Properties

Label 825.3.b.d.76.13
Level $825$
Weight $3$
Character 825.76
Analytic conductor $22.480$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [825,3,Mod(76,825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("825.76"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(825, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 825.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-8,0,0,0,0,48,0,-28,0,0,0,0,-16,0,0,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(22)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4796218097\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 36x^{14} + 500x^{12} + 3364x^{10} + 11310x^{8} + 17932x^{6} + 12708x^{4} + 3244x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 76.13
Root \(2.33103i\) of defining polynomial
Character \(\chi\) \(=\) 825.76
Dual form 825.3.b.d.76.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.33103i q^{2} +1.73205 q^{3} -1.43371 q^{4} +4.03747i q^{6} +6.32430i q^{7} +5.98210i q^{8} +3.00000 q^{9} +(-10.3943 + 3.59991i) q^{11} -2.48326 q^{12} +17.3965i q^{13} -14.7421 q^{14} -19.6793 q^{16} -12.2603i q^{17} +6.99310i q^{18} -10.6069i q^{19} +10.9540i q^{21} +(-8.39151 - 24.2294i) q^{22} +9.16729 q^{23} +10.3613i q^{24} -40.5519 q^{26} +5.19615 q^{27} -9.06722i q^{28} -0.592304i q^{29} +17.1631 q^{31} -21.9447i q^{32} +(-18.0034 + 6.23523i) q^{33} +28.5791 q^{34} -4.30114 q^{36} -55.3012 q^{37} +24.7249 q^{38} +30.1317i q^{39} -13.5046i q^{41} -25.5341 q^{42} +36.0017i q^{43} +(14.9024 - 5.16124i) q^{44} +21.3693i q^{46} +19.2531 q^{47} -34.0856 q^{48} +9.00325 q^{49} -21.2354i q^{51} -24.9416i q^{52} -70.4442 q^{53} +12.1124i q^{54} -37.8326 q^{56} -18.3716i q^{57} +1.38068 q^{58} +14.9479 q^{59} +36.1401i q^{61} +40.0077i q^{62} +18.9729i q^{63} -27.5634 q^{64} +(-14.5345 - 41.9665i) q^{66} -127.842 q^{67} +17.5777i q^{68} +15.8782 q^{69} -27.8440 q^{71} +17.9463i q^{72} +61.3643i q^{73} -128.909i q^{74} +15.2072i q^{76} +(-22.7669 - 65.7364i) q^{77} -70.2379 q^{78} +141.550i q^{79} +9.00000 q^{81} +31.4798 q^{82} -137.804i q^{83} -15.7049i q^{84} -83.9212 q^{86} -1.02590i q^{87} +(-21.5350 - 62.1795i) q^{88} +160.353 q^{89} -110.021 q^{91} -13.1433 q^{92} +29.7273 q^{93} +44.8797i q^{94} -38.0094i q^{96} +57.7240 q^{97} +20.9869i q^{98} +(-31.1828 + 10.7997i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{4} + 48 q^{9} - 28 q^{11} - 16 q^{16} + 20 q^{22} - 56 q^{23} - 88 q^{26} - 96 q^{31} + 12 q^{33} - 200 q^{34} - 24 q^{36} - 184 q^{37} - 296 q^{38} + 264 q^{42} + 300 q^{44} + 200 q^{47} - 96 q^{48}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.33103i 1.16552i 0.812646 + 0.582758i \(0.198026\pi\)
−0.812646 + 0.582758i \(0.801974\pi\)
\(3\) 1.73205 0.577350
\(4\) −1.43371 −0.358428
\(5\) 0 0
\(6\) 4.03747i 0.672911i
\(7\) 6.32430i 0.903471i 0.892152 + 0.451736i \(0.149195\pi\)
−0.892152 + 0.451736i \(0.850805\pi\)
\(8\) 5.98210i 0.747763i
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) −10.3943 + 3.59991i −0.944933 + 0.327265i
\(12\) −2.48326 −0.206938
\(13\) 17.3965i 1.33820i 0.743175 + 0.669098i \(0.233319\pi\)
−0.743175 + 0.669098i \(0.766681\pi\)
\(14\) −14.7421 −1.05301
\(15\) 0 0
\(16\) −19.6793 −1.22996
\(17\) 12.2603i 0.721192i −0.932722 0.360596i \(-0.882573\pi\)
0.932722 0.360596i \(-0.117427\pi\)
\(18\) 6.99310i 0.388505i
\(19\) 10.6069i 0.558256i −0.960254 0.279128i \(-0.909955\pi\)
0.960254 0.279128i \(-0.0900454\pi\)
\(20\) 0 0
\(21\) 10.9540i 0.521619i
\(22\) −8.39151 24.2294i −0.381432 1.10133i
\(23\) 9.16729 0.398578 0.199289 0.979941i \(-0.436137\pi\)
0.199289 + 0.979941i \(0.436137\pi\)
\(24\) 10.3613i 0.431721i
\(25\) 0 0
\(26\) −40.5519 −1.55969
\(27\) 5.19615 0.192450
\(28\) 9.06722i 0.323829i
\(29\) 0.592304i 0.0204243i −0.999948 0.0102121i \(-0.996749\pi\)
0.999948 0.0102121i \(-0.00325068\pi\)
\(30\) 0 0
\(31\) 17.1631 0.553648 0.276824 0.960921i \(-0.410718\pi\)
0.276824 + 0.960921i \(0.410718\pi\)
\(32\) 21.9447i 0.685773i
\(33\) −18.0034 + 6.23523i −0.545557 + 0.188946i
\(34\) 28.5791 0.840561
\(35\) 0 0
\(36\) −4.30114 −0.119476
\(37\) −55.3012 −1.49463 −0.747314 0.664472i \(-0.768657\pi\)
−0.747314 + 0.664472i \(0.768657\pi\)
\(38\) 24.7249 0.650656
\(39\) 30.1317i 0.772607i
\(40\) 0 0
\(41\) 13.5046i 0.329382i −0.986345 0.164691i \(-0.947337\pi\)
0.986345 0.164691i \(-0.0526626\pi\)
\(42\) −25.5341 −0.607956
\(43\) 36.0017i 0.837249i 0.908159 + 0.418625i \(0.137488\pi\)
−0.908159 + 0.418625i \(0.862512\pi\)
\(44\) 14.9024 5.16124i 0.338690 0.117301i
\(45\) 0 0
\(46\) 21.3693i 0.464549i
\(47\) 19.2531 0.409641 0.204821 0.978800i \(-0.434339\pi\)
0.204821 + 0.978800i \(0.434339\pi\)
\(48\) −34.0856 −0.710116
\(49\) 9.00325 0.183740
\(50\) 0 0
\(51\) 21.2354i 0.416380i
\(52\) 24.9416i 0.479646i
\(53\) −70.4442 −1.32914 −0.664568 0.747228i \(-0.731384\pi\)
−0.664568 + 0.747228i \(0.731384\pi\)
\(54\) 12.1124i 0.224304i
\(55\) 0 0
\(56\) −37.8326 −0.675582
\(57\) 18.3716i 0.322309i
\(58\) 1.38068 0.0238048
\(59\) 14.9479 0.253354 0.126677 0.991944i \(-0.459569\pi\)
0.126677 + 0.991944i \(0.459569\pi\)
\(60\) 0 0
