Properties

Label 495.3.b.c.406.4
Level $495$
Weight $3$
Character 495.406
Analytic conductor $13.488$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,3,Mod(406,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.406"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.4877730858\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 500x^{12} + 3364x^{10} + 11310x^{8} + 17932x^{6} + 12708x^{4} + 3244x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 406.4
Root \(-2.33103i\) of defining polynomial
Character \(\chi\) \(=\) 495.406
Dual form 495.3.b.c.406.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.33103i q^{2} -1.43371 q^{4} -2.23607 q^{5} +6.32430i q^{7} -5.98210i q^{8} +5.21235i q^{10} +(10.3943 + 3.59991i) q^{11} +17.3965i q^{13} +14.7421 q^{14} -19.6793 q^{16} +12.2603i q^{17} +10.6069i q^{19} +3.20588 q^{20} +(8.39151 - 24.2294i) q^{22} +9.16729 q^{23} +5.00000 q^{25} +40.5519 q^{26} -9.06722i q^{28} -0.592304i q^{29} +17.1631 q^{31} +21.9447i q^{32} +28.5791 q^{34} -14.1416i q^{35} +55.3012 q^{37} +24.7249 q^{38} +13.3764i q^{40} -13.5046i q^{41} +36.0017i q^{43} +(-14.9024 - 5.16124i) q^{44} -21.3693i q^{46} +19.2531 q^{47} +9.00325 q^{49} -11.6552i q^{50} -24.9416i q^{52} -70.4442 q^{53} +(-23.2423 - 8.04965i) q^{55} +37.8326 q^{56} -1.38068 q^{58} -14.9479 q^{59} -36.1401i q^{61} -40.0077i q^{62} -27.5634 q^{64} -38.8998i q^{65} +127.842 q^{67} -17.5777i q^{68} -32.9644 q^{70} +27.8440 q^{71} +61.3643i q^{73} -128.909i q^{74} -15.2072i q^{76} +(-22.7669 + 65.7364i) q^{77} -141.550i q^{79} +44.0043 q^{80} -31.4798 q^{82} +137.804i q^{83} -27.4148i q^{85} +83.9212 q^{86} +(21.5350 - 62.1795i) q^{88} -160.353 q^{89} -110.021 q^{91} -13.1433 q^{92} -44.8797i q^{94} -23.7177i q^{95} -57.7240 q^{97} -20.9869i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{4} + 28 q^{11} - 16 q^{16} - 40 q^{20} - 20 q^{22} - 56 q^{23} + 80 q^{25} + 88 q^{26} - 96 q^{31} - 200 q^{34} + 184 q^{37} - 296 q^{38} - 300 q^{44} + 200 q^{47} - 496 q^{49} + 80 q^{53} + 20 q^{55}+ \cdots - 144 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.33103i 1.16552i −0.812646 0.582758i \(-0.801974\pi\)
0.812646 0.582758i \(-0.198026\pi\)
\(3\) 0 0
\(4\) −1.43371 −0.358428
\(5\) −2.23607 −0.447214
\(6\) 0 0
\(7\) 6.32430i 0.903471i 0.892152 + 0.451736i \(0.149195\pi\)
−0.892152 + 0.451736i \(0.850805\pi\)
\(8\) 5.98210i 0.747763i
\(9\) 0 0
\(10\) 5.21235i 0.521235i
\(11\) 10.3943 + 3.59991i 0.944933 + 0.327265i
\(12\) 0 0
\(13\) 17.3965i 1.33820i 0.743175 + 0.669098i \(0.233319\pi\)
−0.743175 + 0.669098i \(0.766681\pi\)
\(14\) 14.7421 1.05301
\(15\) 0 0
\(16\) −19.6793 −1.22996
\(17\) 12.2603i 0.721192i 0.932722 + 0.360596i \(0.117427\pi\)
−0.932722 + 0.360596i \(0.882573\pi\)
\(18\) 0 0
\(19\) 10.6069i 0.558256i 0.960254 + 0.279128i \(0.0900454\pi\)
−0.960254 + 0.279128i \(0.909955\pi\)
\(20\) 3.20588 0.160294
\(21\) 0 0
\(22\) 8.39151 24.2294i 0.381432 1.10133i
\(23\) 9.16729 0.398578 0.199289 0.979941i \(-0.436137\pi\)
0.199289 + 0.979941i \(0.436137\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 40.5519 1.55969
\(27\) 0 0
\(28\) 9.06722i 0.323829i
\(29\) 0.592304i 0.0204243i −0.999948 0.0102121i \(-0.996749\pi\)
0.999948 0.0102121i \(-0.00325068\pi\)
\(30\) 0 0
\(31\) 17.1631 0.553648 0.276824 0.960921i \(-0.410718\pi\)
0.276824 + 0.960921i \(0.410718\pi\)
\(32\) 21.9447i 0.685773i
\(33\) 0 0
\(34\) 28.5791 0.840561
\(35\) 14.1416i 0.404045i
\(36\) 0 0
\(37\) 55.3012 1.49463 0.747314 0.664472i \(-0.231343\pi\)
0.747314 + 0.664472i \(0.231343\pi\)
\(38\) 24.7249 0.650656
\(39\) 0 0
\(40\) 13.3764i 0.334410i
\(41\) 13.5046i 0.329382i −0.986345 0.164691i \(-0.947337\pi\)
0.986345 0.164691i \(-0.0526626\pi\)
\(42\) 0 0
\(43\) 36.0017i 0.837249i 0.908159 + 0.418625i \(0.137488\pi\)
−0.908159 + 0.418625i \(0.862512\pi\)
\(44\) −14.9024 5.16124i −0.338690 0.117301i
\(45\) 0 0
\(46\) 21.3693i 0.464549i
\(47\) 19.2531 0.409641 0.204821 0.978800i \(-0.434339\pi\)
0.204821 + 0.978800i \(0.434339\pi\)
\(48\) 0 0
\(49\) 9.00325 0.183740
\(50\) 11.6552i 0.233103i
\(51\) 0 0
\(52\) 24.9416i 0.479646i
\(53\) −70.4442 −1.32914 −0.664568 0.747228i \(-0.731384\pi\)
−0.664568 + 0.747228i \(0.731384\pi\)
\(54\) 0 0
\(55\) −23.2423 8.04965i −0.422587 0.146357i
\(56\) 37.8326 0.675582
\(57\) 0 0
\(58\) −1.38068 −0.0238048
\(59\) −14.9479 −0.253354 −0.126677 0.991944i \(-0.540431\pi\)
−0.126677 + 0.991944i \(0.540431\pi\)
\(60\) 0 0
\(61\) 36.1401i 0.592461i −0.955116 0.296231i \(-0.904270\pi\)
0.955116 0.296231i \(-0.0957297\pi\)
\(62\) 40.0077i 0.645285i
\(63\) 0 0
\(64\) −27.5634 −0.430678
\(65\) 38.8998i 0.598459i
\(66\) 0 0
\(67\) 127.842 1.90809 0.954046 0.299660i \(-0.0968732\pi\)
0.954046 + 0.299660i \(0.0968732\pi\)
\(68\) 17.5777i 0.258495i
\(69\) 0 0
