.760i 1.37623i −0.725601 0.688115i \(-0.758438\pi\)
0.725601 0.688115i \(-0.241562\pi\)
\(314\) 152.460i 0.485543i
\(315\) 0 0
\(316\) 202.941i 0.642219i
\(317\) 248.606i 0.784246i 0.919913 + 0.392123i \(0.128259\pi\)
−0.919913 + 0.392123i \(0.871741\pi\)
\(318\) −284.416 −0.894391
\(319\) −2.13224 6.15656i −0.00668414 0.0192996i
\(320\) 0 0
\(321\) 186.980i 0.582492i
\(322\) 135.146i 0.419707i
\(323\) 130.043i 0.402610i
\(324\) 12.9034 0.0398253
\(325\) 0 0
\(326\) 742.079i 2.27632i
\(327\) −57.3301 −0.175321
\(328\) 80.7862i 0.246299i
\(329\) 121.763i 0.370099i
\(330\) 0 0
\(331\) −379.595 −1.14681 −0.573406 0.819271i \(-0.694378\pi\)
−0.573406 + 0.819271i \(0.694378\pi\)
\(332\) −197.571 −0.595092
\(333\) 165.904i 0.498209i
\(334\) 40.2051 0.120375
\(335\) 0 0
\(336\) 215.567i 0.641570i
\(337\) 528.010 1.56680 0.783398 0.621521i \(-0.213485\pi\)
0.783398 + 0.621521i \(0.213485\pi\)
\(338\) −311.518 −0.921651
\(339\) −282.838 −0.834332
\(340\) 0 0
\(341\) −178.398 + 61.7856i −0.523160 + 0.181189i
\(342\) 74.1748i 0.216885i
\(343\) 366.830 1.06947
\(344\) 215.366 0.626064
\(345\) 0 0
\(346\) 750.832 2.17004
\(347\) −35.7638 −0.103066 −0.0515328 0.998671i \(-0.516411\pi\)
−0.0515328 + 0.998671i \(0.516411\pi\)
\(348\) 1.47084 0.00422657
\(349\) 453.183i 1.29852i −0.760568 0.649259i \(-0.775079\pi\)
0.760568 0.649259i \(-0.224921\pi\)
\(350\) 0 0
\(351\) 90.3951i 0.257536i
\(352\) −228.099 + 78.9991i −0.648009 + 0.224429i
\(353\) 76.8798i 0.217790i −0.994053 0.108895i \(-0.965269\pi\)
0.994053 0.108895i \(-0.0347312\pi\)
\(354\) 60.3517i 0.170485i
\(355\) 0 0
\(356\) −229.900 −0.645786
\(357\) 134.299i 0.376188i
\(358\) 106.175 0.296577
\(359\) 406.327i 1.13183i −0.824463 0.565915i \(-0.808523\pi\)
0.824463 0.565915i \(-0.191477\pi\)
\(360\) 0 0
\(361\) 248.494 0.688350
\(362\) −312.991 −0.864615
\(363\) −129.621 164.686i −0.357083 0.453679i
\(364\) −157.738 −0.433347
\(365\) 0 0
\(366\) −145.915 −0.398674
\(367\) 287.030i 0.782098i 0.920370 + 0.391049i \(0.127888\pi\)
−0.920370 + 0.391049i \(0.872112\pi\)
\(368\) 180.406i 0.490234i
\(369\) 40.5139i 0.109794i
\(370\) 0 0
\(371\) 445.510i 1.20084i
\(372\) 42.6204i 0.114571i
\(373\) −359.705 −0.964356 −0.482178 0.876073i \(-0.660154\pi\)
−0.482178 + 0.876073i \(0.660154\pi\)
\(374\) 297.058 102.882i 0.794274 0.275086i
\(375\) 0 0
\(376\) 115.174i 0.306314i
\(377\) 10.3040i 0.0273316i
\(378\) 76.6024i 0.202652i
\(379\) −94.3980 −0.249071 −0.124536 0.992215i \(-0.539744\pi\)
−0.124536 + 0.992215i \(0.539744\pi\)
\(380\) 0 0
\(381\) 353.707i 0.928366i
\(382\) 158.595 0.415171
\(383\) 92.3643i 0.241160i −0.992704 0.120580i \(-0.961525\pi\)
0.992704 0.120580i \(-0.0384754\pi\)
\(384\) 263.324i 0.685739i
\(385\) 0 0
\(386\) −297.126 −0.769757
\(387\) −108.005 −0.279083
\(388\) 82.7595i 0.213298i
\(389\) −126.237 −0.324517 −0.162259 0.986748i \(-0.551878\pi\)
−0.162259 + 0.986748i \(0.551878\pi\)
\(390\) 0 0
\(391\) 112.393i 0.287451i
\(392\) −53.8583 −0.137394
\(393\) −421.535 −1.07261
\(394\) 346.195 0.878668
\(395\) 0 0
\(396\) 44.7071 15.4837i 0.112897 0.0391003i
\(397\) 732.111i 1.84411i −0.387060 0.922054i \(-0.626509\pi\)
0.387060 0.922054i \(-0.373491\pi\)
\(398\) 146.982 0.369300
\(399\) −116.188 −0.291197
\(400\) 0 0