\(61\) 36.1401i 0.592461i 0.955116 + 0.296231i \(0.0957297\pi\)
−0.955116 + 0.296231i \(0.904270\pi\)
\(62\) 40.0077i 0.645285i
\(63\) 18.9729i 0.301157i
\(64\) −27.5634 −0.430678
\(65\) 0 0
\(66\) −14.5345 41.9665i −0.220220 0.635856i
\(67\) −127.842 −1.90809 −0.954046 0.299660i \(-0.903127\pi\)
−0.954046 + 0.299660i \(0.903127\pi\)
\(68\) 17.5777i 0.258495i
\(69\) 15.8782 0.230119
\(70\) 0 0
\(71\) −27.8440 −0.392169 −0.196084 0.980587i \(-0.562823\pi\)
−0.196084 + 0.980587i \(0.562823\pi\)
\(72\) 17.9463i 0.249254i
\(73\) 61.3643i 0.840607i 0.907383 + 0.420304i \(0.138076\pi\)
−0.907383 + 0.420304i \(0.861924\pi\)
\(74\) 128.909i 1.74201i
\(75\) 0 0
\(76\) 15.2072i 0.200095i
\(77\) −22.7669 65.7364i −0.295674 0.853719i
\(78\) −70.2379 −0.900486
\(79\) 141.550i 1.79177i 0.444289 + 0.895884i \(0.353456\pi\)
−0.444289 + 0.895884i \(0.646544\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 31.4798 0.383900
\(83\) 137.804i 1.66028i −0.557552 0.830142i \(-0.688259\pi\)
0.557552 0.830142i \(-0.311741\pi\)
\(84\) 15.7049i 0.186963i
\(85\) 0 0
\(86\) −83.9212 −0.975828
\(87\) 1.02590i 0.0117920i
\(88\) −21.5350 62.1795i −0.244716 0.706585i
\(89\) 160.353 1.80172 0.900858 0.434113i \(-0.142938\pi\)
0.900858 + 0.434113i \(0.142938\pi\)
\(90\) 0 0
\(91\) −110.021 −1.20902
\(92\) −13.1433 −0.142861
\(93\) 29.7273 0.319649
\(94\) 44.8797i 0.477443i
\(95\) 0 0
\(96\) 38.0094i 0.395931i
\(97\) 57.7240 0.595092 0.297546 0.954707i \(-0.403832\pi\)
0.297546 + 0.954707i \(0.403832\pi\)
\(98\) 20.9869i 0.214152i
\(99\) −31.1828 + 10.7997i −0.314978 + 0.109088i
\(100\) 0 0
\(101\) 147.055i 1.45599i 0.685585 + 0.727993i \(0.259547\pi\)
−0.685585 + 0.727993i \(0.740453\pi\)
\(102\) 49.5004 0.485298
\(103\) 98.7792 0.959022 0.479511 0.877536i \(-0.340814\pi\)
0.479511 + 0.877536i \(0.340814\pi\)
\(104\) −104.068 −1.00065
\(105\) 0 0
\(106\) 164.208i 1.54913i
\(107\) 107.953i 1.00891i 0.863439 + 0.504453i \(0.168306\pi\)
−0.863439 + 0.504453i \(0.831694\pi\)
\(108\) −7.44978 −0.0689795
\(109\) 33.0995i 0.303666i 0.988406 + 0.151833i \(0.0485175\pi\)
−0.988406 + 0.151833i \(0.951482\pi\)
\(110\) 0 0
\(111\) −95.7845 −0.862923
\(112\) 124.458i 1.11123i
\(113\) 163.297 1.44510 0.722552 0.691316i \(-0.242969\pi\)
0.722552 + 0.691316i \(0.242969\pi\)
\(114\) 42.8249 0.375657
\(115\) 0 0
\(116\) 0.849193i 0.00732063i
\(117\) 52.1896i 0.446065i
\(118\) 34.8441i 0.295289i
\(119\) 77.5376 0.651576
\(120\) 0 0
\(121\) 95.0813 74.8369i 0.785795 0.618486i
\(122\) −84.2438 −0.690523
\(123\) 23.3907i 0.190169i
\(124\) −24.6069 −0.198443
\(125\) 0 0
\(126\) −44.2264 −0.351003
\(127\) 204.213i 1.60798i 0.594645 + 0.803988i \(0.297293\pi\)
−0.594645 + 0.803988i \(0.702707\pi\)
\(128\) 152.030i 1.18774i
\(129\) 62.3568i 0.483386i
\(130\) 0 0
\(131\) 243.373i 1.85781i −0.370316 0.928906i \(-0.620751\pi\)
0.370316 0.928906i \(-0.379249\pi\)
\(132\) 25.8117 8.93953i 0.195543 0.0677237i
\(133\) 67.0810 0.504368
\(134\) 298.004i 2.22391i
\(135\) 0 0
\(136\) 73.3421 0.539280
\(137\) −68.3154 −0.498652 −0.249326 0.968420i \(-0.580209\pi\)
−0.249326 + 0.968420i \(0.580209\pi\)
\(138\) 37.0126i 0.268208i
\(139\) 21.5172i 0.154800i −0.997000 0.0774001i \(-0.975338\pi\)
0.997000 0.0774001i \(-0.0246619\pi\)
\(140\) 0 0
\(141\) 33.3474 0.236506
\(142\) 64.9052i 0.457079i
\(143\) −62.6260 180.824i −0.437944 1.26450i
\(144\) −59.0380 −0.409986
\(145\) 0 0
\(146\) −143.042 −0.979742
\(147\) 15.5941 0.106082
\(148\) 79.2860 0.535716
\(149\) 45.9449i 0.308355i 0.988043 + 0.154178i \(0.0492728\pi\)
−0.988043 + 0.154178i \(0.950727\pi\)
\(150\) 0 0
\(151\) 123.582i 0.818425i −0.912439 0.409212i \(-0.865803\pi\)
0.912439 0.409212i \(-0.134197\pi\)
\(152\) 63.4513 0.417443
\(153\) 36.7808i 0.240397i
\(154\) 153.234 53.0704i 0.995024 0.344613i
\(155\) 0 0
\(156\) 43.2001i 0.276924i
\(157\) −65.4047 −0.416590 −0.208295 0.978066i \(-0.566791\pi\)
−0.208295 + 0.978066i \(0.566791\pi\)
\(158\) −329.957 −2.08833
\(159\) −122.013 −0.767377
\(160\) 0 0
\(161\) 57.9767i 0.360104i
\(162\) 20.9793i 0.129502i
\(163\) 318.348 1.95305 0.976527 0.215395i \(-0.0691037\pi\)
0.976527 + 0.215395i \(0.0691037\pi\)
\(164\) 19.3618i 0.118060i
\(165\) 0 0
\(166\) 321.225 1.93509
\(167\) 17.2478i 0.103280i 0.998666 + 0.0516400i \(0.0164448\pi\)
−0.998666 + 0.0516400i \(0.983555\pi\)
\(168\) −65.5280 −0.390047
\(169\) −133.639 −0.790766
\(170\) 0 0
\(171\) 31.8206i 0.186085i
\(172\) 51.6161i 0.300094i
\(173\) 322.103i 1.86187i −0.365190 0.930933i \(-0.618996\pi\)
0.365190 0.930933i \(-0.381004\pi\)
\(174\) 2.39141 0.0137437
\(175\) 0 0
\(176\) 204.552 70.8438i 1.16223 0.402522i
\(177\) 25.8905 0.146274
\(178\) 373.788i 2.09993i
\(179\) 45.5484 0.254460 0.127230 0.991873i \(-0.459391\pi\)
0.127230 + 0.991873i \(0.459391\pi\)
\(180\) 0 0
\(181\) 134.271 0.741830 0.370915 0.928667i \(-0.379044\pi\)
0.370915 + 0.928667i \(0.379044\pi\)
\(182\) 256.462i 1.40913i
\(183\) 62.5965i 0.342058i
\(184\) 54.8397i 0.298042i
\(185\) 0 0
\(186\) 69.2954i 0.372556i
\(187\) 44.1359 + 127.436i 0.236021 + 0.681478i
\(188\) −27.6034 −0.146827
\(189\) 32.8620i 0.173873i
\(190\) 0 0
