Properties

Label 825.2.n.j.676.1
Level $825$
Weight $2$
Character 825.676
Analytic conductor $6.588$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [825,2,Mod(301,825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("825.301"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(825, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,-2,2,0,-2,5,1,-2,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 676.1
Root \(-0.104528 + 0.994522i\) of defining polynomial
Character \(\chi\) \(=\) 825.676
Dual form 825.2.n.j.526.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.564602 - 1.73767i) q^{2} +(-0.809017 - 0.587785i) q^{3} +(-1.08268 + 0.786610i) q^{4} +(-0.564602 + 1.73767i) q^{6} +(1.41355 - 1.02700i) q^{7} +(-0.978148 - 0.710666i) q^{8} +(0.309017 + 0.951057i) q^{9} +(-0.384301 + 3.29428i) q^{11} +1.33826 q^{12} +(1.65563 + 5.09549i) q^{13} +(-2.58268 - 1.87642i) q^{14} +(-1.50973 + 4.64646i) q^{16} +(-2.26531 + 6.97191i) q^{17} +(1.47815 - 1.07394i) q^{18} +(-4.86606 - 3.53540i) q^{19} -1.74724 q^{21} +(5.94135 - 1.19217i) q^{22} -8.35772 q^{23} +(0.373619 + 1.14988i) q^{24} +(7.91949 - 5.75385i) q^{26} +(0.309017 - 0.951057i) q^{27} +(-0.722562 + 2.22382i) q^{28} +(-4.48048 + 3.25526i) q^{29} +(-0.00660190 - 0.0203186i) q^{31} +6.50828 q^{32} +(2.24724 - 2.43925i) q^{33} +13.3939 q^{34} +(-1.08268 - 0.786610i) q^{36} +(-0.907432 + 0.659288i) q^{37} +(-3.39596 + 10.4517i) q^{38} +(1.65563 - 5.09549i) q^{39} +(2.96086 + 2.15119i) q^{41} +(0.986494 + 3.03612i) q^{42} +1.96950 q^{43} +(-2.17524 - 3.86894i) q^{44} +(4.71878 + 14.5229i) q^{46} +(3.09007 + 2.24507i) q^{47} +(3.95252 - 2.87167i) q^{48} +(-1.21974 + 3.75397i) q^{49} +(5.93066 - 4.30888i) q^{51} +(-5.80067 - 4.21443i) q^{52} +(-0.516329 - 1.58910i) q^{53} -1.82709 q^{54} -2.11251 q^{56} +(1.85867 + 5.72040i) q^{57} +(8.18625 + 5.94766i) q^{58} +(-4.58172 + 3.32882i) q^{59} +(2.86761 - 8.82559i) q^{61} +(-0.0315794 + 0.0229438i) q^{62} +(1.41355 + 1.02700i) q^{63} +(-0.655137 - 2.01630i) q^{64} +(-5.50739 - 2.52775i) q^{66} -0.350489 q^{67} +(-3.03158 - 9.33024i) q^{68} +(6.76153 + 4.91254i) q^{69} +(1.40238 - 4.31607i) q^{71} +(0.373619 - 1.14988i) q^{72} +(8.20305 - 5.95986i) q^{73} +(1.65796 + 1.20458i) q^{74} +8.04935 q^{76} +(2.84001 + 5.05130i) q^{77} -9.78903 q^{78} +(0.792323 + 2.43852i) q^{79} +(-0.809017 + 0.587785i) q^{81} +(2.06635 - 6.35956i) q^{82} +(4.96915 - 15.2935i) q^{83} +(1.89169 - 1.37440i) q^{84} +(-1.11198 - 3.42233i) q^{86} +5.53818 q^{87} +(2.71704 - 2.94919i) q^{88} -14.5062 q^{89} +(7.57337 + 5.50238i) q^{91} +(9.04870 - 6.57426i) q^{92} +(-0.00660190 + 0.0203186i) q^{93} +(2.15652 - 6.63708i) q^{94} +(-5.26531 - 3.82547i) q^{96} +(0.587045 + 1.80674i) q^{97} +7.21182 q^{98} +(-3.25181 + 0.652498i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{6} + 5 q^{7} + q^{8} - 2 q^{9} - q^{11} + 2 q^{12} + 16 q^{13} - 10 q^{14} + 12 q^{16} + 4 q^{17} + 3 q^{18} + 2 q^{19} + 9 q^{22} - 10 q^{23} - 4 q^{24} + 16 q^{26}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.564602 1.73767i −0.399234 1.22872i −0.925615 0.378467i \(-0.876451\pi\)
0.526381 0.850249i \(-0.323549\pi\)
\(3\) −0.809017 0.587785i −0.467086 0.339358i
\(4\) −1.08268 + 0.786610i −0.541338 + 0.393305i
\(5\) 0 0
\(6\) −0.564602 + 1.73767i −0.230498 + 0.709399i
\(7\) 1.41355 1.02700i 0.534270 0.388170i −0.287683 0.957726i \(-0.592885\pi\)
0.821953 + 0.569556i \(0.192885\pi\)
\(8\) −0.978148 0.710666i −0.345827 0.251258i
\(9\) 0.309017 + 0.951057i 0.103006 + 0.317019i
\(10\) 0 0
\(11\) −0.384301 + 3.29428i −0.115871 + 0.993264i
\(12\) 1.33826 0.386323
\(13\) 1.65563 + 5.09549i 0.459188 + 1.41323i 0.866147 + 0.499789i \(0.166589\pi\)
−0.406960 + 0.913446i \(0.633411\pi\)
\(14\) −2.58268 1.87642i −0.690249 0.501495i