\(401\) 288.306 0.718966 0.359483 0.933152i \(-0.382953\pi\)
0.359483 + 0.933152i \(0.382953\pi\)
\(402\) 516.158 1.28398
\(403\) 298.578 0.740889
\(404\) 210.834i 0.521866i
\(405\) 0 0
\(406\) 8.73183i 0.0215070i
\(407\) 199.080 + 574.815i 0.489139 + 1.41232i
\(408\) 127.032i 0.311354i
\(409\) 536.385i 1.31146i −0.754997 0.655728i \(-0.772362\pi\)
0.754997 0.655728i \(-0.227638\pi\)
\(410\) 0 0
\(411\) −118.326 −0.287897
\(412\) 141.621i 0.343740i
\(413\) 94.5350 0.228898
\(414\) 64.1078i 0.154850i
\(415\) 0 0
\(416\) 381.762 0.917697
\(417\) 37.2689 0.0893739
\(418\) 89.0076 + 256.997i 0.212937 + 0.614826i
\(419\) −772.235 −1.84304 −0.921521 0.388328i \(-0.873053\pi\)
−0.921521 + 0.388328i \(0.873053\pi\)
\(420\) 0 0
\(421\) 530.329 1.25969 0.629844 0.776721i \(-0.283119\pi\)
0.629844 + 0.776721i \(0.283119\pi\)
\(422\) 533.740i 1.26479i
\(423\) 57.7594i 0.136547i
\(424\) 421.405i 0.993879i
\(425\) 0 0
\(426\) 112.419i 0.263895i
\(427\) 228.561i 0.535272i
\(428\) −154.773 −0.361620
\(429\) 108.471 + 313.197i 0.252847 + 0.730062i
\(430\) 0 0
\(431\) 98.0885i 0.227584i −0.993505 0.113792i \(-0.963700\pi\)
0.993505 0.113792i \(-0.0362997\pi\)
\(432\) 102.257i 0.236705i
\(433\) 467.819i 1.08041i −0.841533 0.540206i \(-0.818346\pi\)
0.841533 0.540206i \(-0.181654\pi\)
\(434\) 253.021 0.582997
\(435\) 0 0
\(436\) 47.4552i 0.108842i
\(437\) 97.2362 0.222509
\(438\) 247.756i 0.565654i
\(439\) 732.331i 1.66818i 0.551628 + 0.834090i \(0.314007\pi\)
−0.551628 + 0.834090i \(0.685993\pi\)
\(440\) 0 0
\(441\) 27.0097 0.0612466
\(442\) −497.177 −1.12483
\(443\) 522.885i 1.18033i 0.807284 + 0.590164i \(0.200937\pi\)
−0.807284 + 0.590164i \(0.799063\pi\)
\(444\) −137.327 −0.309296
\(445\) 0 0
\(446\) 237.214i 0.531870i
\(447\) −79.5790 −0.178029
\(448\) −174.319 −0.389105
\(449\) −119.788 −0.266788 −0.133394 0.991063i \(-0.542588\pi\)
−0.133394 + 0.991063i \(0.542588\pi\)
\(450\) 0 0
\(451\) 48.6156 + 140.371i 0.107795 + 0.311243i
\(452\) 234.121i 0.517966i
\(453\) −214.051 −0.472518
\(454\) −819.397 −1.80484
\(455\) 0 0
\(456\) 109.901 0.241011
\(457\) 4.81549 0.0105372 0.00526859 0.999986i \(-0.498323\pi\)
0.00526859 + 0.999986i \(0.498323\pi\)
\(458\) 329.425 0.719269
\(459\) 63.7062i 0.138793i
\(460\) 0 0
\(461\) 570.680i 1.23792i −0.785424 0.618958i \(-0.787555\pi\)
0.785424 0.618958i \(-0.212445\pi\)
\(462\) 91.9207 + 265.409i 0.198963 + 0.574477i
\(463\) 131.935i 0.284956i 0.989798 + 0.142478i \(0.0455071\pi\)
−0.989798 + 0.142478i \(0.954493\pi\)
\(464\) 11.6561i 0.0251210i
\(465\) 0 0
\(466\) −863.050 −1.85204
\(467\) 89.8728i 0.192447i 0.995360 + 0.0962235i \(0.0306764\pi\)
−0.995360 + 0.0962235i \(0.969324\pi\)
\(468\) −74.8249 −0.159882
\(469\) 808.512i 1.72391i
\(470\) 0 0
\(471\) −113.284 −0.240518
\(472\) −89.4199 −0.189449
\(473\) −374.211 + 129.603i −0.791144 + 0.274002i
\(474\) 571.502 1.20570
\(475\) 0 0
\(476\) −111.167 −0.233543
\(477\) 211.333i 0.443045i
\(478\) 159.219i 0.333095i
\(479\) 717.047i 1.49697i −0.663153 0.748484i \(-0.730782\pi\)
0.663153 0.748484i \(-0.269218\pi\)
\(480\) 0 0
\(481\) 962.049i 2.00010i
\(482\) 466.867i 0.968604i
\(483\) 100.419 0.207906
\(484\) 136.319 107.294i 0.281651 0.221683i
\(485\) 0 0
\(486\) 36.3372i 0.0747679i