\(191\) −68.0366 −0.356212 −0.178106 0.984011i \(-0.556997\pi\)
−0.178106 + 0.984011i \(0.556997\pi\)
\(192\) −47.7412 −0.248652
\(193\) 127.465i 0.660443i 0.943904 + 0.330221i \(0.107123\pi\)
−0.943904 + 0.330221i \(0.892877\pi\)
\(194\) 134.556i 0.693590i
\(195\) 0 0
\(196\) −12.9081 −0.0658575
\(197\) 148.516i 0.753888i 0.926236 + 0.376944i \(0.123025\pi\)
−0.926236 + 0.376944i \(0.876975\pi\)
\(198\) −25.1745 72.6881i −0.127144 0.367111i
\(199\) 63.0543 0.316856 0.158428 0.987371i \(-0.449357\pi\)
0.158428 + 0.987371i \(0.449357\pi\)
\(200\) 0 0
\(201\) −221.429 −1.10164
\(202\) −342.789 −1.69697
\(203\) 3.74591 0.0184527
\(204\) 30.4454i 0.149242i
\(205\) 0 0
\(206\) 230.258i 1.11776i
\(207\) 27.5019 0.132859
\(208\) 342.352i 1.64592i
\(209\) 38.1838 + 110.250i 0.182698 + 0.527514i
\(210\) 0 0
\(211\) 228.972i 1.08517i 0.840000 + 0.542587i \(0.182555\pi\)
−0.840000 + 0.542587i \(0.817445\pi\)
\(212\) 100.997 0.476400
\(213\) −48.2272 −0.226419
\(214\) −251.642 −1.17590
\(215\) 0 0
\(216\) 31.0839i 0.143907i
\(217\) 108.544i 0.500205i
\(218\) −77.1561 −0.353927
\(219\) 106.286i 0.485325i
\(220\) 0 0
\(221\) 213.286 0.965096
\(222\) 223.277i 1.00575i
\(223\) 101.764 0.456339 0.228169 0.973621i \(-0.426726\pi\)
0.228169 + 0.973621i \(0.426726\pi\)
\(224\) 138.785 0.619576
\(225\) 0 0
\(226\) 380.650i 1.68429i
\(227\) 351.517i 1.54853i −0.632861 0.774266i \(-0.718119\pi\)
0.632861 0.774266i \(-0.281881\pi\)
\(228\) 26.3396i 0.115525i
\(229\) 141.322 0.617125 0.308563 0.951204i \(-0.400152\pi\)
0.308563 + 0.951204i \(0.400152\pi\)
\(230\) 0 0
\(231\) −39.4335 113.859i −0.170708 0.492895i
\(232\) 3.54322 0.0152725
\(233\) 370.243i 1.58903i 0.607246 + 0.794514i \(0.292274\pi\)
−0.607246 + 0.794514i \(0.707726\pi\)
\(234\) −121.656 −0.519896
\(235\) 0 0
\(236\) −21.4310 −0.0908093
\(237\) 245.171i 1.03448i
\(238\) 180.743i 0.759423i
\(239\) 68.3043i 0.285792i −0.989738 0.142896i \(-0.954359\pi\)
0.989738 0.142896i \(-0.0456414\pi\)
\(240\) 0 0
\(241\) 200.283i 0.831052i 0.909581 + 0.415526i \(0.136402\pi\)
−0.909581 + 0.415526i \(0.863598\pi\)
\(242\) 174.447 + 221.637i 0.720856 + 0.915857i
\(243\) 15.5885 0.0641500
\(244\) 51.8145i 0.212355i
\(245\) 0 0
\(246\) 54.5246 0.221645
\(247\) 184.523 0.747055
\(248\) 102.671i 0.413997i
\(249\) 238.683i 0.958565i
\(250\) 0 0
\(251\) 213.104 0.849019 0.424510 0.905423i \(-0.360447\pi\)
0.424510 + 0.905423i \(0.360447\pi\)
\(252\) 27.2017i 0.107943i
\(253\) −95.2872 + 33.0015i −0.376629 + 0.130441i
\(254\) −476.027 −1.87412
\(255\) 0 0
\(256\) 244.133 0.953646
\(257\) 30.3594 0.118130 0.0590650 0.998254i \(-0.481188\pi\)
0.0590650 + 0.998254i \(0.481188\pi\)
\(258\) −145.356 −0.563394
\(259\) 349.741i 1.35035i
\(260\) 0 0
\(261\) 1.77691i 0.00680809i
\(262\) 567.311 2.16531
\(263\) 359.742i 1.36784i 0.729557 + 0.683920i \(0.239726\pi\)
−0.729557 + 0.683920i \(0.760274\pi\)
\(264\) −37.2998 107.698i −0.141287 0.407947i
\(265\) 0 0
\(266\) 156.368i 0.587849i
\(267\) 277.739 1.04022
\(268\) 183.289 0.683914
\(269\) −320.990 −1.19327 −0.596637 0.802512i \(-0.703497\pi\)
−0.596637 + 0.802512i \(0.703497\pi\)
\(270\) 0 0
\(271\) 419.497i 1.54796i 0.633211 + 0.773979i \(0.281736\pi\)
−0.633211 + 0.773979i \(0.718264\pi\)
\(272\) 241.274i 0.887036i
\(273\) −190.562 −0.698028
\(274\) 159.245i 0.581187i
\(275\) 0 0
\(276\) −22.7648 −0.0824811
\(277\) 86.8213i 0.313434i −0.987644 0.156717i \(-0.949909\pi\)
0.987644 0.156717i \(-0.0500911\pi\)
\(278\) 50.1574 0.180422
\(279\) 51.4892 0.184549
\(280\) 0 0
\(281\) 300.755i 1.07030i −0.844756 0.535152i \(-0.820255\pi\)
0.844756 0.535152i \(-0.179745\pi\)
\(282\) 77.7339i 0.275652i
\(283\) 319.781i 1.12997i −0.825102 0.564984i \(-0.808882\pi\)
0.825102 0.564984i \(-0.191118\pi\)
\(284\) 39.9202 0.140564
\(285\) 0 0
\(286\) 421.507 145.983i 1.47380 0.510431i
\(287\) 85.4074 0.297587
\(288\) 65.8342i 0.228591i
\(289\) 138.686 0.479882
\(290\) 0 0
\(291\) 99.9808 0.343577
\(292\) 87.9788i 0.301297i
\(293\) 421.749i 1.43942i 0.694276 + 0.719709i \(0.255725\pi\)
−0.694276 + 0.719709i \(0.744275\pi\)
\(294\) 36.3503i 0.123641i
\(295\) 0 0
\(296\) 330.817i 1.11763i
\(297\) −54.0102 + 18.7057i −0.181852 + 0.0629821i
\(298\) −107.099 −0.359393
\(299\) 159.479i 0.533375i
\(300\) 0 0
\(301\) −227.686 −0.756431
\(302\) 288.074 0.953887
\(303\) 254.706i 0.840614i
\(304\) 208.736i 0.686631i
\(305\) 0 0
\(306\) 85.7372 0.280187
\(307\) 65.1772i 0.212303i −0.994350 0.106152i \(-0.966147\pi\)
0.994350 0.106152i \(-0.0338529\pi\)
\(308\) 32.6412 + 94.2470i 0.105978 + 0.305997i
\(309\) 171.091 0.553691
\(310\) 0 0
\(311\) −296.311 −0.952768 −0.476384 0.879237i \(-0.658053\pi\)
−0.476384 + 0.879237i \(0.658053\pi\)
\(312\) −180.251 −0.577727
\(313\) 430.760 1.37623 0.688115 0.725601i \(-0.258438\pi\)
0.688115 + 0.725601i \(0.258438\pi\)
\(314\) 152.460i 0.485543i
\(315\) 0 0
\(316\) 202.941i 0.642219i
\(317\) 248.606 0.784246 0.392123 0.919913i \(-0.371741\pi\)
0.392123 + 0.919913i \(0.371741\pi\)
\(318\) 284.416i 0.894391i
\(319\) 2.13224 + 6.15656i 0.00668414 + 0.0192996i
\(320\) 0 0
\(321\) 186.980i 0.582492i
\(322\) −135.146 −0.419707
\(323\) −130.043 −0.402610