\(15\) 0 0
\(16\) −1.50973 + 4.64646i −0.377432 + 1.16162i
\(17\) −2.26531 + 6.97191i −0.549419 + 1.69094i 0.160826 + 0.986983i \(0.448584\pi\)
−0.710245 + 0.703955i \(0.751416\pi\)
\(18\) 1.47815 1.07394i 0.348403 0.253129i
\(19\) −4.86606 3.53540i −1.11635 0.811077i −0.132699 0.991156i \(-0.542364\pi\)
−0.983652 + 0.180080i \(0.942364\pi\)
\(20\) 0 0
\(21\) −1.74724 −0.381279
\(22\) 5.94135 1.19217i 1.26670 0.254172i
\(23\) −8.35772 −1.74270 −0.871352 0.490658i \(-0.836756\pi\)
−0.871352 + 0.490658i \(0.836756\pi\)
\(24\) 0.373619 + 1.14988i 0.0762647 + 0.234719i
\(25\) 0 0
\(26\) 7.91949 5.75385i 1.55314 1.12842i
\(27\) 0.309017 0.951057i 0.0594703 0.183031i
\(28\) −0.722562 + 2.22382i −0.136551 + 0.420262i
\(29\) −4.48048 + 3.25526i −0.832005 + 0.604487i −0.920126 0.391623i \(-0.871914\pi\)
0.0881210 + 0.996110i \(0.471914\pi\)
\(30\) 0 0
\(31\) −0.00660190 0.0203186i −0.00118574 0.00364932i 0.950462 0.310841i \(-0.100611\pi\)
−0.951648 + 0.307192i \(0.900611\pi\)
\(32\) 6.50828 1.15051
\(33\) 2.24724 2.43925i 0.391194 0.424618i
\(34\) 13.3939 2.29703
\(35\) 0 0
\(36\) −1.08268 0.786610i −0.180446 0.131102i
\(37\) −0.907432 + 0.659288i −0.149181 + 0.108386i −0.659872 0.751378i \(-0.729390\pi\)
0.510691 + 0.859764i \(0.329390\pi\)
\(38\) −3.39596 + 10.4517i −0.550897 + 1.69549i
\(39\) 1.65563 5.09549i 0.265112 0.815931i
\(40\) 0 0
\(41\) 2.96086 + 2.15119i 0.462409 + 0.335960i 0.794476 0.607296i \(-0.207746\pi\)
−0.332066 + 0.943256i \(0.607746\pi\)
\(42\) 0.986494 + 3.03612i 0.152219 + 0.468483i
\(43\) 1.96950 0.300346 0.150173 0.988660i \(-0.452017\pi\)
0.150173 + 0.988660i \(0.452017\pi\)
\(44\) −2.17524 3.86894i −0.327930 0.583264i
\(45\) 0 0
\(46\) 4.71878 + 14.5229i 0.695747 + 2.14129i
\(47\) 3.09007 + 2.24507i 0.450733 + 0.327476i 0.789885 0.613255i \(-0.210140\pi\)
−0.339152 + 0.940731i \(0.610140\pi\)
\(48\) 3.95252 2.87167i 0.570497 0.414490i
\(49\) −1.21974 + 3.75397i −0.174248 + 0.536282i
\(50\) 0 0
\(51\) 5.93066 4.30888i 0.830459 0.603364i
\(52\) −5.80067 4.21443i −0.804408 0.584437i
\(53\) −0.516329 1.58910i −0.0709232 0.218279i 0.909312 0.416115i \(-0.136609\pi\)
−0.980235 + 0.197836i \(0.936609\pi\)
\(54\) −1.82709 −0.248636
\(55\) 0 0
\(56\) −2.11251 −0.282296
\(57\) 1.85867 + 5.72040i 0.246187 + 0.757685i
\(58\) 8.18625 + 5.94766i 1.07491 + 0.780966i
\(59\) −4.58172 + 3.32882i −0.596489 + 0.433375i −0.844631 0.535349i \(-0.820180\pi\)
0.248142 + 0.968724i \(0.420180\pi\)
\(60\) 0 0
\(61\) 2.86761 8.82559i 0.367160 1.13000i −0.581458 0.813576i \(-0.697518\pi\)
0.948618 0.316425i \(-0.102482\pi\)
\(62\) −0.0315794 + 0.0229438i −0.00401059 + 0.00291387i
\(63\) 1.41355 + 1.02700i 0.178090 + 0.129390i
\(64\) −0.655137 2.01630i −0.0818921 0.252038i
\(65\) 0 0
\(66\) −5.50739 2.52775i −0.677913 0.311144i
\(67\) −0.350489 −0.0428190 −0.0214095 0.999771i \(-0.506815\pi\)
−0.0214095 + 0.999771i \(0.506815\pi\)
\(68\) −3.03158 9.33024i −0.367633 1.13146i
\(69\) 6.76153 + 4.91254i 0.813993 + 0.591401i
\(70\) 0 0
\(71\) 1.40238 4.31607i 0.166431 0.512223i −0.832708 0.553713i \(-0.813210\pi\)
0.999139 + 0.0414901i \(0.0132105\pi\)
\(72\) 0.373619 1.14988i 0.0440314 0.135515i
\(73\) 8.20305 5.95986i 0.960094 0.697549i 0.00692130 0.999976i \(-0.497797\pi\)
0.953173 + 0.302427i \(0.0977969\pi\)
\(74\) 1.65796 + 1.20458i 0.192734 + 0.140029i
\(75\) 0 0
\(76\) 8.04935 0.923324
\(77\) 2.84001 + 5.05130i 0.323649 + 0.575649i
\(78\) −9.78903 −1.10839
\(79\) 0.792323 + 2.43852i 0.0891433 + 0.274355i 0.985683 0.168608i \(-0.0539273\pi\)
−0.896540 + 0.442963i \(0.853927\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) 2.06635 6.35956i 0.228190 0.702296i
\(83\) 4.96915 15.2935i 0.545435 1.67868i −0.174519 0.984654i \(-0.555837\pi\)
0.719954 0.694022i \(-0.244163\pi\)