\(487\) 916.798i 1.88254i −0.337653 0.941271i \(-0.609633\pi\)
0.337653 0.941271i \(-0.390367\pi\)
\(488\) 216.194i 0.443020i
\(489\) −551.395 −1.12760
\(490\) 0 0
\(491\) 302.142i 0.615361i −0.951490 0.307680i \(-0.900447\pi\)
0.951490 0.307680i \(-0.0995527\pi\)
\(492\) −33.5356 −0.0681617
\(493\) 7.26180i 0.0147298i
\(494\) 430.128i 0.870705i
\(495\) 0 0
\(496\) −337.758 −0.680963
\(497\) 176.094 0.354313
\(498\) 556.377i 1.11722i
\(499\) 102.798 0.206008 0.103004 0.994681i \(-0.467154\pi\)
0.103004 + 0.994681i \(0.467154\pi\)
\(500\) 0 0
\(501\) 29.8740i 0.0596287i
\(502\) −496.752 −0.989545
\(503\) −567.728 −1.12868 −0.564342 0.825541i \(-0.690870\pi\)
−0.564342 + 0.825541i \(0.690870\pi\)
\(504\) 113.498 0.225194
\(505\) 0 0
\(506\) −76.9275 222.118i −0.152031 0.438968i
\(507\) 231.470i 0.456549i
\(508\) −292.783 −0.576344
\(509\) 423.197 0.831428 0.415714 0.909495i \(-0.363532\pi\)
0.415714 + 0.909495i \(0.363532\pi\)
\(510\) 0 0
\(511\) −388.086 −0.759465
\(512\) 39.0375 0.0762451
\(513\) −55.1149 −0.107436
\(514\) 70.7687i 0.137682i
\(515\) 0 0
\(516\) 89.4017i 0.173259i
\(517\) −69.3096 200.122i −0.134061 0.387083i
\(518\) 815.258i 1.57386i
\(519\) 557.898i 1.07495i
\(520\) 0 0
\(521\) −658.340 −1.26361 −0.631805 0.775128i \(-0.717685\pi\)
−0.631805 + 0.775128i \(0.717685\pi\)
\(522\) 4.14204i 0.00793494i
\(523\) −568.723 −1.08743 −0.543713 0.839272i \(-0.682982\pi\)
−0.543713 + 0.839272i \(0.682982\pi\)
\(524\) 348.927i 0.665892i
\(525\) 0 0
\(526\) −838.570 −1.59424
\(527\) 210.424 0.399286
\(528\) −122.705 354.294i −0.232396 0.671012i
\(529\) 444.961 0.841136
\(530\) 0 0
\(531\) 44.8437 0.0844515
\(532\) 96.1748i 0.180780i
\(533\) 234.934i 0.440777i
\(534\) 647.419i 1.21240i
\(535\) 0 0
\(536\) 764.765i 1.42680i
\(537\) 78.8921i 0.146913i
\(538\) −748.239 −1.39078
\(539\) 93.5821 32.4109i 0.173622 0.0601316i
\(540\) 0 0
\(541\) 451.918i 0.835339i 0.908599 + 0.417669i \(0.137153\pi\)
−0.908599 + 0.417669i \(0.862847\pi\)
\(542\) 977.860i 1.80417i
\(543\) 232.565i 0.428296i
\(544\) 269.048 0.494574
\(545\) 0 0
\(546\) 444.206i 0.813563i
\(547\) 149.931 0.274097 0.137048 0.990564i \(-0.456238\pi\)
0.137048 + 0.990564i \(0.456238\pi\)
\(548\) 97.9446i 0.178731i
\(549\) 108.420i 0.197487i
\(550\) 0 0
\(551\) −6.28248 −0.0114020
\(552\) −94.9851 −0.172074
\(553\) 895.202i 1.61881i
\(554\) −202.383 −0.365313
\(555\) 0 0
\(556\) 30.8495i 0.0554847i
\(557\) −14.5869 −0.0261883 −0.0130941 0.999914i \(-0.504168\pi\)
−0.0130941 + 0.999914i \(0.504168\pi\)
\(558\) 120.023 0.215095
\(559\) 626.305 1.12040
\(560\) 0 0
\(561\) 76.4456 + 220.726i 0.136267 + 0.393451i
\(562\) 701.070i 1.24746i
\(563\) 123.461 0.219291 0.109645 0.993971i \(-0.465028\pi\)
0.109645 + 0.993971i \(0.465028\pi\)
\(564\) 47.8106 0.0847705
\(565\) 0 0
\(566\) 745.420 1.31700
\(567\) −56.9187 −0.100386
\(568\) −166.565 −0.293249
\(569\) 849.647i 1.49323i 0.665257 + 0.746614i \(0.268322\pi\)
−0.665257 + 0.746614i \(0.731678\pi\)
\(570\) 0 0
\(571\) 607.460i 1.06385i −0.846791 0.531926i \(-0.821468\pi\)
0.846791 0.531926i \(-0.178532\pi\)
\(572\) −259.250 + 89.7876i −0.453234 + 0.156971i
\(573\) 117.843i 0.205659i
\(574\) 199.087i 0.346842i
\(575\) 0 0
\(576\) −82.6902 −0.143559