\(324\) −12.9034 −0.0398253
\(325\) 0 0
\(326\) 742.079i 2.27632i
\(327\) 57.3301i 0.175321i
\(328\) 80.7862 0.246299
\(329\) 121.763i 0.370099i
\(330\) 0 0
\(331\) −379.595 −1.14681 −0.573406 0.819271i \(-0.694378\pi\)
−0.573406 + 0.819271i \(0.694378\pi\)
\(332\) 197.571i 0.595092i
\(333\) −165.904 −0.498209
\(334\) −40.2051 −0.120375
\(335\) 0 0
\(336\) 215.567i 0.641570i
\(337\) 528.010i 1.56680i −0.621521 0.783398i \(-0.713485\pi\)
0.621521 0.783398i \(-0.286515\pi\)
\(338\) 311.518i 0.921651i
\(339\) 282.838 0.834332
\(340\) 0 0
\(341\) −178.398 + 61.7856i −0.523160 + 0.181189i
\(342\) 74.1748 0.216885
\(343\) 366.830i 1.06947i
\(344\) −215.366 −0.626064
\(345\) 0 0
\(346\) 750.832 2.17004
\(347\) 35.7638i 0.103066i 0.998671 + 0.0515328i \(0.0164107\pi\)
−0.998671 + 0.0515328i \(0.983589\pi\)
\(348\) 1.47084i 0.00422657i
\(349\) 453.183i 1.29852i 0.760568 + 0.649259i \(0.224921\pi\)
−0.760568 + 0.649259i \(0.775079\pi\)
\(350\) 0 0
\(351\) 90.3951i 0.257536i
\(352\) 78.9991 + 228.099i 0.224429 + 0.648009i
\(353\) 76.8798 0.217790 0.108895 0.994053i \(-0.465269\pi\)
0.108895 + 0.994053i \(0.465269\pi\)
\(354\) 60.3517i 0.170485i
\(355\) 0 0
\(356\) −229.900 −0.645786
\(357\) 134.299 0.376188
\(358\) 106.175i 0.296577i
\(359\) 406.327i 1.13183i 0.824463 + 0.565915i \(0.191477\pi\)
−0.824463 + 0.565915i \(0.808523\pi\)
\(360\) 0 0
\(361\) 248.494 0.688350
\(362\) 312.991i 0.864615i
\(363\) 164.686 129.621i 0.453679 0.357083i
\(364\) 157.738 0.433347
\(365\) 0 0
\(366\) −145.915 −0.398674
\(367\) 287.030 0.782098 0.391049 0.920370i \(-0.372112\pi\)
0.391049 + 0.920370i \(0.372112\pi\)
\(368\) −180.406 −0.490234
\(369\) 40.5139i 0.109794i
\(370\) 0 0
\(371\) 445.510i 1.20084i
\(372\) −42.6204 −0.114571
\(373\) 359.705i 0.964356i −0.876073 0.482178i \(-0.839846\pi\)
0.876073 0.482178i \(-0.160154\pi\)
\(374\) −297.058 + 102.882i −0.794274 + 0.275086i
\(375\) 0 0
\(376\) 115.174i 0.306314i
\(377\) 10.3040 0.0273316
\(378\) −76.6024 −0.202652
\(379\) 94.3980 0.249071 0.124536 0.992215i \(-0.460256\pi\)
0.124536 + 0.992215i \(0.460256\pi\)
\(380\) 0 0
\(381\) 353.707i 0.928366i
\(382\) 158.595i 0.415171i
\(383\) 92.3643 0.241160 0.120580 0.992704i \(-0.461525\pi\)
0.120580 + 0.992704i \(0.461525\pi\)
\(384\) 263.324i 0.685739i
\(385\) 0 0
\(386\) −297.126 −0.769757
\(387\) 108.005i 0.279083i
\(388\) −82.7595 −0.213298
\(389\) 126.237 0.324517 0.162259 0.986748i \(-0.448122\pi\)
0.162259 + 0.986748i \(0.448122\pi\)
\(390\) 0 0
\(391\) 112.393i 0.287451i
\(392\) 53.8583i 0.137394i
\(393\) 421.535i 1.07261i
\(394\) −346.195 −0.878668
\(395\) 0 0
\(396\) 44.7071 15.4837i 0.112897 0.0391003i
\(397\) −732.111 −1.84411 −0.922054 0.387060i \(-0.873491\pi\)
−0.922054 + 0.387060i \(0.873491\pi\)
\(398\) 146.982i 0.369300i
\(399\) 116.188 0.291197
\(400\) 0 0
\(401\) 288.306 0.718966 0.359483 0.933152i \(-0.382953\pi\)
0.359483 + 0.933152i \(0.382953\pi\)
\(402\) 516.158i 1.28398i
\(403\) 298.578i 0.740889i
\(404\) 210.834i 0.521866i
\(405\) 0 0
\(406\) 8.73183i 0.0215070i
\(407\) 574.815 199.080i 1.41232 0.489139i
\(408\) 127.032 0.311354
\(409\) 536.385i 1.31146i 0.754997 + 0.655728i \(0.227638\pi\)
−0.754997 + 0.655728i \(0.772362\pi\)
\(410\) 0 0
\(411\) −118.326 −0.287897
\(412\) −141.621 −0.343740
\(413\) 94.5350i 0.228898i
\(414\) 64.1078i 0.154850i
\(415\) 0 0
\(416\) 381.762 0.917697
\(417\) 37.2689i 0.0893739i
\(418\) −256.997 + 89.0076i −0.614826 + 0.212937i
\(419\) 772.235 1.84304 0.921521 0.388328i \(-0.126947\pi\)
0.921521 + 0.388328i \(0.126947\pi\)
\(420\) 0 0
\(421\) 530.329 1.25969 0.629844 0.776721i \(-0.283119\pi\)
0.629844 + 0.776721i \(0.283119\pi\)
\(422\) −533.740 −1.26479
\(423\) 57.7594 0.136547
\(424\) 421.405i 0.993879i
\(425\) 0 0
\(426\) 112.419i 0.263895i
\(427\) −228.561 −0.535272
\(428\) 154.773i 0.361620i
\(429\) −108.471 313.197i −0.252847 0.730062i
\(430\) 0 0
\(431\) 98.0885i 0.227584i −0.993505 0.113792i \(-0.963700\pi\)
0.993505 0.113792i \(-0.0362997\pi\)
\(432\) −102.257 −0.236705
\(433\) 467.819 1.08041 0.540206 0.841533i \(-0.318346\pi\)
0.540206 + 0.841533i \(0.318346\pi\)
\(434\) −253.021 −0.582997
\(435\) 0 0
\(436\) 47.4552i 0.108842i
\(437\) 97.2362i 0.222509i
\(438\) −247.756 −0.565654
\(439\) 732.331i 1.66818i −0.551628 0.834090i \(-0.685993\pi\)
0.551628 0.834090i \(-0.314007\pi\)
\(440\) 0 0
\(441\) 27.0097 0.0612466
\(442\) 497.177i 1.12483i
\(443\) −522.885 −1.18033 −0.590164 0.807284i \(-0.700937\pi\)
−0.590164 + 0.807284i \(0.700937\pi\)
\(444\) 137.327 0.309296
\(445\) 0 0
\(446\) 237.214i 0.531870i
\(447\) 79.5790i 0.178029i
\(448\) 174.319i 0.389105i
\(449\) 119.788 0.266788 0.133394 0.991063i \(-0.457412\pi\)
0.133394 + 0.991063i \(0.457412\pi\)
\(450\) 0 0
\(451\) 48.6156 + 140.371i 0.107795 + 0.311243i
\(452\) −234.121 −0.517966
\(453\) 214.051i 0.472518i
\(454\) 819.397 1.80484
\(455\) 0 0
\(456\) 109.901 0.241011
\(457\) 4.81549i 0.0105372i −0.999986 0.00526859i \(-0.998323\pi\)
0.999986 0.00526859i \(-0.00167705\pi\)
\(458\) 329.425i 0.719269i
\(459\) 63.7062i 0.138793i
\(460\) 0 0
\(461\) 570.680i 1.23792i −0.785424 0.618958i \(-0.787555\pi\)