\(70\) −32.9644 −0.470921
\(71\) 27.8440 0.392169 0.196084 0.980587i \(-0.437177\pi\)
0.196084 + 0.980587i \(0.437177\pi\)
\(72\) 0 0
\(73\) 61.3643i 0.840607i 0.907383 + 0.420304i \(0.138076\pi\)
−0.907383 + 0.420304i \(0.861924\pi\)
\(74\) 128.909i 1.74201i
\(75\) 0 0
\(76\) 15.2072i 0.200095i
\(77\) −22.7669 + 65.7364i −0.295674 + 0.853719i
\(78\) 0 0
\(79\) 141.550i 1.79177i −0.444289 0.895884i \(-0.646544\pi\)
0.444289 0.895884i \(-0.353456\pi\)
\(80\) 44.0043 0.550054
\(81\) 0 0
\(82\) −31.4798 −0.383900
\(83\) 137.804i 1.66028i 0.557552 + 0.830142i \(0.311741\pi\)
−0.557552 + 0.830142i \(0.688259\pi\)
\(84\) 0 0
\(85\) 27.4148i 0.322527i
\(86\) 83.9212 0.975828
\(87\) 0 0
\(88\) 21.5350 62.1795i 0.244716 0.706585i
\(89\) −160.353 −1.80172 −0.900858 0.434113i \(-0.857062\pi\)
−0.900858 + 0.434113i \(0.857062\pi\)
\(90\) 0 0
\(91\) −110.021 −1.20902
\(92\) −13.1433 −0.142861
\(93\) 0 0
\(94\) 44.8797i 0.477443i
\(95\) 23.7177i 0.249660i
\(96\) 0 0
\(97\) −57.7240 −0.595092 −0.297546 0.954707i \(-0.596168\pi\)
−0.297546 + 0.954707i \(0.596168\pi\)
\(98\) 20.9869i 0.214152i
\(99\) 0 0
\(100\) −7.16856 −0.0716856
\(101\) 147.055i 1.45599i 0.685585 + 0.727993i \(0.259547\pi\)
−0.685585 + 0.727993i \(0.740453\pi\)
\(102\) 0 0
\(103\) −98.7792 −0.959022 −0.479511 0.877536i \(-0.659186\pi\)
−0.479511 + 0.877536i \(0.659186\pi\)
\(104\) 104.068 1.00065
\(105\) 0 0
\(106\) 164.208i 1.54913i
\(107\) 107.953i 1.00891i −0.863439 0.504453i \(-0.831694\pi\)
0.863439 0.504453i \(-0.168306\pi\)
\(108\) 0 0
\(109\) 33.0995i 0.303666i −0.988406 0.151833i \(-0.951482\pi\)
0.988406 0.151833i \(-0.0485175\pi\)
\(110\) −18.7640 + 54.1785i −0.170582 + 0.492532i
\(111\) 0 0
\(112\) 124.458i 1.11123i
\(113\) 163.297 1.44510 0.722552 0.691316i \(-0.242969\pi\)
0.722552 + 0.691316i \(0.242969\pi\)
\(114\) 0 0
\(115\) −20.4987 −0.178249
\(116\) 0.849193i 0.00732063i
\(117\) 0 0
\(118\) 34.8441i 0.295289i
\(119\) −77.5376 −0.651576
\(120\) 0 0
\(121\) 95.0813 + 74.8369i 0.785795 + 0.618486i
\(122\) −84.2438 −0.690523
\(123\) 0 0
\(124\) −24.6069 −0.198443
\(125\) −11.1803 −0.0894427
\(126\) 0 0
\(127\) 204.213i 1.60798i 0.594645 + 0.803988i \(0.297293\pi\)
−0.594645 + 0.803988i \(0.702707\pi\)
\(128\) 152.030i 1.18774i
\(129\) 0 0
\(130\) −90.6768 −0.697514
\(131\) 243.373i 1.85781i −0.370316 0.928906i \(-0.620751\pi\)
0.370316 0.928906i \(-0.379249\pi\)
\(132\) 0 0
\(133\) −67.0810 −0.504368
\(134\) 298.004i 2.22391i
\(135\) 0 0
\(136\) 73.3421 0.539280
\(137\) −68.3154 −0.498652 −0.249326 0.968420i \(-0.580209\pi\)
−0.249326 + 0.968420i \(0.580209\pi\)
\(138\) 0 0
\(139\) 21.5172i 0.154800i 0.997000 + 0.0774001i \(0.0246619\pi\)
−0.997000 + 0.0774001i \(0.975338\pi\)
\(140\) 20.2749i 0.144821i
\(141\) 0 0
\(142\) 64.9052i 0.457079i
\(143\) −62.6260 + 180.824i −0.437944 + 1.26450i
\(144\) 0 0
\(145\) 1.32443i 0.00913401i
\(146\) 143.042 0.979742
\(147\) 0 0
\(148\) −79.2860 −0.535716
\(149\) 45.9449i 0.308355i 0.988043 + 0.154178i \(0.0492728\pi\)
−0.988043 + 0.154178i \(0.950727\pi\)
\(150\) 0 0
\(151\) 123.582i 0.818425i 0.912439 + 0.409212i \(0.134197\pi\)
−0.912439 + 0.409212i \(0.865803\pi\)
\(152\) 63.4513 0.417443
\(153\) 0 0
\(154\) 153.234 + 53.0704i 0.995024 + 0.344613i
\(155\) −38.3778 −0.247599
\(156\) 0 0
\(157\) 65.4047 0.416590 0.208295 0.978066i \(-0.433209\pi\)
0.208295 + 0.978066i \(0.433209\pi\)
\(158\) −329.957 −2.08833
\(159\) 0 0
\(160\) 49.0699i 0.306687i
\(161\) 57.9767i 0.360104i
\(162\) 0 0
\(163\) −318.348 −1.95305 −0.976527 0.215395i \(-0.930896\pi\)
−0.976527 + 0.215395i \(0.930896\pi\)
\(164\) 19.3618i 0.118060i
\(165\) 0 0
\(166\) 321.225 1.93509
\(167\) 17.2478i 0.103280i −0.998666 0.0516400i \(-0.983555\pi\)
0.998666 0.0516400i \(-0.0164448\pi\)
\(168\) 0 0
\(169\) −133.639 −0.790766
\(170\) −63.9048 −0.375910
\(171\) 0 0
\(172\) 51.6161i 0.300094i
\(173\) 322.103i 1.86187i 0.365190 + 0.930933i \(0.381004\pi\)
−0.365190 + 0.930933i \(0.618996\pi\)
\(174\) 0 0
\(175\) 31.6215i 0.180694i
\(176\) −204.552 70.8438i −1.16223 0.402522i
\(177\) 0 0
\(178\) 373.788i 2.09993i
\(179\) −45.5484 −0.254460 −0.127230 0.991873i \(-0.540609\pi\)
−0.127230 + 0.991873i \(0.540609\pi\)
\(180\) 0 0
\(181\) 134.271 0.741830 0.370915 0.928667i \(-0.379044\pi\)
0.370915 + 0.928667i \(0.379044\pi\)
\(182\) 256.462i 1.40913i
\(183\) 0 0
\(184\) 54.8397i 0.298042i
\(185\) −123.657 −0.668418
\(186\) 0 0
\(187\) −44.1359 + 127.436i −0.236021 + 0.681478i
\(188\) −27.6034 −0.146827
\(189\) 0 0
\(190\) −55.2867 −0.290982
\(191\) 68.0366 0.356212 0.178106 0.984011i \(-0.443003\pi\)
0.178106 + 0.984011i \(0.443003\pi\)
\(192\) 0 0
\(193\) 127.465i 0.660443i 0.943904 + 0.330221i \(0.107123\pi\)
−0.943904 + 0.330221i \(0.892877\pi\)
\(194\) 134.556i 0.693590i