\(577\) 345.393i 0.598602i 0.954159 + 0.299301i \(0.0967535\pi\)
−0.954159 + 0.299301i \(0.903246\pi\)
\(578\) 323.281 0.559310
\(579\) 220.777i 0.381307i
\(580\) 0 0
\(581\) 871.511 1.50002
\(582\) −233.059 −0.400444
\(583\) −253.593 732.216i −0.434980 1.25594i
\(584\) 367.088 0.628575
\(585\) 0 0
\(586\) −983.111 −1.67766
\(587\) 800.135i 1.36309i −0.731775 0.681546i \(-0.761308\pi\)
0.731775 0.681546i \(-0.238692\pi\)
\(588\) 22.3574i 0.0380228i
\(589\) 182.046i 0.309077i
\(590\) 0 0
\(591\) 257.237i 0.435257i
\(592\) 1088.29i 1.83833i
\(593\) −157.850 −0.266189 −0.133094 0.991103i \(-0.542491\pi\)
−0.133094 + 0.991103i \(0.542491\pi\)
\(594\) 43.6036 + 125.899i 0.0734067 + 0.211952i
\(595\) 0 0
\(596\) 65.8718i 0.110523i
\(597\) 109.213i 0.182937i
\(598\) 371.751i 0.621657i
\(599\) −623.613 −1.04109 −0.520545 0.853834i \(-0.674271\pi\)
−0.520545 + 0.853834i \(0.674271\pi\)
\(600\) 0 0
\(601\) 140.001i 0.232947i 0.993194 + 0.116474i \(0.0371591\pi\)
−0.993194 + 0.116474i \(0.962841\pi\)
\(602\) 530.743 0.881632
\(603\) 383.527i 0.636031i
\(604\) 177.181i 0.293346i
\(605\) 0 0
\(606\) −593.728 −0.979749
\(607\) 758.571 1.24971 0.624853 0.780743i \(-0.285159\pi\)
0.624853 + 0.780743i \(0.285159\pi\)
\(608\) 232.765i 0.382837i
\(609\) −6.48810 −0.0106537
\(610\) 0 0
\(611\) 334.938i 0.548180i
\(612\) −52.7331 −0.0861651
\(613\) 487.490 0.795253 0.397627 0.917547i \(-0.369834\pi\)
0.397627 + 0.917547i \(0.369834\pi\)
\(614\) −151.930 −0.247443
\(615\) 0 0
\(616\) 393.242 136.194i 0.638380 0.221094i
\(617\) 773.785i 1.25411i 0.778975 + 0.627054i \(0.215740\pi\)
−0.778975 + 0.627054i \(0.784260\pi\)
\(618\) 398.818 0.645336
\(619\) −1182.12 −1.90972 −0.954859 0.297059i \(-0.903994\pi\)
−0.954859 + 0.297059i \(0.903994\pi\)
\(620\) 0 0
\(621\) 47.6347 0.0767064
\(622\) 690.710 1.11047
\(623\) 1014.12 1.62780
\(624\) 592.971i 0.950274i
\(625\) 0 0
\(626\) 1004.12i 1.60402i
\(627\) −190.959 + 66.1363i −0.304561 + 0.105480i
\(628\) 93.7714i 0.149318i
\(629\) 678.007i 1.07791i
\(630\) 0 0
\(631\) −1089.91 −1.72727 −0.863634 0.504120i \(-0.831817\pi\)
−0.863634 + 0.504120i \(0.831817\pi\)
\(632\) 846.764i 1.33982i
\(633\) 396.590 0.626525
\(634\) 579.509i 0.914051i
\(635\) 0 0
\(636\) 174.931 0.275049
\(637\) −156.625 −0.245880
\(638\) 4.97032 + 14.3511i 0.00779048 + 0.0224939i
\(639\) 83.5319 0.130723
\(640\) 0 0
\(641\) −661.586 −1.03212 −0.516058 0.856554i \(-0.672601\pi\)
−0.516058 + 0.856554i \(0.672601\pi\)
\(642\) 435.856i 0.678904i
\(643\) 700.467i 1.08937i 0.838639 + 0.544687i \(0.183352\pi\)
−0.838639 + 0.544687i \(0.816648\pi\)
\(644\) 83.1219i 0.129071i
\(645\) 0 0
\(646\) 303.134i 0.469248i
\(647\) 128.968i 0.199332i −0.995021 0.0996658i \(-0.968223\pi\)
0.995021 0.0996658i \(-0.0317774\pi\)
\(648\) 53.8389 0.0830847
\(649\) 155.372 53.8112i 0.239403 0.0829140i
\(650\) 0 0
\(651\) 188.005i 0.288793i
\(652\) 456.419i 0.700029i
\(653\) 828.659i 1.26900i −0.772921 0.634502i \(-0.781205\pi\)
0.772921 0.634502i \(-0.218795\pi\)
\(654\) 133.638 0.204340
\(655\) 0 0
\(656\) 265.762i 0.405125i
\(657\) −184.093 −0.280202
\(658\) 283.832i 0.431356i
\(659\) 216.327i 0.328265i 0.986438 + 0.164133i \(0.0524825\pi\)
−0.986438 + 0.164133i \(0.947517\pi\)
\(660\) 0 0
\(661\) 114.149 0.172691 0.0863457 0.996265i \(-0.472481\pi\)