0.785424 0.618958i \(-0.212445\pi\)
\(462\) 265.409 91.9207i 0.574477 0.198963i
\(463\) −131.935 −0.284956 −0.142478 0.989798i \(-0.545507\pi\)
−0.142478 + 0.989798i \(0.545507\pi\)
\(464\) 11.6561i 0.0251210i
\(465\) 0 0
\(466\) −863.050 −1.85204
\(467\) 89.8728 0.192447 0.0962235 0.995360i \(-0.469324\pi\)
0.0962235 + 0.995360i \(0.469324\pi\)
\(468\) 74.8249i 0.159882i
\(469\) 808.512i 1.72391i
\(470\) 0 0
\(471\) −113.284 −0.240518
\(472\) 89.4199i 0.189449i
\(473\) −129.603 374.211i −0.274002 0.791144i
\(474\) −571.502 −1.20570
\(475\) 0 0
\(476\) −111.167 −0.233543
\(477\) −211.333 −0.443045
\(478\) 159.219 0.333095
\(479\) 717.047i 1.49697i 0.663153 + 0.748484i \(0.269218\pi\)
−0.663153 + 0.748484i \(0.730782\pi\)
\(480\) 0 0
\(481\) 962.049i 2.00010i
\(482\) −466.867 −0.968604
\(483\) 100.419i 0.207906i
\(484\) −136.319 + 107.294i −0.281651 + 0.221683i
\(485\) 0 0
\(486\) 36.3372i 0.0747679i
\(487\) −916.798 −1.88254 −0.941271 0.337653i \(-0.890367\pi\)
−0.941271 + 0.337653i \(0.890367\pi\)
\(488\) −216.194 −0.443020
\(489\) 551.395 1.12760
\(490\) 0 0
\(491\) 302.142i 0.615361i −0.951490 0.307680i \(-0.900447\pi\)
0.951490 0.307680i \(-0.0995527\pi\)
\(492\) 33.5356i 0.0681617i
\(493\) −7.26180 −0.0147298
\(494\) 430.128i 0.870705i
\(495\) 0 0
\(496\) −337.758 −0.680963
\(497\) 176.094i 0.354313i
\(498\) 556.377 1.11722
\(499\) −102.798 −0.206008 −0.103004 0.994681i \(-0.532846\pi\)
−0.103004 + 0.994681i \(0.532846\pi\)
\(500\) 0 0
\(501\) 29.8740i 0.0596287i
\(502\) 496.752i 0.989545i
\(503\) 567.728i 1.12868i −0.825541 0.564342i \(-0.809130\pi\)
0.825541 0.564342i \(-0.190870\pi\)
\(504\) −113.498 −0.225194
\(505\) 0 0
\(506\) −76.9275 222.118i −0.152031 0.438968i
\(507\) −231.470 −0.456549
\(508\) 292.783i 0.576344i
\(509\) −423.197 −0.831428 −0.415714 0.909495i \(-0.636468\pi\)
−0.415714 + 0.909495i \(0.636468\pi\)
\(510\) 0 0
\(511\) −388.086 −0.759465
\(512\) 39.0375i 0.0762451i
\(513\) 55.1149i 0.107436i
\(514\) 70.7687i 0.137682i
\(515\) 0 0
\(516\) 89.4017i 0.173259i
\(517\) −200.122 + 69.3096i −0.387083 + 0.134061i
\(518\) 815.258 1.57386
\(519\) 557.898i 1.07495i
\(520\) 0 0
\(521\) −658.340 −1.26361 −0.631805 0.775128i \(-0.717685\pi\)
−0.631805 + 0.775128i \(0.717685\pi\)
\(522\) 4.14204 0.00793494
\(523\) 568.723i 1.08743i −0.839272 0.543713i \(-0.817018\pi\)
0.839272 0.543713i \(-0.182982\pi\)
\(524\) 348.927i 0.665892i
\(525\) 0 0
\(526\) −838.570 −1.59424
\(527\) 210.424i 0.399286i
\(528\) 354.294 122.705i 0.671012 0.232396i
\(529\) −444.961 −0.841136
\(530\) 0 0
\(531\) 44.8437 0.0844515
\(532\) −96.1748 −0.180780
\(533\) 234.934 0.440777
\(534\) 647.419i 1.21240i
\(535\) 0 0
\(536\) 764.765i 1.42680i
\(537\) 78.8921 0.146913
\(538\) 748.239i 1.39078i
\(539\) −93.5821 + 32.4109i −0.173622 + 0.0601316i
\(540\) 0 0
\(541\) 451.918i 0.835339i 0.908599 + 0.417669i \(0.137153\pi\)
−0.908599 + 0.417669i \(0.862847\pi\)
\(542\) −977.860 −1.80417
\(543\) 232.565 0.428296
\(544\) −269.048 −0.494574
\(545\) 0 0
\(546\) 444.206i 0.813563i
\(547\) 149.931i 0.274097i −0.990564 0.137048i \(-0.956238\pi\)
0.990564 0.137048i \(-0.0437615\pi\)
\(548\) 97.9446 0.178731
\(549\) 108.420i 0.197487i
\(550\) 0 0
\(551\) −6.28248 −0.0114020
\(552\) 94.9851i 0.172074i
\(553\) −895.202 −1.61881
\(554\) 202.383 0.365313
\(555\) 0 0
\(556\) 30.8495i 0.0554847i
\(557\) 14.5869i 0.0261883i 0.999914 + 0.0130941i \(0.00416812\pi\)
−0.999914 + 0.0130941i \(0.995832\pi\)
\(558\) 120.023i 0.215095i
\(559\) −626.305 −1.12040
\(560\) 0 0
\(561\) 76.4456 + 220.726i 0.136267 + 0.393451i
\(562\) 701.070 1.24746
\(563\) 123.461i 0.219291i 0.993971 + 0.109645i \(0.0349715\pi\)
−0.993971 + 0.109645i \(0.965028\pi\)
\(564\) −47.8106 −0.0847705
\(565\) 0 0
\(566\) 745.420 1.31700
\(567\) 56.9187i 0.100386i
\(568\) 166.565i 0.293249i
\(569\) 849.647i 1.49323i −0.665257 0.746614i \(-0.731678\pi\)
0.665257 0.746614i \(-0.268322\pi\)
\(570\) 0 0
\(571\) 607.460i 1.06385i −0.846791 0.531926i \(-0.821468\pi\)
0.846791 0.531926i \(-0.178532\pi\)
\(572\) 89.7876 + 259.250i 0.156971 + 0.453234i
\(573\) −117.843 −0.205659
\(574\) 199.087i 0.346842i
\(575\) 0 0
\(576\) −82.6902 −0.143559
\(577\) 345.393 0.598602 0.299301 0.954159i \(-0.403246\pi\)
0.299301 + 0.954159i \(0.403246\pi\)
\(578\) 323.281i 0.559310i
\(579\) 220.777i 0.381307i
\(580\) 0 0
\(581\) 871.511 1.50002
\(582\) 233.059i 0.400444i
\(583\) 732.216 253.593i 1.25594 0.434980i
\(584\) −367.088 −0.628575
\(585\) 0 0
\(586\) −983.111 −1.67766
\(587\) −800.135 −1.36309 −0.681546 0.731775i \(-0.738692\pi\)
−0.681546 + 0.731775i \(0.738692\pi\)
\(588\) −22.3574 −0.0380228
\(589\) 182.046i 0.309077i
\(590\) 0 0
\(591\) 257.237i 0.435257i
\(592\) 1088.29 1.83833
\(593\) 157.850i 0.266189i −0.991103 0.133094i \(-0.957509\pi\)
0.991103 0.133094i \(-0.0424913\pi\)
\(594\) −43.6036 125.899i −0.0734067 0.211952i
\(595\) 0 0
\(596\) 65.8718i 0.110523i
\(597\) 109.213 0.182937
\(598\) −371.751 −0.621657
\(599\) 623.613 1.04109 0.520545 0.853834i \(-0.325729\pi\)
0.520545 + 0.853834i \(0.325729\pi\)
\(600\) 0 0
\(601\) 140.001i 0.232947i 0.993194 + 0.116474i \(0.0371591\pi\)