\(84\) 1.89169 1.37440i 0.206401 0.149959i
\(85\) 0 0
\(86\) −1.11198 3.42233i −0.119908 0.369040i
\(87\) 5.53818 0.593755
\(88\) 2.71704 2.94919i 0.289637 0.314384i
\(89\) −14.5062 −1.53765 −0.768825 0.639459i \(-0.779159\pi\)
−0.768825 + 0.639459i \(0.779159\pi\)
\(90\) 0 0
\(91\) 7.57337 + 5.50238i 0.793905 + 0.576806i
\(92\) 9.04870 6.57426i 0.943392 0.685414i
\(93\) −0.00660190 + 0.0203186i −0.000684585 + 0.00210694i
\(94\) 2.15652 6.63708i 0.222428 0.684562i
\(95\) 0 0
\(96\) −5.26531 3.82547i −0.537389 0.390436i
\(97\) 0.587045 + 1.80674i 0.0596054 + 0.183446i 0.976426 0.215853i \(-0.0692533\pi\)
−0.916820 + 0.399300i \(0.869253\pi\)
\(98\) 7.21182 0.728504
\(99\) −3.25181 + 0.652498i −0.326819 + 0.0655785i
\(100\) 0 0
\(101\) 2.07354 + 6.38170i 0.206325 + 0.635003i 0.999656 + 0.0262128i \(0.00834474\pi\)
−0.793332 + 0.608790i \(0.791655\pi\)
\(102\) −10.8359 7.87272i −1.07291 0.779515i
\(103\) −3.43572 + 2.49620i −0.338532 + 0.245958i −0.744042 0.668133i \(-0.767094\pi\)
0.405510 + 0.914090i \(0.367094\pi\)
\(104\) 2.00174 6.16074i 0.196287 0.604110i
\(105\) 0 0
\(106\) −2.46980 + 1.79442i −0.239888 + 0.174289i
\(107\) −12.7202 9.24174i −1.22970 0.893433i −0.232837 0.972516i \(-0.574801\pi\)
−0.996868 + 0.0790831i \(0.974801\pi\)
\(108\) 0.413545 + 1.27276i 0.0397934 + 0.122472i
\(109\) 4.23895 0.406018 0.203009 0.979177i \(-0.434928\pi\)
0.203009 + 0.979177i \(0.434928\pi\)
\(110\) 0 0
\(111\) 1.12165 0.106462
\(112\) 2.63785 + 8.11848i 0.249254 + 0.767124i
\(113\) −5.82203 4.22996i −0.547691 0.397921i 0.279242 0.960221i \(-0.409917\pi\)
−0.826933 + 0.562300i \(0.809917\pi\)
\(114\) 8.89074 6.45950i 0.832694 0.604988i
\(115\) 0 0
\(116\) 2.29029 7.04879i 0.212648 0.654463i
\(117\) −4.33448 + 3.14919i −0.400723 + 0.291142i
\(118\) 8.37122 + 6.08205i 0.770633 + 0.559898i
\(119\) 3.95804 + 12.1816i 0.362833 + 1.11668i
\(120\) 0 0
\(121\) −10.7046 2.53200i −0.973148 0.230181i
\(122\) −16.9550 −1.53503
\(123\) −1.13095 3.48070i −0.101974 0.313845i
\(124\) 0.0231305 + 0.0168053i 0.00207718 + 0.00150916i
\(125\) 0 0
\(126\) 0.986494 3.03612i 0.0878839 0.270479i
\(127\) −3.92051 + 12.0661i −0.347889 + 1.07069i 0.612130 + 0.790757i \(0.290313\pi\)
−0.960019 + 0.279935i \(0.909687\pi\)
\(128\) 7.39685 5.37413i 0.653796 0.475010i
\(129\) −1.59336 1.15764i −0.140287 0.101925i
\(130\) 0 0
\(131\) −0.970102 −0.0847582 −0.0423791 0.999102i \(-0.513494\pi\)
−0.0423791 + 0.999102i \(0.513494\pi\)
\(132\) −0.514295 + 4.40861i −0.0447637 + 0.383721i
\(133\) −10.5093 −0.911268
\(134\) 0.197887 + 0.609032i 0.0170948 + 0.0526124i
\(135\) 0 0
\(136\) 7.17051 5.20968i 0.614866 0.446726i
\(137\) −1.30416 + 4.01379i −0.111422 + 0.342921i −0.991184 0.132493i \(-0.957702\pi\)
0.879762 + 0.475414i \(0.157702\pi\)
\(138\) 4.71878 14.5229i 0.401690 1.23627i
\(139\) −7.15855 + 5.20099i −0.607180 + 0.441142i −0.848420 0.529323i \(-0.822446\pi\)
0.241240 + 0.970465i \(0.422446\pi\)
\(140\) 0 0
\(141\) −1.18030 3.63259i −0.0993993 0.305919i
\(142\) −8.29167 −0.695821
\(143\) −17.4223 + 3.49590i −1.45692 + 0.292342i
\(144\) −4.88558 −0.407132
\(145\) 0 0
\(146\) −14.9877 10.8892i −1.24039 0.901197i
\(147\) 3.19332 2.32008i 0.263380 0.191357i
\(148\) 0.463852 1.42759i 0.0381284 0.117347i
\(149\) 2.95222 9.08598i 0.241855 0.744353i −0.754283 0.656549i \(-0.772015\pi\)
0.996138 0.0878033i \(-0.0279847\pi\)
\(150\) 0 0
\(151\) 5.46214 + 3.96848i 0.444503 + 0.322950i 0.787422 0.616415i \(-0.211416\pi\)
−0.342919 + 0.939365i \(0.611416\pi\)
\(152\) 2.24724 + 6.91629i 0.182275 + 0.560985i
\(153\) −7.33070 −0.592652
\(154\) 7.17400 7.78696i 0.578097 0.627491i
\(155\) 0 0
\(156\) 2.21566 + 6.81910i 0.177395 + 0.545965i
\(157\) −10.2425 7.44162i −0.817441 0.593906i 0.0985374 0.995133i \(-0.468584\pi\)
