Properties

Label 495.3
Level 495
Weight 3
Dimension 12086
Nonzero newspaces 24
Sturm bound 51840
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(51840\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(495))\).

Total New Old
Modular forms 17920 12570 5350
Cusp forms 16640 12086 4554
Eisenstein series 1280 484 796

Trace form

\( 12086 q - 34 q^{2} - 36 q^{3} - 26 q^{4} - 25 q^{5} - 52 q^{6} - 60 q^{7} + 2 q^{8} - 20 q^{9} - 4 q^{10} - 30 q^{11} + 24 q^{12} + 56 q^{13} + 28 q^{14} - 68 q^{15} - 238 q^{16} - 176 q^{17} - 120 q^{18}+ \cdots + 1572 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(495))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
495.3.b \(\chi_{495}(406, \cdot)\) 495.3.b.a 8 1
495.3.b.b 16
495.3.b.c 16
495.3.e \(\chi_{495}(386, \cdot)\) 495.3.e.a 24 1
495.3.g \(\chi_{495}(89, \cdot)\) 495.3.g.a 40 1
495.3.h \(\chi_{495}(109, \cdot)\) 495.3.h.a 2 1
495.3.h.b 2
495.3.h.c 2
495.3.h.d 4
495.3.h.e 4
495.3.h.f 4
495.3.h.g 16
495.3.h.h 24
495.3.j \(\chi_{495}(298, \cdot)\) 495.3.j.a 20 2
495.3.j.b 40
495.3.j.c 40
495.3.m \(\chi_{495}(98, \cdot)\) 495.3.m.a 96 2
495.3.o \(\chi_{495}(274, \cdot)\) n/a 280 2
495.3.q \(\chi_{495}(254, \cdot)\) n/a 240 2
495.3.s \(\chi_{495}(56, \cdot)\) n/a 160 2
495.3.t \(\chi_{495}(76, \cdot)\) n/a 192 2
495.3.v \(\chi_{495}(19, \cdot)\) n/a 232 4
495.3.w \(\chi_{495}(179, \cdot)\) n/a 192 4
495.3.y \(\chi_{495}(26, \cdot)\) n/a 128 4
495.3.bb \(\chi_{495}(46, \cdot)\) n/a 160 4
495.3.bd \(\chi_{495}(32, \cdot)\) n/a 560 4
495.3.be \(\chi_{495}(67, \cdot)\) n/a 480 4
495.3.bh \(\chi_{495}(8, \cdot)\) n/a 384 8
495.3.bk \(\chi_{495}(37, \cdot)\) n/a 464 8
495.3.bm \(\chi_{495}(61, \cdot)\) n/a 768 8
495.3.bn \(\chi_{495}(86, \cdot)\) n/a 768 8
495.3.bp \(\chi_{495}(14, \cdot)\) n/a 1120 8
495.3.br \(\chi_{495}(79, \cdot)\) n/a 1120 8
495.3.bt \(\chi_{495}(58, \cdot)\) n/a 2240 16
495.3.bu \(\chi_{495}(2, \cdot)\) n/a 2240 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(495))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(495)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(99))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 2}\)