−0.993194 + 0.116474i \(0.962841\pi\)
\(602\) 530.743i 0.881632i
\(603\) −383.527 −0.636031
\(604\) 177.181i 0.293346i
\(605\) 0 0
\(606\) −593.728 −0.979749
\(607\) 758.571i 1.24971i −0.780743 0.624853i \(-0.785159\pi\)
0.780743 0.624853i \(-0.214841\pi\)
\(608\) −232.765 −0.382837
\(609\) 6.48810 0.0106537
\(610\) 0 0
\(611\) 334.938i 0.548180i
\(612\) 52.7331i 0.0861651i
\(613\) 487.490i 0.795253i 0.917547 + 0.397627i \(0.130166\pi\)
−0.917547 + 0.397627i \(0.869834\pi\)
\(614\) 151.930 0.247443
\(615\) 0 0
\(616\) 393.242 136.194i 0.638380 0.221094i
\(617\) 773.785 1.25411 0.627054 0.778975i \(-0.284260\pi\)
0.627054 + 0.778975i \(0.284260\pi\)
\(618\) 398.818i 0.645336i
\(619\) 1182.12 1.90972 0.954859 0.297059i \(-0.0960058\pi\)
0.954859 + 0.297059i \(0.0960058\pi\)
\(620\) 0 0
\(621\) 47.6347 0.0767064
\(622\) 690.710i 1.11047i
\(623\) 1014.12i 1.62780i
\(624\) 592.971i 0.950274i
\(625\) 0 0
\(626\) 1004.12i 1.60402i
\(627\) 66.1363 + 190.959i 0.105480 + 0.304561i
\(628\) 93.7714 0.149318
\(629\) 678.007i 1.07791i
\(630\) 0 0
\(631\) −1089.91 −1.72727 −0.863634 0.504120i \(-0.831817\pi\)
−0.863634 + 0.504120i \(0.831817\pi\)
\(632\) −846.764 −1.33982
\(633\) 396.590i 0.626525i
\(634\) 579.509i 0.914051i
\(635\) 0 0
\(636\) 174.931 0.275049
\(637\) 156.625i 0.245880i
\(638\) −14.3511 + 4.97032i −0.0224939 + 0.00779048i
\(639\) −83.5319 −0.130723
\(640\) 0 0
\(641\) −661.586 −1.03212 −0.516058 0.856554i \(-0.672601\pi\)
−0.516058 + 0.856554i \(0.672601\pi\)
\(642\) −435.856 −0.678904
\(643\) −700.467 −1.08937 −0.544687 0.838639i \(-0.683352\pi\)
−0.544687 + 0.838639i \(0.683352\pi\)
\(644\) 83.1219i 0.129071i
\(645\) 0 0
\(646\) 303.134i 0.469248i
\(647\) −128.968 −0.199332 −0.0996658 0.995021i \(-0.531777\pi\)
−0.0996658 + 0.995021i \(0.531777\pi\)
\(648\) 53.8389i 0.0830847i
\(649\) −155.372 + 53.8112i −0.239403 + 0.0829140i
\(650\) 0 0
\(651\) 188.005i 0.288793i
\(652\) −456.419 −0.700029
\(653\) 828.659 1.26900 0.634502 0.772921i \(-0.281205\pi\)
0.634502 + 0.772921i \(0.281205\pi\)
\(654\) −133.638 −0.204340
\(655\) 0 0
\(656\) 265.762i 0.405125i
\(657\) 184.093i 0.280202i
\(658\) −283.832 −0.431356
\(659\) 216.327i 0.328265i −0.986438 0.164133i \(-0.947517\pi\)
0.986438 0.164133i \(-0.0524825\pi\)
\(660\) 0 0
\(661\) 114.149 0.172691 0.0863457 0.996265i \(-0.472481\pi\)
0.0863457 + 0.996265i \(0.472481\pi\)
\(662\) 884.848i 1.33663i
\(663\) 369.422 0.557198
\(664\) 824.355 1.24150
\(665\) 0 0
\(666\) 386.727i 0.580671i
\(667\) 5.42982i 0.00814066i
\(668\) 24.7283i 0.0370184i
\(669\) 176.260 0.263467
\(670\) 0 0
\(671\) −130.101 375.650i −0.193892 0.559836i
\(672\) 240.383 0.357712
\(673\) 1173.35i 1.74346i 0.489989 + 0.871729i \(0.337001\pi\)
−0.489989 + 0.871729i \(0.662999\pi\)
\(674\) 1230.81 1.82613
\(675\) 0 0
\(676\) 191.600 0.283433
\(677\) 145.079i 0.214297i 0.994243 + 0.107148i \(0.0341720\pi\)
−0.994243 + 0.107148i \(0.965828\pi\)
\(678\) 659.305i 0.972427i
\(679\) 365.064i 0.537649i
\(680\) 0 0
\(681\) 608.845i 0.894045i
\(682\) −144.024 415.850i −0.211179 0.609751i
\(683\) −542.580 −0.794407 −0.397204 0.917731i \(-0.630019\pi\)
−0.397204 + 0.917731i \(0.630019\pi\)
\(684\) 45.6216i 0.0666982i
\(685\) 0 0
\(686\) −855.092 −1.24649
\(687\) 244.776 0.356297
\(688\) 708.489i 1.02978i
\(689\) 1225.49i 1.77864i
\(690\) 0 0
\(691\) −190.564 −0.275780 −0.137890 0.990448i \(-0.544032\pi\)
−0.137890 + 0.990448i \(0.544032\pi\)
\(692\) 461.803i 0.667345i
\(693\) −68.3008 197.209i −0.0985581 0.284573i
\(694\) −83.3665 −0.120125
\(695\) 0 0
\(696\) 6.13704 0.00881758
\(697\) −165.571 −0.237547
\(698\) −1056.38 −1.51344
\(699\) 641.281i 0.917426i
\(700\) 0 0
\(701\) 149.736i 0.213603i 0.994280 + 0.106801i \(0.0340609\pi\)
−0.994280 + 0.106801i \(0.965939\pi\)
\(702\) −210.714 −0.300162
\(703\) 586.572i 0.834385i
\(704\) 286.501 99.2259i 0.406962 0.140946i
\(705\) 0 0
\(706\) 179.209i 0.253838i
\(707\) −930.017 −1.31544
\(708\) −37.1196 −0.0524288
\(709\) −225.902 −0.318621 −0.159310 0.987229i \(-0.550927\pi\)
−0.159310 + 0.987229i \(0.550927\pi\)
\(710\) 0 0
\(711\) 424.649i 0.597256i
\(712\) 959.247i 1.34726i
\(713\) 157.339 0.220672
\(714\) 313.055i 0.438453i
\(715\) 0 0
\(716\) −65.3032 −0.0912056
\(717\) 118.306i 0.165002i
\(718\) −947.162 −1.31917
\(719\) 508.963 0.707877 0.353938 0.935269i \(-0.384842\pi\)
0.353938 + 0.935269i \(0.384842\pi\)
\(720\) 0 0
\(721\) 624.709i 0.866448i
\(722\) 579.249i 0.802283i
\(723\) 346.901i 0.479808i
\(724\) −192.506 −0.265893
\(725\) 0 0
\(726\) 302.151 + 383.887i 0.416186 + 0.528770i
\(727\) 155.888 0.214426 0.107213 0.994236i \(-0.465807\pi\)
0.107213 + 0.994236i \(0.465807\pi\)
\(728\) 658.156i 0.904061i
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 441.391 0.603818
\(732\) 89.7454i 0.122603i
\(733\) 393.332i 0.536605i −0.963335 0.268303i \(-0.913537\pi\)
0.963335 0.268303i \(-0.0864627\pi\)
\(734\) 669.076i 0.911548i
\(735\) 0 0
\(736\) 201.174i 0.273334i
\(737\) 1328.82 460.221i 1.80302 0.624451i
\(738\) 94.4393 0.127967
\(739\) 224.197i 0.303379i 0.988428 + 0.151689i \(0.0484713\pi\)