\(195\) 0 0
\(196\) −12.9081 −0.0658575
\(197\) 148.516i 0.753888i −0.926236 0.376944i \(-0.876975\pi\)
0.926236 0.376944i \(-0.123025\pi\)
\(198\) 0 0
\(199\) 63.0543 0.316856 0.158428 0.987371i \(-0.449357\pi\)
0.158428 + 0.987371i \(0.449357\pi\)
\(200\) 29.9105i 0.149553i
\(201\) 0 0
\(202\) 342.789 1.69697
\(203\) 3.74591 0.0184527
\(204\) 0 0
\(205\) 30.1973i 0.147304i
\(206\) 230.258i 1.11776i
\(207\) 0 0
\(208\) 342.352i 1.64592i
\(209\) −38.1838 + 110.250i −0.182698 + 0.527514i
\(210\) 0 0
\(211\) 228.972i 1.08517i −0.840000 0.542587i \(-0.817445\pi\)
0.840000 0.542587i \(-0.182555\pi\)
\(212\) 100.997 0.476400
\(213\) 0 0
\(214\) −251.642 −1.17590
\(215\) 80.5023i 0.374429i
\(216\) 0 0
\(217\) 108.544i 0.500205i
\(218\) −77.1561 −0.353927
\(219\) 0 0
\(220\) 33.3227 + 11.5409i 0.151467 + 0.0524585i
\(221\) −213.286 −0.965096
\(222\) 0 0
\(223\) −101.764 −0.456339 −0.228169 0.973621i \(-0.573274\pi\)
−0.228169 + 0.973621i \(0.573274\pi\)
\(224\) −138.785 −0.619576
\(225\) 0 0
\(226\) 380.650i 1.68429i
\(227\) 351.517i 1.54853i 0.632861 + 0.774266i \(0.281881\pi\)
−0.632861 + 0.774266i \(0.718119\pi\)
\(228\) 0 0
\(229\) 141.322 0.617125 0.308563 0.951204i \(-0.400152\pi\)
0.308563 + 0.951204i \(0.400152\pi\)
\(230\) 47.7831i 0.207753i
\(231\) 0 0
\(232\) −3.54322 −0.0152725
\(233\) 370.243i 1.58903i −0.607246 0.794514i \(-0.707726\pi\)
0.607246 0.794514i \(-0.292274\pi\)
\(234\) 0 0
\(235\) −43.0513 −0.183197
\(236\) 21.4310 0.0908093
\(237\) 0 0
\(238\) 180.743i 0.759423i
\(239\) 68.3043i 0.285792i −0.989738 0.142896i \(-0.954359\pi\)
0.989738 0.142896i \(-0.0456414\pi\)
\(240\) 0 0
\(241\) 200.283i 0.831052i −0.909581 0.415526i \(-0.863598\pi\)
0.909581 0.415526i \(-0.136402\pi\)
\(242\) 174.447 221.637i 0.720856 0.915857i
\(243\) 0 0
\(244\) 51.8145i 0.212355i
\(245\) −20.1319 −0.0821709
\(246\) 0 0
\(247\) −184.523 −0.747055
\(248\) 102.671i 0.413997i
\(249\) 0 0
\(250\) 26.0617i 0.104247i
\(251\) −213.104 −0.849019 −0.424510 0.905423i \(-0.639553\pi\)
−0.424510 + 0.905423i \(0.639553\pi\)
\(252\) 0 0
\(253\) 95.2872 + 33.0015i 0.376629 + 0.130441i
\(254\) 476.027 1.87412
\(255\) 0 0
\(256\) 244.133 0.953646
\(257\) 30.3594 0.118130 0.0590650 0.998254i \(-0.481188\pi\)
0.0590650 + 0.998254i \(0.481188\pi\)
\(258\) 0 0
\(259\) 349.741i 1.35035i
\(260\) 55.7712i 0.214504i
\(261\) 0 0
\(262\) −567.311 −2.16531
\(263\) 359.742i 1.36784i −0.729557 0.683920i \(-0.760274\pi\)
0.729557 0.683920i \(-0.239726\pi\)
\(264\) 0 0
\(265\) 157.518 0.594408
\(266\) 156.368i 0.587849i
\(267\) 0 0
\(268\) −183.289 −0.683914
\(269\) 320.990 1.19327 0.596637 0.802512i \(-0.296503\pi\)
0.596637 + 0.802512i \(0.296503\pi\)
\(270\) 0 0
\(271\) 419.497i 1.54796i −0.633211 0.773979i \(-0.718264\pi\)
0.633211 0.773979i \(-0.281736\pi\)
\(272\) 241.274i 0.887036i
\(273\) 0 0
\(274\) 159.245i 0.581187i
\(275\) 51.9713 + 17.9996i 0.188987 + 0.0654530i
\(276\) 0 0
\(277\) 86.8213i 0.313434i −0.987644 0.156717i \(-0.949909\pi\)
0.987644 0.156717i \(-0.0500911\pi\)
\(278\) 50.1574 0.180422
\(279\) 0 0
\(280\) −84.5962 −0.302129
\(281\) 300.755i 1.07030i −0.844756 0.535152i \(-0.820255\pi\)
0.844756 0.535152i \(-0.179745\pi\)
\(282\) 0 0
\(283\) 319.781i 1.12997i −0.825102 0.564984i \(-0.808882\pi\)
0.825102 0.564984i \(-0.191118\pi\)
\(284\) −39.9202 −0.140564
\(285\) 0 0
\(286\) 421.507 + 145.983i 1.47380 + 0.510431i
\(287\) 85.4074 0.297587
\(288\) 0 0
\(289\) 138.686 0.479882
\(290\) 3.08729 0.0106458
\(291\) 0 0
\(292\) 87.9788i 0.301297i
\(293\) 421.749i 1.43942i −0.694276 0.719709i \(-0.744275\pi\)
0.694276 0.719709i \(-0.255725\pi\)
\(294\) 0 0
\(295\) 33.4245 0.113304
\(296\) 330.817i 1.11763i
\(297\) 0 0
\(298\) 107.099 0.359393
\(299\) 159.479i 0.533375i
\(300\) 0 0
\(301\) −227.686 −0.756431
\(302\) 288.074 0.953887
\(303\) 0 0
\(304\) 208.736i 0.686631i
\(305\) 80.8118i 0.264957i
\(306\) 0 0
\(307\) 65.1772i 0.212303i −0.994350 0.106152i \(-0.966147\pi\)
0.994350 0.106152i \(-0.0338529\pi\)
\(308\) 32.6412 94.2470i 0.105978 0.305997i
\(309\) 0 0
\(310\) 89.4599i 0.288580i
\(311\) 296.311 0.952768 0.476384 0.879237i \(-0.341947\pi\)
0.476384 + 0.879237i \(0.341947\pi\)
\(312\) 0 0
\(313\) −430.760 −1.37623 −0.688115 0.725601i \(-0.741562\pi\)
−0.688115 + 0.725601i \(0.741562\pi\)
\(314\) 152.460i 0.485543i
\(315\) 0 0
\(316\) 202.941i 0.642219i
\(317\) 248.606 0.784246 0.392123 0.919913i \(-0.371741\pi\)
0.392123 + 0.919913i \(0.371741\pi\)
\(318\) 0 0
\(319\) 2.13224 6.15656i 0.00668414 0.0192996i
\(320\) 61.6337 0.192605
\(321\) 0 0
\(322\) 135.146 0.419707
\(323\) −130.043 −0.402610
\(324\) 0 0
\(325\) 86.9827i 0.267639i
\(326\) 742.079i 2.27632i
\(327\) 0 0
\(328\) −80.7862 −0.246299
\(329\) 121.763i 0.370099i
\(330\) 0 0
\(331\) −379.595 −1.14681 −0.573406 0.819271i \(-0.694378\pi\)
