Properties

Label 825.3
Level 825
Weight 3
Dimension 32258
Nonzero newspaces 42
Sturm bound 144000
Trace bound 10

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 42 \)
Sturm bound: \(144000\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(825))\).

Total New Old
Modular forms 49120 32994 16126
Cusp forms 46880 32258 14622
Eisenstein series 2240 736 1504

Trace form

\( 32258 q - 16 q^{2} - 61 q^{3} - 122 q^{4} - 8 q^{5} - 121 q^{6} - 152 q^{7} + 8 q^{8} + 9 q^{9} - 72 q^{10} + 42 q^{11} + 42 q^{12} - 60 q^{13} + 10 q^{14} - 92 q^{15} - 154 q^{16} + 110 q^{17} - 123 q^{18}+ \cdots + 3815 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(825))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
825.3.b \(\chi_{825}(76, \cdot)\) 825.3.b.a 4 1
825.3.b.b 16
825.3.b.c 16
825.3.b.d 16
825.3.b.e 24
825.3.e \(\chi_{825}(551, \cdot)\) n/a 126 1
825.3.g \(\chi_{825}(749, \cdot)\) n/a 120 1
825.3.h \(\chi_{825}(274, \cdot)\) 825.3.h.a 8 1
825.3.h.b 32
825.3.h.c 32
825.3.i \(\chi_{825}(232, \cdot)\) n/a 120 2
825.3.l \(\chi_{825}(32, \cdot)\) n/a 280 2
825.3.t \(\chi_{825}(71, \cdot)\) n/a 944 4
825.3.u \(\chi_{825}(316, \cdot)\) n/a 480 4
825.3.w \(\chi_{825}(89, \cdot)\) n/a 800 4
825.3.y \(\chi_{825}(349, \cdot)\) n/a 288 4
825.3.z \(\chi_{825}(19, \cdot)\) n/a 480 4
825.3.ba \(\chi_{825}(409, \cdot)\) n/a 480 4
825.3.bb \(\chi_{825}(79, \cdot)\) n/a 480 4
825.3.bc \(\chi_{825}(14, \cdot)\) n/a 944 4
825.3.be \(\chi_{825}(179, \cdot)\) n/a 944 4
825.3.bg \(\chi_{825}(344, \cdot)\) n/a 944 4
825.3.bh \(\chi_{825}(224, \cdot)\) n/a 560 4
825.3.bk \(\chi_{825}(109, \cdot)\) n/a 480 4
825.3.bm \(\chi_{825}(241, \cdot)\) n/a 480 4
825.3.bn \(\chi_{825}(146, \cdot)\) n/a 944 4
825.3.bp \(\chi_{825}(26, \cdot)\) n/a 584 4
825.3.bq \(\chi_{825}(86, \cdot)\) n/a 944 4
825.3.bt \(\chi_{825}(191, \cdot)\) n/a 944 4
825.3.bw \(\chi_{825}(46, \cdot)\) n/a 480 4
825.3.bz \(\chi_{825}(211, \cdot)\) n/a 480 4
825.3.ca \(\chi_{825}(151, \cdot)\) n/a 304 4
825.3.cc \(\chi_{825}(61, \cdot)\) n/a 480 4
825.3.cd \(\chi_{825}(56, \cdot)\) n/a 800 4
825.3.cf \(\chi_{825}(139, \cdot)\) n/a 480 4
825.3.ch \(\chi_{825}(104, \cdot)\) n/a 944 4
825.3.cj \(\chi_{825}(167, \cdot)\) n/a 1888 8
825.3.ck \(\chi_{825}(202, \cdot)\) n/a 960 8
825.3.cn \(\chi_{825}(148, \cdot)\) n/a 960 8
825.3.co \(\chi_{825}(98, \cdot)\) n/a 1888 8
825.3.cp \(\chi_{825}(68, \cdot)\) n/a 1120 8
825.3.cq \(\chi_{825}(17, \cdot)\) n/a 1888 8
825.3.cr \(\chi_{825}(2, \cdot)\) n/a 1888 8
825.3.da \(\chi_{825}(82, \cdot)\) n/a 576 8
825.3.db \(\chi_{825}(37, \cdot)\) n/a 960 8
825.3.dc \(\chi_{825}(58, \cdot)\) n/a 960 8
825.3.dd \(\chi_{825}(67, \cdot)\) n/a 800 8
825.3.de \(\chi_{825}(248, \cdot)\) n/a 1888 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(825))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(825)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(275))\)\(^{\oplus 2}\)