−0.915978 + 0.401228i \(0.868584\pi\)
\(158\) 3.78999 2.75359i 0.301515 0.219064i
\(159\) −0.516329 + 1.58910i −0.0409475 + 0.126024i
\(160\) 0 0
\(161\) −11.8140 + 8.58338i −0.931074 + 0.676465i
\(162\) 1.47815 + 1.07394i 0.116134 + 0.0843765i
\(163\) 7.23278 + 22.2602i 0.566515 + 1.74355i 0.663407 + 0.748259i \(0.269110\pi\)
−0.0968923 + 0.995295i \(0.530890\pi\)
\(164\) −4.89781 −0.382454
\(165\) 0 0
\(166\) −29.3805 −2.28037
\(167\) −0.943091 2.90254i −0.0729786 0.224605i 0.907913 0.419158i \(-0.137675\pi\)
−0.980892 + 0.194553i \(0.937675\pi\)
\(168\) 1.70906 + 1.24170i 0.131857 + 0.0957994i
\(169\) −12.7057 + 9.23123i −0.977362 + 0.710095i
\(170\) 0 0
\(171\) 1.85867 5.72040i 0.142136 0.437450i
\(172\) −2.13233 + 1.54923i −0.162589 + 0.118128i
\(173\) 12.9503 + 9.40893i 0.984592 + 0.715348i 0.958730 0.284318i \(-0.0917670\pi\)
0.0258617 + 0.999666i \(0.491767\pi\)
\(174\) −3.12687 9.62351i −0.237047 0.729557i
\(175\) 0 0
\(176\) −14.7266 6.75911i −1.11006 0.509487i
\(177\) 5.66332 0.425681
\(178\) 8.19021 + 25.2069i 0.613883 + 1.88934i
\(179\) 15.6133 + 11.3437i 1.16699 + 0.847870i 0.990646 0.136458i \(-0.0435719\pi\)
0.176347 + 0.984328i \(0.443572\pi\)
\(180\) 0 0
\(181\) −3.76724 + 11.5944i −0.280017 + 0.861804i 0.707831 + 0.706382i \(0.249674\pi\)
−0.987848 + 0.155422i \(0.950326\pi\)
\(182\) 5.28536 16.2667i 0.391777 1.20576i
\(183\) −7.50749 + 5.45451i −0.554970 + 0.403209i
\(184\) 8.17508 + 5.93954i 0.602675 + 0.437869i
\(185\) 0 0
\(186\) 0.0390343 0.00286214
\(187\) −22.0969 10.1419i −1.61589 0.741649i
\(188\) −5.11153 −0.372797
\(189\) −0.539926 1.66172i −0.0392739 0.120873i
\(190\) 0 0
\(191\) 10.8605 7.89064i 0.785841 0.570947i −0.120885 0.992666i \(-0.538573\pi\)
0.906726 + 0.421720i \(0.138573\pi\)
\(192\) −0.655137 + 2.01630i −0.0472804 + 0.145514i
\(193\) −2.34167 + 7.20693i −0.168557 + 0.518766i −0.999281 0.0379190i \(-0.987927\pi\)
0.830723 + 0.556685i \(0.187927\pi\)
\(194\) 2.80806 2.04018i 0.201607 0.146476i
\(195\) 0 0
\(196\) −1.63233 5.02379i −0.116595 0.358842i
\(197\) 6.89118 0.490976 0.245488 0.969400i \(-0.421052\pi\)
0.245488 + 0.969400i \(0.421052\pi\)
\(198\) 2.96980 + 5.28215i 0.211055 + 0.375386i
\(199\) 0.639398 0.0453257 0.0226629 0.999743i \(-0.492786\pi\)
0.0226629 + 0.999743i \(0.492786\pi\)
\(200\) 0 0
\(201\) 0.283551 + 0.206012i 0.0200002 + 0.0145310i
\(202\) 9.91854 7.20624i 0.697866 0.507029i
\(203\) −2.99021 + 9.20292i −0.209872 + 0.645918i
\(204\) −3.03158 + 9.33024i −0.212253 + 0.653248i
\(205\) 0 0
\(206\) 6.27737 + 4.56078i 0.437365 + 0.317765i
\(207\) −2.58268 7.94866i −0.179508 0.552470i
\(208\) −26.1755 −1.81495
\(209\) 13.5167 14.6715i 0.934966 1.01485i
\(210\) 0 0
\(211\) −1.18090 3.63445i −0.0812968 0.250206i 0.902144 0.431435i \(-0.141992\pi\)
−0.983441 + 0.181229i \(0.941992\pi\)
\(212\) 1.80902 + 1.31433i 0.124244 + 0.0902684i
\(213\) −3.67147 + 2.66748i −0.251565 + 0.182772i
\(214\) −8.87723 + 27.3213i −0.606835 + 1.86765i
\(215\) 0 0
\(216\) −0.978148 + 0.710666i −0.0665545 + 0.0483547i
\(217\) −0.0301993 0.0219411i −0.00205006 0.00148946i
\(218\) −2.39332 7.36589i −0.162096 0.498881i
\(219\) −10.1395 −0.685165
\(220\) 0 0
\(221\) −39.2758 −2.64198
\(222\) −0.633284 1.94905i −0.0425033 0.130812i
\(223\) −21.6171 15.7057i −1.44758 1.05173i −0.986388 0.164434i \(-0.947420\pi\)
−0.461197 0.887298i \(-0.652580\pi\)
\(224\) 9.19975 6.68401i 0.614684 0.446594i
\(225\) 0 0
\(226\) −4.06312 + 12.5050i −0.270275 + 0.831820i
\(227\) 9.90020 7.19291i 0.657099 0.477411i −0.208583 0.978005i \(-0.566885\pi\)
0.865682 + 0.500594i \(0.166885\pi\)
\(228\) −6.51206 4.73129i −0.431272 0.313337i
\(229\) −2.06628 6.35937i −0.136544 0.420239i 0.859283 0.511500i \(-0.170910\pi\)
−0.995827 + 0.0912615i \(0.970910\pi\)
\(230\) 0 0