0.0863457 + 0.996265i \(0.472481\pi\)
\(662\) 884.848 1.33663
\(663\) 369.422i 0.557198i
\(664\) −824.355 −1.24150
\(665\) 0 0
\(666\) 386.727i 0.580671i
\(667\) 5.42982 0.00814066
\(668\) −24.7283 −0.0370184
\(669\) −176.260 −0.263467
\(670\) 0 0
\(671\) −130.101 375.650i −0.193892 0.559836i
\(672\) 240.383i 0.357712i
\(673\) 1173.35 1.74346 0.871729 0.489989i \(-0.162999\pi\)
0.871729 + 0.489989i \(0.162999\pi\)
\(674\) −1230.81 −1.82613
\(675\) 0 0
\(676\) 191.600 0.283433
\(677\) −145.079 −0.214297 −0.107148 0.994243i \(-0.534172\pi\)
−0.107148 + 0.994243i \(0.534172\pi\)
\(678\) 659.305 0.972427
\(679\) 365.064i 0.537649i
\(680\) 0 0
\(681\) 608.845i 0.894045i
\(682\) 415.850 144.024i 0.609751 0.211179i
\(683\) 542.580i 0.794407i 0.917731 + 0.397204i \(0.130019\pi\)
−0.917731 + 0.397204i \(0.869981\pi\)
\(684\) 45.6216i 0.0666982i
\(685\) 0 0
\(686\) −855.092 −1.24649
\(687\) 244.776i 0.356297i
\(688\) −708.489 −1.02978
\(689\) 1225.49i 1.77864i
\(690\) 0 0
\(691\) −190.564 −0.275780 −0.137890 0.990448i \(-0.544032\pi\)
−0.137890 + 0.990448i \(0.544032\pi\)
\(692\) −461.803 −0.667345
\(693\) −197.209 + 68.3008i −0.284573 + 0.0985581i
\(694\) 83.3665 0.120125
\(695\) 0 0
\(696\) 6.13704 0.00881758
\(697\) 165.571i 0.237547i
\(698\) 1056.38i 1.51344i
\(699\) 641.281i 0.917426i
\(700\) 0 0
\(701\) 149.736i 0.213603i 0.994280 + 0.106801i \(0.0340609\pi\)
−0.994280 + 0.106801i \(0.965939\pi\)
\(702\) 210.714i 0.300162i
\(703\) 586.572 0.834385
\(704\) −286.501 + 99.2259i −0.406962 + 0.140946i
\(705\) 0 0
\(706\) 179.209i 0.253838i
\(707\) 930.017i 1.31544i
\(708\) 37.1196i 0.0524288i
\(709\) 225.902 0.318621 0.159310 0.987229i \(-0.449073\pi\)
0.159310 + 0.987229i \(0.449073\pi\)
\(710\) 0 0
\(711\) 424.649i 0.597256i
\(712\) −959.247 −1.34726
\(713\) 157.339i 0.220672i
\(714\) 313.055i 0.438453i
\(715\) 0 0
\(716\) −65.3032 −0.0912056
\(717\) 118.306 0.165002
\(718\) 947.162i 1.31917i
\(719\) −508.963 −0.707877 −0.353938 0.935269i \(-0.615158\pi\)
−0.353938 + 0.935269i \(0.615158\pi\)
\(720\) 0 0
\(721\) 624.709i 0.866448i
\(722\) −579.249 −0.802283
\(723\) 346.901 0.479808
\(724\) 192.506 0.265893
\(725\) 0 0
\(726\) 302.151 + 383.887i 0.416186 + 0.528770i
\(727\) 155.888i 0.214426i 0.994236 + 0.107213i \(0.0341927\pi\)
−0.994236 + 0.107213i \(0.965807\pi\)
\(728\) −658.156 −0.904061
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 441.391 0.603818
\(732\) 89.7454 0.122603
\(733\) −393.332 −0.536605 −0.268303 0.963335i \(-0.586463\pi\)
−0.268303 + 0.963335i \(0.586463\pi\)
\(734\) 669.076i 0.911548i
\(735\) 0 0
\(736\) 201.174i 0.273334i
\(737\) 460.221 + 1328.82i 0.624451 + 1.80302i
\(738\) 94.4393i 0.127967i
\(739\) 224.197i 0.303379i −0.988428 0.151689i \(-0.951529\pi\)
0.988428 0.151689i \(-0.0484713\pi\)
\(740\) 0 0
\(741\) 319.603 0.431313
\(742\) 1038.50i 1.39959i
\(743\) 115.127 0.154948 0.0774741 0.996994i \(-0.475314\pi\)
0.0774741 + 0.996994i \(0.475314\pi\)
\(744\) 177.832i 0.239021i
\(745\) 0 0
\(746\) 838.484 1.12397
\(747\) 413.411 0.553428
\(748\) −182.707 + 63.2781i −0.244261 + 0.0845964i
\(749\) 682.727 0.911518
\(750\) 0 0
\(751\) −494.453 −0.658392 −0.329196 0.944262i \(-0.606778\pi\)
−0.329196 + 0.944262i \(0.606778\pi\)