−0.573406 + 0.819271i \(0.694378\pi\)
\(332\) 197.571i 0.595092i
\(333\) 0 0
\(334\) −40.2051 −0.120375
\(335\) −285.864 −0.853325
\(336\) 0 0
\(337\) 528.010i 1.56680i −0.621521 0.783398i \(-0.713485\pi\)
0.621521 0.783398i \(-0.286515\pi\)
\(338\) 311.518i 0.921651i
\(339\) 0 0
\(340\) 39.3049i 0.115603i
\(341\) 178.398 + 61.7856i 0.523160 + 0.181189i
\(342\) 0 0
\(343\) 366.830i 1.06947i
\(344\) 215.366 0.626064
\(345\) 0 0
\(346\) 750.832 2.17004
\(347\) 35.7638i 0.103066i −0.998671 0.0515328i \(-0.983589\pi\)
0.998671 0.0515328i \(-0.0164107\pi\)
\(348\) 0 0
\(349\) 453.183i 1.29852i −0.760568 0.649259i \(-0.775079\pi\)
0.760568 0.649259i \(-0.224921\pi\)
\(350\) 73.7107 0.210602
\(351\) 0 0
\(352\) −78.9991 + 228.099i −0.224429 + 0.648009i
\(353\) 76.8798 0.217790 0.108895 0.994053i \(-0.465269\pi\)
0.108895 + 0.994053i \(0.465269\pi\)
\(354\) 0 0
\(355\) −62.2610 −0.175383
\(356\) 229.900 0.645786
\(357\) 0 0
\(358\) 106.175i 0.296577i
\(359\) 406.327i 1.13183i 0.824463 + 0.565915i \(0.191477\pi\)
−0.824463 + 0.565915i \(0.808523\pi\)
\(360\) 0 0
\(361\) 248.494 0.688350
\(362\) 312.991i 0.864615i
\(363\) 0 0
\(364\) 157.738 0.433347
\(365\) 137.215i 0.375931i
\(366\) 0 0
\(367\) −287.030 −0.782098 −0.391049 0.920370i \(-0.627888\pi\)
−0.391049 + 0.920370i \(0.627888\pi\)
\(368\) −180.406 −0.490234
\(369\) 0 0
\(370\) 288.249i 0.779051i
\(371\) 445.510i 1.20084i
\(372\) 0 0
\(373\) 359.705i 0.964356i −0.876073 0.482178i \(-0.839846\pi\)
0.876073 0.482178i \(-0.160154\pi\)
\(374\) 297.058 + 102.882i 0.794274 + 0.275086i
\(375\) 0 0
\(376\) 115.174i 0.306314i
\(377\) 10.3040 0.0273316
\(378\) 0 0
\(379\) 94.3980 0.249071 0.124536 0.992215i \(-0.460256\pi\)
0.124536 + 0.992215i \(0.460256\pi\)
\(380\) 34.0043i 0.0894850i
\(381\) 0 0
\(382\) 158.595i 0.415171i
\(383\) 92.3643 0.241160 0.120580 0.992704i \(-0.461525\pi\)
0.120580 + 0.992704i \(0.461525\pi\)
\(384\) 0 0
\(385\) 50.9084 146.991i 0.132230 0.381795i
\(386\) 297.126 0.769757
\(387\) 0 0
\(388\) 82.7595 0.213298
\(389\) −126.237 −0.324517 −0.162259 0.986748i \(-0.551878\pi\)
−0.162259 + 0.986748i \(0.551878\pi\)
\(390\) 0 0
\(391\) 112.393i 0.287451i
\(392\) 53.8583i 0.137394i
\(393\) 0 0
\(394\) −346.195 −0.878668
\(395\) 316.515i 0.801303i
\(396\) 0 0
\(397\) 732.111 1.84411 0.922054 0.387060i \(-0.126509\pi\)
0.922054 + 0.387060i \(0.126509\pi\)
\(398\) 146.982i 0.369300i
\(399\) 0 0
\(400\) −98.3966 −0.245991
\(401\) −288.306 −0.718966 −0.359483 0.933152i \(-0.617047\pi\)
−0.359483 + 0.933152i \(0.617047\pi\)
\(402\) 0 0
\(403\) 298.578i 0.740889i
\(404\) 210.834i 0.521866i
\(405\) 0 0
\(406\) 8.73183i 0.0215070i
\(407\) 574.815 + 199.080i 1.41232 + 0.489139i
\(408\) 0 0
\(409\) 536.385i 1.31146i −0.754997 0.655728i \(-0.772362\pi\)
0.754997 0.655728i \(-0.227638\pi\)
\(410\) 70.3909 0.171685
\(411\) 0 0
\(412\) 141.621 0.343740
\(413\) 94.5350i 0.228898i
\(414\) 0 0
\(415\) 308.138i 0.742501i
\(416\) −381.762 −0.917697
\(417\) 0 0
\(418\) 256.997 + 89.0076i 0.614826 + 0.212937i
\(419\) −772.235 −1.84304 −0.921521 0.388328i \(-0.873053\pi\)
−0.921521 + 0.388328i \(0.873053\pi\)
\(420\) 0 0
\(421\) 530.329 1.25969 0.629844 0.776721i \(-0.283119\pi\)
0.629844 + 0.776721i \(0.283119\pi\)
\(422\) −533.740 −1.26479
\(423\) 0 0
\(424\) 421.405i 0.993879i
\(425\) 61.3013i 0.144238i
\(426\) 0 0
\(427\) 228.561 0.535272
\(428\) 154.773i 0.361620i
\(429\) 0 0
\(430\) −187.653 −0.436403
\(431\) 98.0885i 0.227584i −0.993505 0.113792i \(-0.963700\pi\)
0.993505 0.113792i \(-0.0362997\pi\)
\(432\) 0 0
\(433\) −467.819 −1.08041 −0.540206 0.841533i \(-0.681654\pi\)
−0.540206 + 0.841533i \(0.681654\pi\)
\(434\) 253.021 0.582997
\(435\) 0 0
\(436\) 47.4552i 0.108842i
\(437\) 97.2362i 0.222509i
\(438\) 0 0
\(439\) 732.331i 1.66818i 0.551628 + 0.834090i \(0.314007\pi\)
−0.551628 + 0.834090i \(0.685993\pi\)
\(440\) −48.1538 + 139.038i −0.109440 + 0.315995i
\(441\) 0 0
\(442\) 497.177i 1.12483i
\(443\) −522.885 −1.18033 −0.590164 0.807284i \(-0.700937\pi\)
−0.590164 + 0.807284i \(0.700937\pi\)
\(444\) 0 0
\(445\) 358.560 0.805752
\(446\) 237.214i 0.531870i
\(447\) 0 0
\(448\) 174.319i 0.389105i
\(449\) −119.788 −0.266788 −0.133394 0.991063i \(-0.542588\pi\)
−0.133394 + 0.991063i \(0.542588\pi\)
\(450\) 0 0
\(451\) 48.6156 140.371i 0.107795 0.311243i
\(452\) −234.121 −0.517966
\(453\) 0 0
\(454\) 819.397 1.80484
\(455\) 246.014 0.540691
\(456\) 0 0
\(457\) 4.81549i 0.0105372i −0.999986 0.00526859i \(-0.998323\pi\)
0.999986 0.00526859i \(-0.00167705\pi\)
\(458\) 329.425i 0.719269i
\(459\) 0 0
\(460\) 29.3892 0.0638896
\(461\) 570.680i 1.23792i −0.785424 0.618958i \(-0.787555\pi\)
0.785424 0.618958i \(-0.212445\pi\)
\(462\) 0 0
\(463\) 131.935 0.284956 0.142478 0.989798i \(-0.454493\pi\)