\(231\) 0.671466 5.75590i 0.0441792 0.378710i
\(232\) 6.69598 0.439612
\(233\) 2.01399 + 6.19844i 0.131941 + 0.406073i 0.995102 0.0988565i \(-0.0315185\pi\)
−0.863161 + 0.504930i \(0.831518\pi\)
\(234\) 7.91949 + 5.75385i 0.517714 + 0.376141i
\(235\) 0 0
\(236\) 2.34204 7.20806i 0.152454 0.469205i
\(237\) 0.792323 2.43852i 0.0514669 0.158399i
\(238\) 18.9328 13.7555i 1.22723 0.891637i
\(239\) 8.77126 + 6.37269i 0.567366 + 0.412215i 0.834147 0.551542i \(-0.185960\pi\)
−0.266782 + 0.963757i \(0.585960\pi\)
\(240\) 0 0
\(241\) 27.1803 1.75084 0.875420 0.483363i \(-0.160585\pi\)
0.875420 + 0.483363i \(0.160585\pi\)
\(242\) 1.64409 + 20.0306i 0.105686 + 1.28762i
\(243\) 1.00000 0.0641500
\(244\) 3.83761 + 11.8109i 0.245678 + 0.756118i
\(245\) 0 0
\(246\) −5.40977 + 3.93043i −0.344914 + 0.250595i
\(247\) 9.95823 30.6483i 0.633627 1.95010i
\(248\) −0.00798208 + 0.0245663i −0.000506862 + 0.00155996i
\(249\) −13.0094 + 9.45188i −0.824437 + 0.598989i
\(250\) 0 0
\(251\) 1.71332 + 5.27307i 0.108144 + 0.332833i 0.990455 0.137833i \(-0.0440137\pi\)
−0.882311 + 0.470666i \(0.844014\pi\)
\(252\) −2.33826 −0.147297
\(253\) 3.21188 27.5327i 0.201929 1.73097i
\(254\) 23.1804 1.45447
\(255\) 0 0
\(256\) −16.9451 12.3113i −1.05907 0.769457i
\(257\) −15.3260 + 11.1350i −0.956008 + 0.694580i −0.952220 0.305413i \(-0.901206\pi\)
−0.00378765 + 0.999993i \(0.501206\pi\)
\(258\) −1.11198 + 3.42233i −0.0692291 + 0.213065i
\(259\) −0.605607 + 1.86387i −0.0376306 + 0.115815i
\(260\) 0 0
\(261\) −4.48048 3.25526i −0.277335 0.201496i
\(262\) 0.547722 + 1.68571i 0.0338384 + 0.104144i
\(263\) −3.20873 −0.197859 −0.0989293 0.995094i \(-0.531542\pi\)
−0.0989293 + 0.995094i \(0.531542\pi\)
\(264\) −3.93162 + 0.788907i −0.241974 + 0.0485539i
\(265\) 0 0
\(266\) 5.93355 + 18.2616i 0.363809 + 1.11969i
\(267\) 11.7357 + 8.52651i 0.718215 + 0.521814i
\(268\) 0.379466 0.275698i 0.0231796 0.0168409i
\(269\) −1.00252 + 3.08544i −0.0611248 + 0.188123i −0.976956 0.213441i \(-0.931533\pi\)
0.915831 + 0.401563i \(0.131533\pi\)
\(270\) 0 0
\(271\) 1.64212 1.19307i 0.0997517 0.0724738i −0.536791 0.843715i \(-0.680364\pi\)
0.636543 + 0.771241i \(0.280364\pi\)
\(272\) −28.9747 21.0514i −1.75685 1.27643i
\(273\) −2.89277 8.90304i −0.175078 0.538836i
\(274\) 7.71096 0.465836
\(275\) 0 0
\(276\) −11.1848 −0.673246
\(277\) −3.49701 10.7627i −0.210115 0.646668i −0.999464 0.0327234i \(-0.989582\pi\)
0.789349 0.613944i \(-0.210418\pi\)
\(278\) 13.0793 + 9.50268i 0.784446 + 0.569933i
\(279\) 0.0172840 0.0125576i 0.00103477 0.000751802i
\(280\) 0 0
\(281\) −3.18835 + 9.81272i −0.190201 + 0.585378i −0.999999 0.00133051i \(-0.999576\pi\)
0.809798 + 0.586708i \(0.199576\pi\)
\(282\) −5.64583 + 4.10194i −0.336205 + 0.244267i
\(283\) −1.70370 1.23781i −0.101274 0.0735801i 0.535996 0.844221i \(-0.319936\pi\)
−0.637270 + 0.770641i \(0.719936\pi\)
\(284\) 1.87674 + 5.77602i 0.111364 + 0.342744i
\(285\) 0 0
\(286\) 15.9113 + 28.3003i 0.940858 + 1.67343i
\(287\) 6.39459 0.377461
\(288\) 2.01117 + 6.18975i 0.118509 + 0.364734i
\(289\) −29.7227 21.5948i −1.74839 1.27028i
\(290\) 0 0
\(291\) 0.587045 1.80674i 0.0344132 0.105913i
\(292\) −4.19315 + 12.9052i −0.245386 + 0.755220i
\(293\) −18.9111 + 13.7398i −1.10480 + 0.802685i −0.981837 0.189726i \(-0.939240\pi\)
−0.122964 + 0.992411i \(0.539240\pi\)
\(294\) −5.83448 4.23900i −0.340274 0.247223i
\(295\) 0 0
\(296\) 1.35614 0.0788238
\(297\) 3.01430 + 1.38348i 0.174907 + 0.0802778i
\(298\) −17.4552 −1.01115
\(299\) −13.8372 42.5867i −0.800228 2.46285i
\(300\) 0 0
\(301\) 2.78398 2.02268i 0.160466 0.116585i
\(302\) 3.81196 11.7320i 0.219353 0.675100i
\(303\) 2.07354 6.38170i 0.119122 0.366619i
\(304\) 23.7735 17.2725i 1.36351 0.990645i
\(305\) 0 0
\(306\) 4.13893 + 12.7383i 0.236607 + 0.728201i