\(752\) 378.888i 0.503841i
\(753\) 369.107i 0.490181i
\(754\) 24.0190i 0.0318555i
\(755\) 0 0
\(756\) 47.1147i 0.0623210i
\(757\) 531.890i 0.702629i −0.936258 0.351314i \(-0.885735\pi\)
0.936258 0.351314i \(-0.114265\pi\)
\(758\) 220.045 0.290297
\(759\) 165.042 57.1602i 0.217447 0.0753099i
\(760\) 0 0
\(761\) 1343.41i 1.76532i 0.470013 + 0.882660i \(0.344249\pi\)
−0.470013 + 0.882660i \(0.655751\pi\)
\(762\) 824.503i 1.08203i
\(763\) 209.331i 0.274353i
\(764\) −97.5448 −0.127676
\(765\) 0 0
\(766\) 215.304i 0.281076i
\(767\) −260.042 −0.339038
\(768\) 422.851i 0.550588i
\(769\) 735.802i 0.956830i 0.878134 + 0.478415i \(0.158788\pi\)
−0.878134 + 0.478415i \(0.841212\pi\)
\(770\) 0 0
\(771\) 52.5840 0.0682023
\(772\) 182.749 0.236721
\(773\) 1135.40i 1.46882i −0.678706 0.734410i \(-0.737459\pi\)
0.678706 0.734410i \(-0.262541\pi\)
\(774\) 251.764 0.325276
\(775\) 0 0
\(776\) 345.311i 0.444988i
\(777\) 605.770 0.779626
\(778\) 294.263 0.378230
\(779\) 143.242 0.183879
\(780\) 0 0
\(781\) 289.417 100.236i 0.370573 0.128343i
\(782\) 261.993i 0.335029i
\(783\) −3.07770 −0.00393065
\(784\) 177.178 0.225992
\(785\) 0 0
\(786\) 982.612 1.25014
\(787\) 115.155 0.146321 0.0731605 0.997320i \(-0.476691\pi\)
0.0731605 + 0.997320i \(0.476691\pi\)
\(788\) −212.929 −0.270214
\(789\) 623.091i 0.789723i
\(790\) 0 0
\(791\) 1032.74i 1.30561i
\(792\) 186.539 64.6051i 0.235528 0.0815721i
\(793\) 628.713i 0.792828i
\(794\) 1706.57i 2.14934i
\(795\) 0 0
\(796\) −90.4017 −0.113570
\(797\) 1486.27i 1.86483i 0.361387 + 0.932416i \(0.382303\pi\)
−0.361387 + 0.932416i \(0.617697\pi\)
\(798\) 270.837 0.339395
\(799\) 236.049i 0.295430i
\(800\) 0 0
\(801\) 481.058 0.600572
\(802\) −672.049 −0.837967
\(803\) −637.837 + 220.906i −0.794317 + 0.275101i
\(804\) −317.466 −0.394858
\(805\) 0 0
\(806\) −695.995 −0.863518
\(807\) 555.972i 0.688937i
\(808\) 879.695i 1.08873i
\(809\) 546.514i 0.675543i −0.941228 0.337771i \(-0.890327\pi\)
0.941228 0.337771i \(-0.109673\pi\)
\(810\) 0 0
\(811\) 1066.45i 1.31499i 0.753460 + 0.657494i \(0.228383\pi\)
−0.753460 + 0.657494i \(0.771617\pi\)
\(812\) 5.37055i 0.00661398i
\(813\) 726.589 0.893714
\(814\) −464.061 1339.91i −0.570099 1.64608i
\(815\) 0 0
\(816\) 417.898i 0.512130i
\(817\) 381.865i 0.467399i
\(818\) 1250.33i 1.52852i
\(819\) 330.063 0.403007
\(820\) 0 0
\(821\) 1206.66i 1.46974i −0.678207 0.734871i \(-0.737243\pi\)
0.678207 0.734871i \(-0.262757\pi\)
\(822\) 275.821 0.335549
\(823\) 312.518i 0.379730i 0.981810 + 0.189865i \(0.0608050\pi\)
−0.981810 + 0.189865i \(0.939195\pi\)
\(824\) 590.907i 0.717120i
\(825\) 0 0
\(826\) −220.364 −0.266785
\(827\) 1166.37 1.41036 0.705180 0.709029i \(-0.250866\pi\)
0.705180 + 0.709029i \(0.250866\pi\)
\(828\) 39.4298i 0.0476205i
\(829\) 205.935 0.248413 0.124207 0.992256i \(-0.460361\pi\)
0.124207 + 0.992256i \(0.460361\pi\)
\(830\) 0 0
\(831\) 150.379i 0.180961i
\(832\) 479.508 0.576332
\(833\) −110.382 −0.132512
\(834\) −86.8751 −0.104167
\(835\) 0 0
\(836\) −54.7445 158.067i −0.0654839 0.189076i
\(837\) 89.1820i 0.106550i
\(838\) 1800.10 2.14810
\(839\) 619.889 0.738843 0.369422 0.929262i \(-0.379556\pi\)
0.369422 + 0.929262i \(0.379556\pi\)
\(840\) 0 0
\(841\) 840.649 0.999583
\(842\) −1236.21 −1.46819