0.142478 + 0.989798i \(0.454493\pi\)
\(464\) 11.6561i 0.0251210i
\(465\) 0 0
\(466\) −863.050 −1.85204
\(467\) 89.8728 0.192447 0.0962235 0.995360i \(-0.469324\pi\)
0.0962235 + 0.995360i \(0.469324\pi\)
\(468\) 0 0
\(469\) 808.512i 1.72391i
\(470\) 100.354i 0.213519i
\(471\) 0 0
\(472\) 89.4199i 0.189449i
\(473\) −129.603 + 374.211i −0.274002 + 0.791144i
\(474\) 0 0
\(475\) 53.0343i 0.111651i
\(476\) 111.167 0.233543
\(477\) 0 0
\(478\) −159.219 −0.333095
\(479\) 717.047i 1.49697i 0.663153 + 0.748484i \(0.269218\pi\)
−0.663153 + 0.748484i \(0.730782\pi\)
\(480\) 0 0
\(481\) 962.049i 2.00010i
\(482\) −466.867 −0.968604
\(483\) 0 0
\(484\) −136.319 107.294i −0.281651 0.221683i
\(485\) 129.075 0.266133
\(486\) 0 0
\(487\) 916.798 1.88254 0.941271 0.337653i \(-0.109633\pi\)
0.941271 + 0.337653i \(0.109633\pi\)
\(488\) −216.194 −0.443020
\(489\) 0 0
\(490\) 46.9280i 0.0957715i
\(491\) 302.142i 0.615361i −0.951490 0.307680i \(-0.900447\pi\)
0.951490 0.307680i \(-0.0995527\pi\)
\(492\) 0 0
\(493\) 7.26180 0.0147298
\(494\) 430.128i 0.870705i
\(495\) 0 0
\(496\) −337.758 −0.680963
\(497\) 176.094i 0.354313i
\(498\) 0 0
\(499\) −102.798 −0.206008 −0.103004 0.994681i \(-0.532846\pi\)
−0.103004 + 0.994681i \(0.532846\pi\)
\(500\) 16.0294 0.0320588
\(501\) 0 0
\(502\) 496.752i 0.989545i
\(503\) 567.728i 1.12868i 0.825541 + 0.564342i \(0.190870\pi\)
−0.825541 + 0.564342i \(0.809130\pi\)
\(504\) 0 0
\(505\) 328.824i 0.651137i
\(506\) 76.9275 222.118i 0.152031 0.438968i
\(507\) 0 0
\(508\) 292.783i 0.576344i
\(509\) 423.197 0.831428 0.415714 0.909495i \(-0.363532\pi\)
0.415714 + 0.909495i \(0.363532\pi\)
\(510\) 0 0
\(511\) −388.086 −0.759465
\(512\) 39.0375i 0.0762451i
\(513\) 0 0
\(514\) 70.7687i 0.137682i
\(515\) 220.877 0.428887
\(516\) 0 0
\(517\) 200.122 + 69.3096i 0.387083 + 0.134061i
\(518\) 815.258 1.57386
\(519\) 0 0
\(520\) −232.703 −0.447505
\(521\) 658.340 1.26361 0.631805 0.775128i \(-0.282315\pi\)
0.631805 + 0.775128i \(0.282315\pi\)
\(522\) 0 0
\(523\) 568.723i 1.08743i −0.839272 0.543713i \(-0.817018\pi\)
0.839272 0.543713i \(-0.182982\pi\)
\(524\) 348.927i 0.665892i
\(525\) 0 0
\(526\) −838.570 −1.59424
\(527\) 210.424i 0.399286i
\(528\) 0 0
\(529\) −444.961 −0.841136
\(530\) 367.180i 0.692792i
\(531\) 0 0
\(532\) 96.1748 0.180780
\(533\) 234.934 0.440777
\(534\) 0 0
\(535\) 241.390i 0.451197i
\(536\) 764.765i 1.42680i
\(537\) 0 0
\(538\) 748.239i 1.39078i
\(539\) 93.5821 + 32.4109i 0.173622 + 0.0601316i
\(540\) 0 0
\(541\) 451.918i 0.835339i −0.908599 0.417669i \(-0.862847\pi\)
0.908599 0.417669i \(-0.137153\pi\)
\(542\) −977.860 −1.80417
\(543\) 0 0
\(544\) −269.048 −0.494574
\(545\) 74.0128i 0.135803i
\(546\) 0 0
\(547\) 149.931i 0.274097i −0.990564 0.137048i \(-0.956238\pi\)
0.990564 0.137048i \(-0.0437615\pi\)
\(548\) 97.9446 0.178731
\(549\) 0 0
\(550\) 41.9576 121.147i 0.0762865 0.220267i
\(551\) 6.28248 0.0114020
\(552\) 0 0
\(553\) 895.202 1.61881
\(554\) −202.383 −0.365313
\(555\) 0 0
\(556\) 30.8495i 0.0554847i
\(557\) 14.5869i 0.0261883i −0.999914 0.0130941i \(-0.995832\pi\)
0.999914 0.0130941i \(-0.00416812\pi\)
\(558\) 0 0
\(559\) −626.305 −1.12040
\(560\) 278.296i 0.496958i
\(561\) 0 0
\(562\) −701.070 −1.24746
\(563\) 123.461i 0.219291i −0.993971 0.109645i \(-0.965028\pi\)
0.993971 0.109645i \(-0.0349715\pi\)
\(564\) 0 0
\(565\) −365.143 −0.646270
\(566\) −745.420 −1.31700
\(567\) 0 0
\(568\) 166.565i 0.293249i
\(569\) 849.647i 1.49323i −0.665257 0.746614i \(-0.731678\pi\)
0.665257 0.746614i \(-0.268322\pi\)
\(570\) 0 0
\(571\) 607.460i 1.06385i 0.846791 + 0.531926i \(0.178532\pi\)
−0.846791 + 0.531926i \(0.821468\pi\)
\(572\) 89.7876 259.250i 0.156971 0.453234i
\(573\) 0 0
\(574\) 199.087i 0.346842i
\(575\) 45.8365 0.0797156
\(576\) 0 0
\(577\) −345.393 −0.598602 −0.299301 0.954159i \(-0.596754\pi\)
−0.299301 + 0.954159i \(0.596754\pi\)
\(578\) 323.281i 0.559310i
\(579\) 0 0
\(580\) 1.89885i 0.00327388i
\(581\) −871.511 −1.50002
\(582\) 0 0
\(583\) −732.216 253.593i −1.25594 0.434980i
\(584\) 367.088 0.628575
\(585\) 0 0
\(586\) −983.111 −1.67766
\(587\) −800.135 −1.36309 −0.681546 0.731775i \(-0.738692\pi\)
−0.681546 + 0.731775i \(0.738692\pi\)
\(588\) 0 0
\(589\) 182.046i 0.309077i
\(590\) 77.9137i 0.132057i
\(591\) 0 0
\(592\) −1088.29 −1.83833
\(593\) 157.850i 0.266189i 0.991103 + 0.133094i \(0.0424913\pi\)
−0.991103 + 0.133094i \(0.957509\pi\)
\(594\) 0 0
\(595\) 173.379 0.291394
\(596\) 65.8718i 0.110523i
\(597\) 0 0
\(598\) 371.751 0.621657
\(599\) −623.613 −1.04109 −0.520545 0.853834i \(-0.674271\pi\)
−0.520545 + 0.853834i \(0.674271\pi\)
\(600\) 0 0
\(601\) 140.001i 0.232947i −0.993194 0.116474i \(-0.962841\pi\)
0.993194 0.116474i \(-0.0371591\pi\)
\(602\) 530.743i 0.881632i
\(603\) 0 0