\(307\) 32.0518 1.82929 0.914646 0.404256i \(-0.132469\pi\)
0.914646 + 0.404256i \(0.132469\pi\)
\(308\) −7.04821 3.23494i −0.401609 0.184328i
\(309\) 4.24678 0.241591
\(310\) 0 0
\(311\) −1.32220 0.960634i −0.0749751 0.0544726i 0.549666 0.835384i \(-0.314755\pi\)
−0.624641 + 0.780912i \(0.714755\pi\)
\(312\) −5.24064 + 3.80755i −0.296693 + 0.215560i
\(313\) −9.39813 + 28.9245i −0.531214 + 1.63491i 0.220477 + 0.975392i \(0.429239\pi\)
−0.751691 + 0.659516i \(0.770761\pi\)
\(314\) −7.14811 + 21.9996i −0.403391 + 1.24151i
\(315\) 0 0
\(316\) −2.77599 2.01688i −0.156162 0.113458i
\(317\) 9.09561 + 27.9934i 0.510861 + 1.57227i 0.790690 + 0.612217i \(0.209722\pi\)
−0.279829 + 0.960050i \(0.590278\pi\)
\(318\) 3.05284 0.171195
\(319\) −9.00190 16.0110i −0.504010 0.896443i
\(320\) 0 0
\(321\) 4.85867 + 14.9534i 0.271185 + 0.834620i
\(322\) 21.5853 + 15.6826i 1.20290 + 0.873958i
\(323\) 35.6717 25.9170i 1.98482 1.44206i
\(324\) 0.413545 1.27276i 0.0229747 0.0707090i
\(325\) 0 0
\(326\) 34.5972 25.1363i 1.91616 1.39217i
\(327\) −3.42939 2.49159i −0.189645 0.137786i
\(328\) −1.36738 4.20837i −0.0755010 0.232368i
\(329\) 6.67364 0.367929
\(330\) 0 0
\(331\) −22.7902 −1.25266 −0.626332 0.779557i \(-0.715444\pi\)
−0.626332 + 0.779557i \(0.715444\pi\)
\(332\) 6.65002 + 20.4666i 0.364967 + 1.12325i
\(333\) −0.907432 0.659288i −0.0497270 0.0361287i
\(334\) −4.51117 + 3.27756i −0.246840 + 0.179340i
\(335\) 0 0
\(336\) 2.63785 8.11848i 0.143907 0.442899i
\(337\) −11.7227 + 8.51705i −0.638577 + 0.463954i −0.859361 0.511369i \(-0.829138\pi\)
0.220784 + 0.975323i \(0.429138\pi\)
\(338\) 23.2145 + 16.8663i 1.26270 + 0.917406i
\(339\) 2.22382 + 6.84421i 0.120781 + 0.371727i
\(340\) 0 0
\(341\) 0.0694723 0.0139401i 0.00376213 0.000754899i
\(342\) −10.9896 −0.594247
\(343\) 5.91066 + 18.1911i 0.319146 + 0.982229i
\(344\) −1.92646 1.39966i −0.103868 0.0754644i
\(345\) 0 0
\(346\) 9.03783 27.8156i 0.485877 1.49537i
\(347\) −1.35574 + 4.17255i −0.0727802 + 0.223994i −0.980829 0.194870i \(-0.937572\pi\)
0.908049 + 0.418864i \(0.137572\pi\)
\(348\) −5.99606 + 4.35639i −0.321422 + 0.233527i
\(349\) −11.6548 8.46769i −0.623866 0.453265i 0.230404 0.973095i \(-0.425995\pi\)
−0.854270 + 0.519830i \(0.825995\pi\)
\(350\) 0 0
\(351\) 5.35772 0.285974
\(352\) −2.50114 + 21.4401i −0.133311 + 1.14276i
\(353\) 6.01065 0.319914 0.159957 0.987124i \(-0.448864\pi\)
0.159957 + 0.987124i \(0.448864\pi\)
\(354\) −3.19752 9.84096i −0.169946 0.523041i
\(355\) 0 0
\(356\) 15.7055 11.4107i 0.832389 0.604766i
\(357\) 3.95804 12.1816i 0.209482 0.644718i
\(358\) 10.8963 33.5354i 0.575888 1.77240i
\(359\) 1.98787 1.44428i 0.104916 0.0762259i −0.534090 0.845427i \(-0.679346\pi\)
0.639006 + 0.769201i \(0.279346\pi\)
\(360\) 0 0
\(361\) 5.30818 + 16.3369i 0.279378 + 0.859836i
\(362\) 22.2742 1.17070
\(363\) 7.17195 + 8.34045i 0.376430 + 0.437760i
\(364\) −12.5277 −0.656632
\(365\) 0 0
\(366\) 13.7169 + 9.96589i 0.716992 + 0.520926i
\(367\) 1.19726 0.869862i 0.0624966 0.0454064i −0.556098 0.831116i \(-0.687702\pi\)
0.618595 + 0.785710i \(0.287702\pi\)
\(368\) 12.6179 38.8338i 0.657752 2.02435i
\(369\) −1.13095 + 3.48070i −0.0588749 + 0.181198i
\(370\) 0 0
\(371\) −2.36186 1.71599i −0.122622 0.0890898i
\(372\) −0.00883507 0.0271915i −0.000458077 0.00140982i
\(373\) 24.3331 1.25992 0.629961 0.776627i \(-0.283071\pi\)
0.629961 + 0.776627i \(0.283071\pi\)
\(374\) −5.14728 + 44.1232i −0.266159 + 2.28156i
\(375\) 0 0
\(376\) −1.42705 4.39201i −0.0735945 0.226501i
\(377\) −24.0052 17.4408i −1.23633 0.898245i
\(378\) −2.58268 + 1.87642i −0.132839 + 0.0965128i
\(379\) 4.92299 15.1514i 0.252877 0.778276i −0.741363 0.671104i \(-0.765820\pi\)
0.994241 0.107172i \(-0.0341795\pi\)
\(380\) 0 0
\(381\) 10.2640 7.45726i 0.525842 0.382047i
\(382\) −19.8432 14.4169i −1.01527 0.737634i