\(843\) −520.923 −0.617940
\(844\) 328.279i 0.388956i
\(845\) 0 0
\(846\) 134.639i 0.159148i
\(847\) −601.322 + 473.291i −0.709944 + 0.558785i
\(848\) 1386.29i 1.63478i
\(849\) 553.877i 0.652387i
\(850\) 0 0
\(851\) −506.962 −0.595725
\(852\) 69.1439i 0.0811548i
\(853\) −1067.19 −1.25110 −0.625549 0.780185i \(-0.715125\pi\)
−0.625549 + 0.780185i \(0.715125\pi\)
\(854\) 532.783i 0.623868i
\(855\) 0 0
\(856\) −645.786 −0.754422
\(857\) 135.288 0.157862 0.0789310 0.996880i \(-0.474849\pi\)
0.0789310 + 0.996880i \(0.474849\pi\)
\(858\) −252.850 730.071i −0.294697 0.850899i
\(859\) 88.1149 0.102578 0.0512892 0.998684i \(-0.483667\pi\)
0.0512892 + 0.998684i \(0.483667\pi\)
\(860\) 0 0
\(861\) 147.930 0.171812
\(862\) 228.648i 0.265252i
\(863\) 1506.50i 1.74566i −0.488024 0.872830i \(-0.662282\pi\)
0.488024 0.872830i \(-0.337718\pi\)
\(864\) 114.028i 0.131977i
\(865\) 0 0
\(866\) 1090.50i 1.25924i
\(867\) 240.211i 0.277060i
\(868\) −155.621 −0.179287
\(869\) 509.566 + 1471.30i 0.586382 + 1.69310i
\(870\) 0 0
\(871\) 2224.01i 2.55340i
\(872\) 198.005i 0.227070i
\(873\) 173.172i 0.198364i
\(874\) −226.661 −0.259337
\(875\) 0 0
\(876\) 152.384i 0.173954i
\(877\) −874.405 −0.997041 −0.498521 0.866878i \(-0.666123\pi\)
−0.498521 + 0.866878i \(0.666123\pi\)
\(878\) 1707.09i 1.94429i
\(879\) 730.491i 0.831048i
\(880\) 0 0
\(881\) 628.003 0.712830 0.356415 0.934328i \(-0.383999\pi\)
0.356415 + 0.934328i \(0.383999\pi\)
\(882\) −62.9606 −0.0713839
\(883\) 1234.85i 1.39848i 0.714889 + 0.699238i \(0.246477\pi\)
−0.714889 + 0.699238i \(0.753523\pi\)
\(884\) 305.791 0.345917
\(885\) 0 0
\(886\) 1218.86i 1.37569i
\(887\) −282.840 −0.318872 −0.159436 0.987208i \(-0.550968\pi\)
−0.159436 + 0.987208i \(0.550968\pi\)
\(888\) −572.992 −0.645262
\(889\) 1291.50 1.45276
\(890\) 0 0
\(891\) −93.5483 + 32.3992i −0.104993 + 0.0363628i
\(892\) 145.900i 0.163565i
\(893\) −204.215 −0.228685
\(894\) 185.501 0.207496
\(895\) 0 0
\(896\) 961.484 1.07308
\(897\) −276.226 −0.307944
\(898\) 279.229 0.310946
\(899\) 10.1658i 0.0113078i
\(900\) 0 0
\(901\) 863.665i 0.958563i
\(902\) −113.324 327.209i −0.125637 0.362759i
\(903\) 394.363i 0.436725i
\(904\) 976.858i 1.08060i
\(905\) 0 0
\(906\) 498.959 0.550727
\(907\) 604.942i 0.666970i −0.942755 0.333485i \(-0.891775\pi\)
0.942755 0.333485i \(-0.108225\pi\)
\(908\) 503.974 0.555037
\(909\) 441.164i 0.485329i
\(910\) 0 0
\(911\) 339.992 0.373208 0.186604 0.982435i \(-0.440252\pi\)
0.186604 + 0.982435i \(0.440252\pi\)
\(912\) −361.541 −0.396427
\(913\) 1432.37 496.081i 1.56886 0.543352i
\(914\) −11.2251 −0.0122813
\(915\) 0 0
\(916\) −202.615 −0.221195
\(917\) 1539.17i 1.67848i
\(918\) 148.501i 0.161766i
\(919\) 885.348i 0.963382i 0.876341 + 0.481691i \(0.159977\pi\)
−0.876341 + 0.481691i \(0.840023\pi\)
\(920\) 0 0
\(921\) 112.890i 0.122573i
\(922\) 1330.27i 1.44281i
\(923\) −484.389 −0.524798
\(924\) −56.5362 163.241i −0.0611864 0.176667i
\(925\) 0 0
\(926\) 307.544i 0.332121i
\(927\) 296.338i 0.319674i
\(928\) 12.9979i 0.0140064i
\(929\) 821.063 0.883814 0.441907 0.897061i \(-0.354302\pi\)
0.441907 + 0.897061i \(0.354302\pi\)
\(930\) 0 0
\(931\) 95.4962i 0.102574i
\(932\) 530.822 0.569552
\(933\) 513.225i 0.550081i
\(934\) 209.496i 0.224300i
\(935\) 0 0