\(604\) 177.181i 0.293346i
\(605\) −212.608 167.340i −0.351418 0.276596i
\(606\) 0 0
\(607\) 758.571i 1.24971i −0.780743 0.624853i \(-0.785159\pi\)
0.780743 0.624853i \(-0.214841\pi\)
\(608\) −232.765 −0.382837
\(609\) 0 0
\(610\) 188.375 0.308811
\(611\) 334.938i 0.548180i
\(612\) 0 0
\(613\) 487.490i 0.795253i 0.917547 + 0.397627i \(0.130166\pi\)
−0.917547 + 0.397627i \(0.869834\pi\)
\(614\) −151.930 −0.247443
\(615\) 0 0
\(616\) 393.242 + 136.194i 0.638380 + 0.221094i
\(617\) 773.785 1.25411 0.627054 0.778975i \(-0.284260\pi\)
0.627054 + 0.778975i \(0.284260\pi\)
\(618\) 0 0
\(619\) 1182.12 1.90972 0.954859 0.297059i \(-0.0960058\pi\)
0.954859 + 0.297059i \(0.0960058\pi\)
\(620\) 55.0227 0.0887463
\(621\) 0 0
\(622\) 690.710i 1.11047i
\(623\) 1014.12i 1.62780i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 1004.12i 1.60402i
\(627\) 0 0
\(628\) −93.7714 −0.149318
\(629\) 678.007i 1.07791i
\(630\) 0 0
\(631\) −1089.91 −1.72727 −0.863634 0.504120i \(-0.831817\pi\)
−0.863634 + 0.504120i \(0.831817\pi\)
\(632\) −846.764 −1.33982
\(633\) 0 0
\(634\) 579.509i 0.914051i
\(635\) 456.634i 0.719109i
\(636\) 0 0
\(637\) 156.625i 0.245880i
\(638\) −14.3511 4.97032i −0.0224939 0.00779048i
\(639\) 0 0
\(640\) 339.950i 0.531171i
\(641\) 661.586 1.03212 0.516058 0.856554i \(-0.327399\pi\)
0.516058 + 0.856554i \(0.327399\pi\)
\(642\) 0 0
\(643\) 700.467 1.08937 0.544687 0.838639i \(-0.316648\pi\)
0.544687 + 0.838639i \(0.316648\pi\)
\(644\) 83.1219i 0.129071i
\(645\) 0 0
\(646\) 303.134i 0.469248i
\(647\) −128.968 −0.199332 −0.0996658 0.995021i \(-0.531777\pi\)
−0.0996658 + 0.995021i \(0.531777\pi\)
\(648\) 0 0
\(649\) −155.372 53.8112i −0.239403 0.0829140i
\(650\) 202.759 0.311938
\(651\) 0 0
\(652\) 456.419 0.700029
\(653\) 828.659 1.26900 0.634502 0.772921i \(-0.281205\pi\)
0.634502 + 0.772921i \(0.281205\pi\)
\(654\) 0 0
\(655\) 544.199i 0.830839i
\(656\) 265.762i 0.405125i
\(657\) 0 0
\(658\) 283.832 0.431356
\(659\) 216.327i 0.328265i −0.986438 0.164133i \(-0.947517\pi\)
0.986438 0.164133i \(-0.0524825\pi\)
\(660\) 0 0
\(661\) 114.149 0.172691 0.0863457 0.996265i \(-0.472481\pi\)
0.0863457 + 0.996265i \(0.472481\pi\)
\(662\) 884.848i 1.33663i
\(663\) 0 0
\(664\) 824.355 1.24150
\(665\) 149.998 0.225560
\(666\) 0 0
\(667\) 5.42982i 0.00814066i
\(668\) 24.7283i 0.0370184i
\(669\) 0 0
\(670\) 666.358i 0.994564i
\(671\) 130.101 375.650i 0.193892 0.559836i
\(672\) 0 0
\(673\) 1173.35i 1.74346i 0.489989 + 0.871729i \(0.337001\pi\)
−0.489989 + 0.871729i \(0.662999\pi\)
\(674\) −1230.81 −1.82613
\(675\) 0 0
\(676\) 191.600 0.283433
\(677\) 145.079i 0.214297i −0.994243 0.107148i \(-0.965828\pi\)
0.994243 0.107148i \(-0.0341720\pi\)
\(678\) 0 0
\(679\) 365.064i 0.537649i
\(680\) −163.998 −0.241174
\(681\) 0 0
\(682\) 144.024 415.850i 0.211179 0.609751i
\(683\) −542.580 −0.794407 −0.397204 0.917731i \(-0.630019\pi\)
−0.397204 + 0.917731i \(0.630019\pi\)
\(684\) 0 0
\(685\) 152.758 0.223004
\(686\) 855.092 1.24649
\(687\) 0 0
\(688\) 708.489i 1.02978i
\(689\) 1225.49i 1.77864i
\(690\) 0 0
\(691\) −190.564 −0.275780 −0.137890 0.990448i \(-0.544032\pi\)
−0.137890 + 0.990448i \(0.544032\pi\)
\(692\) 461.803i 0.667345i
\(693\) 0 0
\(694\) −83.3665 −0.120125
\(695\) 48.1140i 0.0692288i
\(696\) 0 0
\(697\) 165.571 0.237547
\(698\) −1056.38 −1.51344
\(699\) 0 0
\(700\) 45.3361i 0.0647659i
\(701\) 149.736i 0.213603i 0.994280 + 0.106801i \(0.0340609\pi\)
−0.994280 + 0.106801i \(0.965939\pi\)
\(702\) 0 0
\(703\) 586.572i 0.834385i
\(704\) −286.501 99.2259i −0.406962 0.140946i
\(705\) 0 0
\(706\) 179.209i 0.253838i
\(707\) −930.017 −1.31544
\(708\) 0 0
\(709\) −225.902 −0.318621 −0.159310 0.987229i \(-0.550927\pi\)
−0.159310 + 0.987229i \(0.550927\pi\)
\(710\) 145.132i 0.204412i
\(711\) 0 0
\(712\) 959.247i 1.34726i
\(713\) 157.339 0.220672
\(714\) 0 0
\(715\) 140.036 404.335i 0.195855 0.565503i
\(716\) 65.3032 0.0912056
\(717\) 0 0
\(718\) 947.162 1.31917
\(719\) −508.963 −0.707877 −0.353938 0.935269i \(-0.615158\pi\)
−0.353938 + 0.935269i \(0.615158\pi\)
\(720\) 0 0
\(721\) 624.709i 0.866448i
\(722\) 579.249i 0.802283i
\(723\) 0 0
\(724\) −192.506 −0.265893
\(725\) 2.96152i 0.00408485i
\(726\) 0 0
\(727\) −155.888 −0.214426 −0.107213 0.994236i \(-0.534193\pi\)
−0.107213 + 0.994236i \(0.534193\pi\)
\(728\) 658.156i 0.904061i
\(729\) 0 0
\(730\) −319.852 −0.438154
\(731\) −441.391 −0.603818
\(732\) 0 0
\(733\) 393.332i 0.536605i −0.963335 0.268303i \(-0.913537\pi\)
0.963335 0.268303i \(-0.0864627\pi\)
\(734\) 669.076i 0.911548i
\(735\) 0 0
\(736\) 201.174i 0.273334i
\(737\) 1328.82 + 460.221i 1.80302 + 0.624451i
\(738\) 0 0
\(739\) 224.197i 0.303379i −0.988428 0.151689i \(-0.951529\pi\)
0.988428 0.151689i \(-0.0484713\pi\)
\(740\) 177.289 0.239580
\(741\) 0 0
\(742\) −1038.50 −1.39959