\(383\) 1.21133 + 3.72809i 0.0618960 + 0.190496i 0.977223 0.212215i \(-0.0680678\pi\)
−0.915327 + 0.402712i \(0.868068\pi\)
\(384\) −9.14301 −0.466577
\(385\) 0 0
\(386\) 13.8454 0.704710
\(387\) 0.608609 + 1.87310i 0.0309373 + 0.0952153i
\(388\) −2.05678 1.49434i −0.104417 0.0758635i
\(389\) 28.5510 20.7435i 1.44759 1.05174i 0.461209 0.887292i \(-0.347416\pi\)
0.986386 0.164447i \(-0.0525840\pi\)
\(390\) 0 0
\(391\) 18.9328 58.2693i 0.957475 2.94680i
\(392\) 3.86090 2.80511i 0.195005 0.141679i
\(393\) 0.784829 + 0.570212i 0.0395894 + 0.0287634i
\(394\) −3.89078 11.9746i −0.196015 0.603271i
\(395\) 0 0
\(396\) 3.00739 3.26435i 0.151127 0.164040i
\(397\) −23.2231 −1.16553 −0.582767 0.812639i \(-0.698030\pi\)
−0.582767 + 0.812639i \(0.698030\pi\)
\(398\) −0.361006 1.11106i −0.0180956 0.0556925i
\(399\) 8.50217 + 6.17719i 0.425641 + 0.309246i
\(400\) 0 0
\(401\) 1.75973 5.41589i 0.0878766 0.270457i −0.897455 0.441106i \(-0.854586\pi\)
0.985332 + 0.170649i \(0.0545864\pi\)
\(402\) 0.197887 0.609032i 0.00986969 0.0303758i
\(403\) 0.0926028 0.0672799i 0.00461287 0.00335145i
\(404\) −7.26488 5.27824i −0.361441 0.262602i
\(405\) 0 0
\(406\) 17.6799 0.877438
\(407\) −1.82315 3.24270i −0.0903704 0.160735i
\(408\) −8.86324 −0.438796
\(409\) 7.86540 + 24.2072i 0.388919 + 1.19697i 0.933597 + 0.358324i \(0.116652\pi\)
−0.544679 + 0.838645i \(0.683348\pi\)
\(410\) 0 0
\(411\) 3.41434 2.48066i 0.168417 0.122362i
\(412\) 1.75624 5.40515i 0.0865237 0.266292i
\(413\) −3.05777 + 9.41086i −0.150463 + 0.463078i
\(414\) −12.3539 + 8.97566i −0.607163 + 0.441130i
\(415\) 0 0
\(416\) 10.7753 + 33.1629i 0.528301 + 1.62594i
\(417\) 8.84846 0.433311
\(418\) −33.1258 15.2039i −1.62023 0.743645i
\(419\) −13.4850 −0.658786 −0.329393 0.944193i \(-0.606844\pi\)
−0.329393 + 0.944193i \(0.606844\pi\)
\(420\) 0 0
\(421\) −2.38633 1.73377i −0.116303 0.0844990i 0.528113 0.849174i \(-0.322900\pi\)
−0.644416 + 0.764675i \(0.722900\pi\)
\(422\) −5.64872 + 4.10404i −0.274975 + 0.199781i
\(423\) −1.18030 + 3.63259i −0.0573882 + 0.176623i
\(424\) −0.624271 + 1.92131i −0.0303173 + 0.0933070i
\(425\) 0 0
\(426\) 6.70810 + 4.87372i 0.325009 + 0.236133i
\(427\) −5.01039 15.4204i −0.242470 0.746246i
\(428\) 21.0415 1.01708
\(429\) 16.1497 + 7.41230i 0.779717 + 0.357869i
\(430\) 0 0
\(431\) 3.56072 + 10.9588i 0.171514 + 0.527866i 0.999457 0.0329464i \(-0.0104891\pi\)
−0.827943 + 0.560812i \(0.810489\pi\)
\(432\) 3.95252 + 2.87167i 0.190166 + 0.138163i
\(433\) 9.03174 6.56194i 0.434038 0.315347i −0.349224 0.937039i \(-0.613555\pi\)
0.783261 + 0.621693i \(0.213555\pi\)
\(434\) −0.0210757 + 0.0648642i −0.00101166 + 0.00311358i
\(435\) 0 0
\(436\) −4.58941 + 3.33440i −0.219793 + 0.159689i
\(437\) 40.6692 + 29.5479i 1.94547 + 1.41347i
\(438\) 5.72480 + 17.6191i 0.273541 + 0.841874i
\(439\) 0.993624 0.0474231 0.0237115 0.999719i \(-0.492452\pi\)
0.0237115 + 0.999719i \(0.492452\pi\)
\(440\) 0 0
\(441\) −3.94716 −0.187960
\(442\) 22.1752 + 68.2483i 1.05477 + 3.24624i
\(443\) −8.88506 6.45537i −0.422142 0.306704i 0.356357 0.934350i \(-0.384019\pi\)
−0.778499 + 0.627646i \(0.784019\pi\)
\(444\) −1.21438 + 0.882299i −0.0576320 + 0.0418721i
\(445\) 0 0
\(446\) −15.0863 + 46.4307i −0.714355 + 2.19856i
\(447\) −7.72900 + 5.61545i −0.365569 + 0.265602i
\(448\) −2.99681 2.17731i −0.141586 0.102868i
\(449\) 8.96777 + 27.5999i 0.423215 + 1.30252i 0.904693 + 0.426064i \(0.140100\pi\)
−0.481478 + 0.876458i \(0.659900\pi\)
\(450\) 0 0
\(451\) −8.22451 + 8.92722i −0.387277 + 0.420366i
\(452\) 9.63070 0.452990
\(453\) −2.08635 6.42113i −0.0980254 0.301691i
\(454\) −18.0886 13.1421i −0.848938 0.616790i
\(455\) 0 0
\(456\) 2.24724 6.91629i 0.105237 0.323885i
\(457\) 1.09908 3.38262i 0.0514129 0.158232i −0.922054 0.387062i \(-0.873490\pi\)