−0.988428 + 0.151689i \(0.951529\pi\)
\(740\) 0 0
\(741\) 319.603 0.431313
\(742\) 1038.50 1.39959
\(743\) 115.127i 0.154948i 0.996994 + 0.0774741i \(0.0246855\pi\)
−0.996994 + 0.0774741i \(0.975314\pi\)
\(744\) 177.832i 0.239021i
\(745\) 0 0
\(746\) 838.484 1.12397
\(747\) 413.411i 0.553428i
\(748\) −63.2781 182.707i −0.0845964 0.244261i
\(749\) −682.727 −0.911518
\(750\) 0 0
\(751\) −494.453 −0.658392 −0.329196 0.944262i \(-0.606778\pi\)
−0.329196 + 0.944262i \(0.606778\pi\)
\(752\) −378.888 −0.503841
\(753\) 369.107 0.490181
\(754\) 24.0190i 0.0318555i
\(755\) 0 0
\(756\) 47.1147i 0.0623210i
\(757\) −531.890 −0.702629 −0.351314 0.936258i \(-0.614265\pi\)
−0.351314 + 0.936258i \(0.614265\pi\)
\(758\) 220.045i 0.290297i
\(759\) −165.042 + 57.1602i −0.217447 + 0.0753099i
\(760\) 0 0
\(761\) 1343.41i 1.76532i 0.470013 + 0.882660i \(0.344249\pi\)
−0.470013 + 0.882660i \(0.655751\pi\)
\(762\) −824.503 −1.08203
\(763\) −209.331 −0.274353
\(764\) 97.5448 0.127676
\(765\) 0 0
\(766\) 215.304i 0.281076i
\(767\) 260.042i 0.339038i
\(768\) 422.851 0.550588
\(769\) 735.802i 0.956830i −0.878134 0.478415i \(-0.841212\pi\)
0.878134 0.478415i \(-0.158788\pi\)
\(770\) 0 0
\(771\) 52.5840 0.0682023
\(772\) 182.749i 0.236721i
\(773\) 1135.40 1.46882 0.734410 0.678706i \(-0.237459\pi\)
0.734410 + 0.678706i \(0.237459\pi\)
\(774\) −251.764 −0.325276
\(775\) 0 0
\(776\) 345.311i 0.444988i
\(777\) 605.770i 0.779626i
\(778\) 294.263i 0.378230i
\(779\) −143.242 −0.183879
\(780\) 0 0
\(781\) 289.417 100.236i 0.370573 0.128343i
\(782\) 261.993 0.335029
\(783\) 3.07770i 0.00393065i
\(784\) −177.178 −0.225992
\(785\) 0 0
\(786\) 982.612 1.25014
\(787\) 115.155i 0.146321i −0.997320 0.0731605i \(-0.976691\pi\)
0.997320 0.0731605i \(-0.0233085\pi\)
\(788\) 212.929i 0.270214i
\(789\) 623.091i 0.789723i
\(790\) 0 0
\(791\) 1032.74i 1.30561i
\(792\) −64.6051 186.539i −0.0815721 0.235528i
\(793\) −628.713 −0.792828
\(794\) 1706.57i 2.14934i
\(795\) 0 0
\(796\) −90.4017 −0.113570
\(797\) 1486.27 1.86483 0.932416 0.361387i \(-0.117697\pi\)
0.932416 + 0.361387i \(0.117697\pi\)
\(798\) 270.837i 0.339395i
\(799\) 236.049i 0.295430i
\(800\) 0 0
\(801\) 481.058 0.600572
\(802\) 672.049i 0.837967i
\(803\) −220.906 637.837i −0.275101 0.794317i
\(804\) 317.466 0.394858
\(805\) 0 0
\(806\) −695.995 −0.863518
\(807\) −555.972 −0.688937
\(808\) −879.695 −1.08873
\(809\) 546.514i 0.675543i 0.941228 + 0.337771i \(0.109673\pi\)
−0.941228 + 0.337771i \(0.890327\pi\)
\(810\) 0 0
\(811\) 1066.45i 1.31499i 0.753460 + 0.657494i \(0.228383\pi\)
−0.753460 + 0.657494i \(0.771617\pi\)
\(812\) −5.37055 −0.00661398
\(813\) 726.589i 0.893714i
\(814\) 464.061 + 1339.91i 0.570099 + 1.64608i
\(815\) 0 0
\(816\) 417.898i 0.512130i
\(817\) 381.865 0.467399
\(818\) −1250.33 −1.52852
\(819\) −330.063 −0.403007
\(820\) 0 0
\(821\) 1206.66i 1.46974i −0.678207 0.734871i \(-0.737243\pi\)
0.678207 0.734871i \(-0.262757\pi\)
\(822\) 275.821i 0.335549i
\(823\) −312.518 −0.379730 −0.189865 0.981810i \(-0.560805\pi\)
−0.189865 + 0.981810i \(0.560805\pi\)
\(824\) 590.907i 0.717120i
\(825\) 0 0
\(826\) −220.364 −0.266785
\(827\) 1166.37i 1.41036i −0.709029 0.705180i \(-0.750866\pi\)
0.709029 0.705180i \(-0.249134\pi\)
\(828\) −39.4298 −0.0476205
\(829\) −205.935 −0.248413 −0.124207 0.992256i \(-0.539639\pi\)
−0.124207 + 0.992256i \(0.539639\pi\)
\(830\) 0 0
\(831\) 150.379i 0.180961i
\(832\) 479.508i 0.576332i
\(833\) 110.382i 0.132512i
\(834\) 86.8751 0.104167
\(835\) 0 0
\(836\) −54.7445 158.067i −0.0654839 0.189076i
\(837\) 89.1820 0.106550
\(838\) 1800.10i 2.14810i
\(839\) −619.889 −0.738843 −0.369422 0.929262i \(-0.620444\pi\)
−0.369422 + 0.929262i \(0.620444\pi\)
\(840\) 0 0
\(841\) 840.649 0.999583
\(842\) 1236.21i 1.46819i
\(843\) 520.923i 0.617940i
\(844\) 328.279i 0.388956i
\(845\) 0 0
\(846\) 134.639i 0.159148i
\(847\) 473.291 + 601.322i 0.558785 + 0.709944i
\(848\) 1386.29 1.63478
\(849\) 553.877i 0.652387i
\(850\) 0 0
\(851\) −506.962 −0.595725
\(852\) 69.1439 0.0811548
\(853\) 1067.19i 1.25110i −0.780185 0.625549i \(-0.784875\pi\)
0.780185 0.625549i \(-0.215125\pi\)
\(854\) 532.783i 0.623868i
\(855\) 0 0
\(856\) −645.786 −0.754422
\(857\) 135.288i 0.157862i −0.996880 0.0789310i \(-0.974849\pi\)
0.996880 0.0789310i \(-0.0251507\pi\)
\(858\) 730.071 252.850i 0.850899 0.294697i
\(859\) −88.1149 −0.102578 −0.0512892 0.998684i \(-0.516333\pi\)
−0.0512892 + 0.998684i \(0.516333\pi\)
\(860\) 0 0
\(861\) 147.930 0.171812
\(862\) 228.648 0.265252
\(863\) 1506.50 1.74566 0.872830 0.488024i \(-0.162282\pi\)
0.872830 + 0.488024i \(0.162282\pi\)
\(864\) 114.028i 0.131977i
\(865\) 0 0
\(866\) 1090.50i 1.25924i
\(867\) 240.211 0.277060
\(868\) 155.621i 0.179287i
\(869\) −509.566 1471.30i −0.586382 1.69310i
\(870\) 0 0
\(871\) 2224.01i 2.55340i
\(872\) −198.005 −0.227070
\(873\) 173.172 0.198364
\(874\) 226.661 0.259337
\(875\) 0 0
\(876\) 152.384i 0.173954i
\(877\) 874.405i 0.997041i 0.866878 + 0.498521i \(0.166123\pi\)
−0.866878 + 0.498521i \(0.833877\pi\)
\(878\) 1707.09 1.94429
\(879\) 730.491i 0.831048i
\(880\) 0 0
\(881\) 628.003 0.712830 0.356415 0.934328i \(-0.383999\pi\)