\(743\) 115.127i 0.154948i −0.996994 0.0774741i \(-0.975314\pi\)
0.996994 0.0774741i \(-0.0246855\pi\)
\(744\) 0 0
\(745\) 102.736i 0.137901i
\(746\) −838.484 −1.12397
\(747\) 0 0
\(748\) 63.2781 182.707i 0.0845964 0.244261i
\(749\) 682.727 0.911518
\(750\) 0 0
\(751\) −494.453 −0.658392 −0.329196 0.944262i \(-0.606778\pi\)
−0.329196 + 0.944262i \(0.606778\pi\)
\(752\) −378.888 −0.503841
\(753\) 0 0
\(754\) 24.0190i 0.0318555i
\(755\) 276.338i 0.366011i
\(756\) 0 0
\(757\) 531.890 0.702629 0.351314 0.936258i \(-0.385735\pi\)
0.351314 + 0.936258i \(0.385735\pi\)
\(758\) 220.045i 0.290297i
\(759\) 0 0
\(760\) −141.881 −0.186686
\(761\) 1343.41i 1.76532i 0.470013 + 0.882660i \(0.344249\pi\)
−0.470013 + 0.882660i \(0.655751\pi\)
\(762\) 0 0
\(763\) 209.331 0.274353
\(764\) −97.5448 −0.127676
\(765\) 0 0
\(766\) 215.304i 0.281076i
\(767\) 260.042i 0.339038i
\(768\) 0 0
\(769\) 735.802i 0.956830i 0.878134 + 0.478415i \(0.158788\pi\)
−0.878134 + 0.478415i \(0.841212\pi\)
\(770\) −342.641 118.669i −0.444988 0.154116i
\(771\) 0 0
\(772\) 182.749i 0.236721i
\(773\) 1135.40 1.46882 0.734410 0.678706i \(-0.237459\pi\)
0.734410 + 0.678706i \(0.237459\pi\)
\(774\) 0 0
\(775\) 85.8154 0.110730
\(776\) 345.311i 0.444988i
\(777\) 0 0
\(778\) 294.263i 0.378230i
\(779\) 143.242 0.183879
\(780\) 0 0
\(781\) 289.417 + 100.236i 0.370573 + 0.128343i
\(782\) 261.993 0.335029
\(783\) 0 0
\(784\) −177.178 −0.225992
\(785\) −146.249 −0.186305
\(786\) 0 0
\(787\) 115.155i 0.146321i −0.997320 0.0731605i \(-0.976691\pi\)
0.997320 0.0731605i \(-0.0233085\pi\)
\(788\) 212.929i 0.270214i
\(789\) 0 0
\(790\) 737.806 0.933931
\(791\) 1032.74i 1.30561i
\(792\) 0 0
\(793\) 628.713 0.792828
\(794\) 1706.57i 2.14934i
\(795\) 0 0
\(796\) −90.4017 −0.113570
\(797\) 1486.27 1.86483 0.932416 0.361387i \(-0.117697\pi\)
0.932416 + 0.361387i \(0.117697\pi\)
\(798\) 0 0
\(799\) 236.049i 0.295430i
\(800\) 109.724i 0.137155i
\(801\) 0 0
\(802\) 672.049i 0.837967i
\(803\) −220.906 + 637.837i −0.275101 + 0.794317i
\(804\) 0 0
\(805\) 129.640i 0.161043i
\(806\) 695.995 0.863518
\(807\) 0 0
\(808\) 879.695 1.08873
\(809\) 546.514i 0.675543i 0.941228 + 0.337771i \(0.109673\pi\)
−0.941228 + 0.337771i \(0.890327\pi\)
\(810\) 0 0
\(811\) 1066.45i 1.31499i −0.753460 0.657494i \(-0.771617\pi\)
0.753460 0.657494i \(-0.228383\pi\)
\(812\) −5.37055 −0.00661398
\(813\) 0 0
\(814\) 464.061 1339.91i 0.570099 1.64608i
\(815\) 711.847 0.873432
\(816\) 0 0
\(817\) −381.865 −0.467399
\(818\) −1250.33 −1.52852
\(819\) 0 0
\(820\) 43.2942i 0.0527978i
\(821\) 1206.66i 1.46974i −0.678207 0.734871i \(-0.737243\pi\)
0.678207 0.734871i \(-0.262757\pi\)
\(822\) 0 0
\(823\) 312.518 0.379730 0.189865 0.981810i \(-0.439195\pi\)
0.189865 + 0.981810i \(0.439195\pi\)
\(824\) 590.907i 0.717120i
\(825\) 0 0
\(826\) −220.364 −0.266785
\(827\) 1166.37i 1.41036i 0.709029 + 0.705180i \(0.249134\pi\)
−0.709029 + 0.705180i \(0.750866\pi\)
\(828\) 0 0
\(829\) −205.935 −0.248413 −0.124207 0.992256i \(-0.539639\pi\)
−0.124207 + 0.992256i \(0.539639\pi\)
\(830\) −718.280 −0.865397
\(831\) 0 0
\(832\) 479.508i 0.576332i
\(833\) 110.382i 0.132512i
\(834\) 0 0
\(835\) 38.5672i 0.0461882i
\(836\) 54.7445 158.067i 0.0654839 0.189076i
\(837\) 0 0
\(838\) 1800.10i 2.14810i
\(839\) 619.889 0.738843 0.369422 0.929262i \(-0.379556\pi\)
0.369422 + 0.929262i \(0.379556\pi\)
\(840\) 0 0
\(841\) 840.649 0.999583
\(842\) 1236.21i 1.46819i
\(843\) 0 0
\(844\) 328.279i 0.388956i
\(845\) 298.827 0.353641
\(846\) 0 0
\(847\) −473.291 + 601.322i −0.558785 + 0.709944i
\(848\) 1386.29 1.63478
\(849\) 0 0
\(850\) 142.895 0.168112
\(851\) 506.962 0.595725
\(852\) 0 0
\(853\) 1067.19i 1.25110i −0.780185 0.625549i \(-0.784875\pi\)
0.780185 0.625549i \(-0.215125\pi\)
\(854\) 532.783i 0.623868i
\(855\) 0 0
\(856\) −645.786 −0.754422
\(857\) 135.288i 0.157862i 0.996880 + 0.0789310i \(0.0251507\pi\)
−0.996880 + 0.0789310i \(0.974849\pi\)
\(858\) 0 0
\(859\) −88.1149 −0.102578 −0.0512892 0.998684i \(-0.516333\pi\)
−0.0512892 + 0.998684i \(0.516333\pi\)
\(860\) 115.417i 0.134206i
\(861\) 0 0
\(862\) −228.648 −0.265252
\(863\) 1506.50 1.74566 0.872830 0.488024i \(-0.162282\pi\)
0.872830 + 0.488024i \(0.162282\pi\)
\(864\) 0 0
\(865\) 720.244i 0.832652i
\(866\) 1090.50i 1.25924i
\(867\) 0 0
\(868\) 155.621i 0.179287i
\(869\) 509.566 1471.30i 0.586382 1.69310i
\(870\) 0 0
\(871\) 2224.01i 2.55340i
\(872\) −198.005 −0.227070
\(873\) 0 0
\(874\) 226.661 0.259337
\(875\) 70.7078i 0.0808089i
\(876\) 0 0
\(877\) 874.405i 0.997041i 0.866878 + 0.498521i \(0.166123\pi\)
−0.866878 + 0.498521i \(0.833877\pi\)
\(878\) 1707.09 1.94429
\(879\) 0 0
\(880\) 457.392 + 158.412i 0.519764 + 0.180013i
\(881\) −628.003 −0.712830 −0.356415 0.934328i \(-0.616001\pi\)
−0.356415 + 0.934328i \(0.616001\pi\)