\(936\) −312.203 −0.333551
\(937\) −1507.89 −1.60927 −0.804636 0.593768i \(-0.797639\pi\)
−0.804636 + 0.593768i \(0.797639\pi\)
\(938\) 1884.67i 2.00924i
\(939\) −746.099 −0.794567
\(940\) 0 0
\(941\) 138.310i 0.146982i 0.997296 + 0.0734909i \(0.0234140\pi\)
−0.997296 + 0.0734909i \(0.976586\pi\)
\(942\) 264.069 0.280328
\(943\) −123.801 −0.131284
\(944\) 294.165 0.311615
\(945\) 0 0
\(946\) 872.298 302.109i 0.922091 0.319354i
\(947\) 1559.87i 1.64717i −0.567192 0.823586i \(-0.691970\pi\)
0.567192 0.823586i \(-0.308030\pi\)
\(948\) −351.505 −0.370786
\(949\) 1067.53 1.12490
\(950\) 0 0
\(951\) 430.598 0.452785
\(952\) −463.838 −0.487224
\(953\) −1073.64 −1.12659 −0.563296 0.826255i \(-0.690467\pi\)
−0.563296 + 0.826255i \(0.690467\pi\)
\(954\) 492.623i 0.516377i
\(955\) 0 0
\(956\) 97.9286i 0.102436i
\(957\) −10.6635 + 3.69315i −0.0111426 + 0.00385909i
\(958\) 1671.46i 1.74474i
\(959\) 432.047i 0.450518i
\(960\) 0 0
\(961\) −666.429 −0.693474
\(962\) 2242.57i 2.33115i
\(963\) 323.859 0.336302
\(964\) 287.149i 0.297872i
\(965\) 0 0
\(966\) −234.079 −0.242318
\(967\) 1403.40 1.45130 0.725648 0.688066i \(-0.241540\pi\)
0.725648 + 0.688066i \(0.241540\pi\)
\(968\) 568.786 447.682i 0.587588 0.462481i
\(969\) 225.241 0.232447
\(970\) 0 0
\(971\) 724.260 0.745891 0.372945 0.927853i \(-0.378348\pi\)
0.372945 + 0.927853i \(0.378348\pi\)
\(972\) 22.3494i 0.0229932i
\(973\) 136.081i 0.139858i
\(974\) 2137.09i 2.19413i
\(975\) 0 0
\(976\) 711.213i 0.728702i
\(977\) 943.252i 0.965458i −0.875770 0.482729i \(-0.839646\pi\)
0.875770 0.482729i \(-0.160354\pi\)
\(978\) 1285.32 1.31423
\(979\) 1666.75 577.256i 1.70250 0.589639i
\(980\) 0 0
\(981\) 99.2986i 0.101222i
\(982\) 704.303i 0.717213i
\(983\) 1101.28i 1.12033i 0.828383 + 0.560163i \(0.189261\pi\)
−0.828383 + 0.560163i \(0.810739\pi\)
\(984\) −139.926 −0.142201
\(985\) 0 0
\(986\) 16.9275i 0.0171678i
\(987\) −210.899 −0.213677
\(988\) 264.552i 0.267766i
\(989\) 330.038i 0.333709i
\(990\) 0 0
\(991\) −639.463 −0.645271 −0.322635 0.946523i \(-0.604569\pi\)
−0.322635 + 0.946523i \(0.604569\pi\)
\(992\) 376.639 0.379676
\(993\) 657.478i 0.662112i
\(994\) −410.480 −0.412958
\(995\) 0 0
\(996\) 342.202i 0.343577i
\(997\) 351.666 0.352724 0.176362 0.984325i \(-0.443567\pi\)
0.176362 + 0.984325i \(0.443567\pi\)
\(998\) −239.626 −0.240106
\(999\) 287.353 0.287641
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.3.h.b.274.8 32
5.2 odd 4 165.3.b.a.76.4 16
5.3 odd 4 825.3.b.d.76.13 16
5.4 even 2 inner 825.3.h.b.274.26 32
11.10 odd 2 inner 825.3.h.b.274.25 32
15.2 even 4 495.3.b.c.406.13 16
20.7 even 4 2640.3.c.c.241.15 16
55.32 even 4 165.3.b.a.76.13 yes 16
55.43 even 4 825.3.b.d.76.4 16
55.54 odd 2 inner 825.3.h.b.274.7 32
165.32 odd 4 495.3.b.c.406.4 16
220.87 odd 4 2640.3.c.c.241.14 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.3.b.a.76.4 16 5.2 odd 4
165.3.b.a.76.13 yes 16 55.32 even 4
495.3.b.c.406.4 16 165.32 odd 4
495.3.b.c.406.13 16 15.2 even 4
825.3.b.d.76.4 16 55.43 even 4
825.3.b.d.76.13 16 5.3 odd 4
825.3.h.b.274.7 32 55.54 odd 2 inner
825.3.h.b.274.8 32 1.1 even 1 trivial
825.3.h.b.274.25 32 11.10 odd 2 inner
825.3.h.b.274.26 32 5.4 even 2 inner
2640.3.c.c.241.14 16 220.87 odd 4
2640.3.c.c.241.15 16 20.7 even 4