0.356415 + 0.934328i \(0.383999\pi\)
\(882\) 62.9606i 0.0713839i
\(883\) −1234.85 −1.39848 −0.699238 0.714889i \(-0.746477\pi\)
−0.699238 + 0.714889i \(0.746477\pi\)
\(884\) −305.791 −0.345917
\(885\) 0 0
\(886\) 1218.86i 1.37569i
\(887\) 282.840i 0.318872i 0.987208 + 0.159436i \(0.0509676\pi\)
−0.987208 + 0.159436i \(0.949032\pi\)
\(888\) 572.992i 0.645262i
\(889\) −1291.50 −1.45276
\(890\) 0 0
\(891\) −93.5483 + 32.3992i −0.104993 + 0.0363628i
\(892\) −145.900 −0.163565
\(893\) 204.215i 0.228685i
\(894\) −185.501 −0.207496
\(895\) 0 0
\(896\) 961.484 1.07308
\(897\) 276.226i 0.307944i
\(898\) 279.229i 0.310946i
\(899\) 10.1658i 0.0113078i
\(900\) 0 0
\(901\) 863.665i 0.958563i
\(902\) −327.209 + 113.324i −0.362759 + 0.125637i
\(903\) −394.363 −0.436725
\(904\) 976.858i 1.08060i
\(905\) 0 0
\(906\) 498.959 0.550727
\(907\) −604.942 −0.666970 −0.333485 0.942755i \(-0.608225\pi\)
−0.333485 + 0.942755i \(0.608225\pi\)
\(908\) 503.974i 0.555037i
\(909\) 441.164i 0.485329i
\(910\) 0 0
\(911\) 339.992 0.373208 0.186604 0.982435i \(-0.440252\pi\)
0.186604 + 0.982435i \(0.440252\pi\)
\(912\) 361.541i 0.396427i
\(913\) 496.081 + 1432.37i 0.543352 + 1.56886i
\(914\) 11.2251 0.0122813
\(915\) 0 0
\(916\) −202.615 −0.221195
\(917\) 1539.17 1.67848
\(918\) 148.501 0.161766
\(919\) 885.348i 0.963382i −0.876341 0.481691i \(-0.840023\pi\)
0.876341 0.481691i \(-0.159977\pi\)
\(920\) 0 0
\(921\) 112.890i 0.122573i
\(922\) 1330.27 1.44281
\(923\) 484.389i 0.524798i
\(924\) 56.5362 + 163.241i 0.0611864 + 0.176667i
\(925\) 0 0
\(926\) 307.544i 0.332121i
\(927\) 296.338 0.319674
\(928\) −12.9979 −0.0140064
\(929\) −821.063 −0.883814 −0.441907 0.897061i \(-0.645698\pi\)
−0.441907 + 0.897061i \(0.645698\pi\)
\(930\) 0 0
\(931\) 95.4962i 0.102574i
\(932\) 530.822i 0.569552i
\(933\) −513.225 −0.550081
\(934\) 209.496i 0.224300i
\(935\) 0 0
\(936\) −312.203 −0.333551
\(937\) 1507.89i 1.60927i 0.593768 + 0.804636i \(0.297639\pi\)
−0.593768 + 0.804636i \(0.702361\pi\)
\(938\) 1884.67 2.00924
\(939\) 746.099 0.794567
\(940\) 0 0
\(941\) 138.310i 0.146982i 0.997296 + 0.0734909i \(0.0234140\pi\)
−0.997296 + 0.0734909i \(0.976586\pi\)
\(942\) 264.069i 0.280328i
\(943\) 123.801i 0.131284i
\(944\) −294.165 −0.311615
\(945\) 0 0
\(946\) 872.298 302.109i 0.922091 0.319354i
\(947\) −1559.87 −1.64717 −0.823586 0.567192i \(-0.808030\pi\)
−0.823586 + 0.567192i \(0.808030\pi\)
\(948\) 351.505i 0.370786i
\(949\) −1067.53 −1.12490
\(950\) 0 0
\(951\) 430.598 0.452785
\(952\) 463.838i 0.487224i
\(953\) 1073.64i 1.12659i −0.826255 0.563296i \(-0.809533\pi\)
0.826255 0.563296i \(-0.190467\pi\)
\(954\) 492.623i 0.516377i
\(955\) 0 0
\(956\) 97.9286i 0.102436i
\(957\) 3.69315 + 10.6635i 0.00385909 + 0.0111426i
\(958\) −1671.46 −1.74474
\(959\) 432.047i 0.450518i
\(960\) 0 0
\(961\) −666.429 −0.693474
\(962\) 2242.57 2.33115
\(963\) 323.859i 0.336302i
\(964\) 287.149i 0.297872i
\(965\) 0 0
\(966\) −234.079 −0.242318
\(967\) 1403.40i 1.45130i −0.688066 0.725648i \(-0.741540\pi\)
0.688066 0.725648i \(-0.258460\pi\)
\(968\) 447.682 + 568.786i 0.462481 + 0.587588i
\(969\) −225.241 −0.232447
\(970\) 0 0
\(971\) 724.260 0.745891 0.372945 0.927853i \(-0.378348\pi\)
0.372945 + 0.927853i \(0.378348\pi\)
\(972\) −22.3494 −0.0229932
\(973\) 136.081 0.139858
\(974\) 2137.09i 2.19413i
\(975\) 0 0
\(976\) 711.213i 0.728702i
\(977\) −943.252 −0.965458 −0.482729 0.875770i \(-0.660354\pi\)
−0.482729 + 0.875770i \(0.660354\pi\)
\(978\) 1285.32i 1.31423i
\(979\) −1666.75 + 577.256i −1.70250 + 0.589639i
\(980\) 0 0
\(981\) 99.2986i 0.101222i
\(982\) 704.303 0.717213
\(983\) −1101.28 −1.12033 −0.560163 0.828383i \(-0.689261\pi\)
−0.560163 + 0.828383i \(0.689261\pi\)
\(984\) 139.926 0.142201
\(985\) 0 0
\(986\) 16.9275i 0.0171678i
\(987\) 210.899i 0.213677i
\(988\) −264.552 −0.267766
\(989\) 330.038i 0.333709i
\(990\) 0 0
\(991\) −639.463 −0.645271 −0.322635 0.946523i \(-0.604569\pi\)
−0.322635 + 0.946523i \(0.604569\pi\)
\(992\) 376.639i 0.379676i
\(993\) −657.478 −0.662112
\(994\) 410.480 0.412958
\(995\) 0 0
\(996\) 342.202i 0.343577i
\(997\) 351.666i 0.352724i −0.984325 0.176362i \(-0.943567\pi\)
0.984325 0.176362i \(-0.0564329\pi\)
\(998\) 239.626i 0.240106i
\(999\) −287.353 −0.287641
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.3.b.d.76.13 16
5.2 odd 4 825.3.h.b.274.8 32
5.3 odd 4 825.3.h.b.274.26 32
5.4 even 2 165.3.b.a.76.4 16
11.10 odd 2 inner 825.3.b.d.76.4 16
15.14 odd 2 495.3.b.c.406.13 16
20.19 odd 2 2640.3.c.c.241.15 16
55.32 even 4 825.3.h.b.274.25 32
55.43 even 4 825.3.h.b.274.7 32
55.54 odd 2 165.3.b.a.76.13 yes 16
165.164 even 2 495.3.b.c.406.4 16
220.219 even 2 2640.3.c.c.241.14 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.3.b.a.76.4 16 5.4 even 2
165.3.b.a.76.13 yes 16 55.54 odd 2
495.3.b.c.406.4 16 165.164 even 2
495.3.b.c.406.13 16 15.14 odd 2
825.3.b.d.76.4 16 11.10 odd 2 inner
825.3.b.d.76.13 16 1.1 even 1 trivial
825.3.h.b.274.7 32 55.43 even 4
825.3.h.b.274.8 32 5.2 odd 4
825.3.h.b.274.25 32 55.32 even 4
825.3.h.b.274.26 32 5.3 odd 4
2640.3.c.c.241.14 16 220.219 even 2
2640.3.c.c.241.15 16 20.19 odd 2