\(882\) 0 0
\(883\) 1234.85 1.39848 0.699238 0.714889i \(-0.253523\pi\)
0.699238 + 0.714889i \(0.253523\pi\)
\(884\) 305.791 0.345917
\(885\) 0 0
\(886\) 1218.86i 1.37569i
\(887\) 282.840i 0.318872i −0.987208 0.159436i \(-0.949032\pi\)
0.987208 0.159436i \(-0.0509676\pi\)
\(888\) 0 0
\(889\) −1291.50 −1.45276
\(890\) 835.814i 0.939117i
\(891\) 0 0
\(892\) 145.900 0.163565
\(893\) 204.215i 0.228685i
\(894\) 0 0
\(895\) 101.849 0.113798
\(896\) −961.484 −1.07308
\(897\) 0 0
\(898\) 279.229i 0.310946i
\(899\) 10.1658i 0.0113078i
\(900\) 0 0
\(901\) 863.665i 0.958563i
\(902\) −327.209 113.324i −0.362759 0.125637i
\(903\) 0 0
\(904\) 976.858i 1.08060i
\(905\) −300.240 −0.331757
\(906\) 0 0
\(907\) 604.942 0.666970 0.333485 0.942755i \(-0.391775\pi\)
0.333485 + 0.942755i \(0.391775\pi\)
\(908\) 503.974i 0.555037i
\(909\) 0 0
\(910\) 573.467i 0.630184i
\(911\) −339.992 −0.373208 −0.186604 0.982435i \(-0.559748\pi\)
−0.186604 + 0.982435i \(0.559748\pi\)
\(912\) 0 0
\(913\) −496.081 + 1432.37i −0.543352 + 1.56886i
\(914\) −11.2251 −0.0122813
\(915\) 0 0
\(916\) −202.615 −0.221195
\(917\) 1539.17 1.67848
\(918\) 0 0
\(919\) 885.348i 0.963382i 0.876341 + 0.481691i \(0.159977\pi\)
−0.876341 + 0.481691i \(0.840023\pi\)
\(920\) 122.625i 0.133288i
\(921\) 0 0
\(922\) −1330.27 −1.44281
\(923\) 484.389i 0.524798i
\(924\) 0 0
\(925\) 276.506 0.298925
\(926\) 307.544i 0.332121i
\(927\) 0 0
\(928\) 12.9979 0.0140064
\(929\) 821.063 0.883814 0.441907 0.897061i \(-0.354302\pi\)
0.441907 + 0.897061i \(0.354302\pi\)
\(930\) 0 0
\(931\) 95.4962i 0.102574i
\(932\) 530.822i 0.569552i
\(933\) 0 0
\(934\) 209.496i 0.224300i
\(935\) 98.6908 284.956i 0.105552 0.304766i
\(936\) 0 0
\(937\) 1507.89i 1.60927i 0.593768 + 0.804636i \(0.297639\pi\)
−0.593768 + 0.804636i \(0.702361\pi\)
\(938\) 1884.67 2.00924
\(939\) 0 0
\(940\) 61.7232 0.0656629
\(941\) 138.310i 0.146982i 0.997296 + 0.0734909i \(0.0234140\pi\)
−0.997296 + 0.0734909i \(0.976586\pi\)
\(942\) 0 0
\(943\) 123.801i 0.131284i
\(944\) 294.165 0.311615
\(945\) 0 0
\(946\) 872.298 + 302.109i 0.922091 + 0.319354i
\(947\) −1559.87 −1.64717 −0.823586 0.567192i \(-0.808030\pi\)
−0.823586 + 0.567192i \(0.808030\pi\)
\(948\) 0 0
\(949\) −1067.53 −1.12490
\(950\) 123.625 0.130131
\(951\) 0 0
\(952\) 463.838i 0.487224i
\(953\) 1073.64i 1.12659i 0.826255 + 0.563296i \(0.190467\pi\)
−0.826255 + 0.563296i \(0.809533\pi\)
\(954\) 0 0
\(955\) −152.134 −0.159303
\(956\) 97.9286i 0.102436i
\(957\) 0 0
\(958\) 1671.46 1.74474
\(959\) 432.047i 0.450518i
\(960\) 0 0
\(961\) −666.429 −0.693474
\(962\) 2242.57 2.33115
\(963\) 0 0
\(964\) 287.149i 0.297872i
\(965\) 285.021i 0.295359i
\(966\) 0 0
\(967\) 1403.40i 1.45130i −0.688066 0.725648i \(-0.741540\pi\)
0.688066 0.725648i \(-0.258460\pi\)
\(968\) 447.682 568.786i 0.462481 0.587588i
\(969\) 0 0
\(970\) 300.877i 0.310183i
\(971\) −724.260 −0.745891 −0.372945 0.927853i \(-0.621652\pi\)
−0.372945 + 0.927853i \(0.621652\pi\)
\(972\) 0 0
\(973\) −136.081 −0.139858
\(974\) 2137.09i 2.19413i
\(975\) 0 0
\(976\) 711.213i 0.728702i
\(977\) −943.252 −0.965458 −0.482729 0.875770i \(-0.660354\pi\)
−0.482729 + 0.875770i \(0.660354\pi\)
\(978\) 0 0
\(979\) −1666.75 577.256i −1.70250 0.589639i
\(980\) 28.8633 0.0294523
\(981\) 0 0
\(982\) −704.303 −0.717213
\(983\) −1101.28 −1.12033 −0.560163 0.828383i \(-0.689261\pi\)
−0.560163 + 0.828383i \(0.689261\pi\)
\(984\) 0 0
\(985\) 332.092i 0.337149i
\(986\) 16.9275i 0.0171678i
\(987\) 0 0
\(988\) 264.552 0.267766
\(989\) 330.038i 0.333709i
\(990\) 0 0
\(991\) −639.463 −0.645271 −0.322635 0.946523i \(-0.604569\pi\)
−0.322635 + 0.946523i \(0.604569\pi\)
\(992\) 376.639i 0.379676i
\(993\) 0 0
\(994\) 410.480 0.412958
\(995\) −140.994 −0.141702
\(996\) 0 0
\(997\) 351.666i 0.352724i −0.984325 0.176362i \(-0.943567\pi\)
0.984325 0.176362i \(-0.0564329\pi\)
\(998\) 239.626i 0.240106i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.3.b.c.406.4 16
3.2 odd 2 165.3.b.a.76.13 yes 16
11.10 odd 2 inner 495.3.b.c.406.13 16
12.11 even 2 2640.3.c.c.241.14 16
15.2 even 4 825.3.h.b.274.7 32
15.8 even 4 825.3.h.b.274.25 32
15.14 odd 2 825.3.b.d.76.4 16
33.32 even 2 165.3.b.a.76.4 16
132.131 odd 2 2640.3.c.c.241.15 16
165.32 odd 4 825.3.h.b.274.26 32
165.98 odd 4 825.3.h.b.274.8 32
165.164 even 2 825.3.b.d.76.13 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.3.b.a.76.4 16 33.32 even 2
165.3.b.a.76.13 yes 16 3.2 odd 2
495.3.b.c.406.4 16 1.1 even 1 trivial
495.3.b.c.406.13 16 11.10 odd 2 inner
825.3.b.d.76.4 16 15.14 odd 2
825.3.b.d.76.13 16 165.164 even 2
825.3.h.b.274.7 32 15.2 even 4
825.3.h.b.274.8 32 165.98 odd 4
825.3.h.b.274.25 32 15.8 even 4
825.3.h.b.274.26 32 165.32 odd 4
2640.3.c.c.241.14 16 12.11 even 2
2640.3.c.c.241.15 16 132.131 odd 2