0.973466 + 0.228830i \(0.0734899\pi\)
\(458\) −9.88383 + 7.18103i −0.461841 + 0.335547i
\(459\) 5.93066 + 4.30888i 0.276820 + 0.201121i
\(460\) 0 0
\(461\) 25.1829 1.17288 0.586441 0.809992i \(-0.300528\pi\)
0.586441 + 0.809992i \(0.300528\pi\)
\(462\) −10.3809 + 2.08301i −0.482965 + 0.0969104i
\(463\) 17.8743 0.830690 0.415345 0.909664i \(-0.363661\pi\)
0.415345 + 0.909664i \(0.363661\pi\)
\(464\) −8.36114 25.7329i −0.388156 1.19462i
\(465\) 0 0
\(466\) 9.63371 6.99930i 0.446273 0.324236i
\(467\) 7.79502 23.9906i 0.360711 1.11015i −0.591913 0.806002i \(-0.701627\pi\)
0.952624 0.304151i \(-0.0983729\pi\)
\(468\) 2.21566 6.81910i 0.102419 0.315213i
\(469\) −0.495432 + 0.359952i −0.0228769 + 0.0166210i
\(470\) 0 0
\(471\) 3.91229 + 12.0408i 0.180269 + 0.554810i
\(472\) 6.84727 0.315171
\(473\) −0.756881 + 6.48809i −0.0348014 + 0.298323i
\(474\) −4.68468 −0.215175
\(475\) 0 0
\(476\) −13.8674 10.0753i −0.635613 0.461800i
\(477\) 1.35177 0.982116i 0.0618931 0.0449680i
\(478\) 6.12135 18.8396i 0.279984 0.861702i
\(479\) −1.61793 + 4.97948i −0.0739252 + 0.227518i −0.981191 0.193039i \(-0.938166\pi\)
0.907266 + 0.420558i \(0.138166\pi\)
\(480\) 0 0
\(481\) −4.86176 3.53228i −0.221677 0.161058i
\(482\) −15.3461 47.2304i −0.698995 2.15128i
\(483\) 14.6029 0.664456
\(484\) 13.5813 5.67904i 0.617333 0.258138i
\(485\) 0 0
\(486\) −0.564602 1.73767i −0.0256109 0.0788222i
\(487\) 7.31762 + 5.31656i 0.331593 + 0.240917i 0.741106 0.671388i \(-0.234301\pi\)
−0.409513 + 0.912304i \(0.634301\pi\)
\(488\) −9.07699 + 6.59482i −0.410896 + 0.298533i
\(489\) 7.23278 22.2602i 0.327078 1.00664i
\(490\) 0 0
\(491\) 28.1629 20.4615i 1.27097 0.923416i 0.271733 0.962373i \(-0.412403\pi\)
0.999241 + 0.0389565i \(0.0124034\pi\)
\(492\) 3.96241 + 2.87886i 0.178639 + 0.129789i
\(493\) −12.5457 38.6117i −0.565030 1.73898i
\(494\) −58.8789 −2.64909
\(495\) 0 0
\(496\) 0.104377 0.00468664
\(497\) −2.45028 7.54120i −0.109910 0.338269i
\(498\) 23.7694 + 17.2694i 1.06513 + 0.773862i
\(499\) −15.8561 + 11.5201i −0.709815 + 0.515711i −0.883114 0.469158i \(-0.844557\pi\)
0.173299 + 0.984869i \(0.444557\pi\)
\(500\) 0 0
\(501\) −0.943091 + 2.90254i −0.0421342 + 0.129676i
\(502\) 8.19549 5.95437i 0.365783 0.265757i
\(503\) 14.8989 + 10.8247i 0.664307 + 0.482647i 0.868115 0.496364i \(-0.165332\pi\)
−0.203808 + 0.979011i \(0.565332\pi\)
\(504\) −0.652802 2.00912i −0.0290781 0.0894932i
\(505\) 0 0
\(506\) −49.6561 + 9.96384i −2.20748 + 0.442947i
\(507\) 15.7051 0.697489
\(508\) −5.24667 16.1476i −0.232783 0.716433i
\(509\) −1.00187 0.727900i −0.0444070 0.0322636i 0.565360 0.824844i \(-0.308737\pi\)
−0.609767 + 0.792580i \(0.708737\pi\)
\(510\) 0 0
\(511\) 5.47459 16.8491i 0.242182 0.745359i
\(512\) −6.17504 + 19.0048i −0.272901 + 0.839902i
\(513\) −4.86606 + 3.53540i −0.214842 + 0.156092i
\(514\) 28.0019 + 20.3446i 1.23511 + 0.897362i
\(515\) 0 0
\(516\) 2.63570 0.116030
\(517\) −8.58340 + 9.31678i −0.377498 + 0.409752i
\(518\) 3.58071 0.157327
\(519\) −4.94657 15.2240i −0.217130 0.668258i
\(520\) 0 0
\(521\) −26.8472 + 19.5057i −1.17620 + 0.854558i −0.991738 0.128282i \(-0.959054\pi\)
−0.184461 + 0.982840i \(0.559054\pi\)
\(522\) −3.12687 + 9.62351i −0.136859 + 0.421210i
\(523\) −4.06383 + 12.5072i −0.177699 + 0.546901i −0.999746 0.0225177i \(-0.992832\pi\)
0.822047 + 0.569419i \(0.192832\pi\)
\(524\) 1.05031 0.763092i 0.0458829 0.0333359i
\(525\) 0 0
\(526\) 1.81165 + 5.57570i 0.0789919 + 0.243112i
\(527\) 0.156615 0.00682224
\(528\) 7.94115 + 14.1243i 0.345594 + 0.614681i
\(529\) 46.8514 2.03702
\(530\) 0 0
\(531\) −4.58172 3.32882i −0.198830 0.144458i
\(532\) 11.3781 8.26669i 0.493304 0.358407i
\(533\) −6.05930 + 18.6486i −0.262458 + 0.807761i
\(534\) 8.19021 25.2069i 0.354425 1.09081i
\(535\) 0 0
\(536\) 0.342830 + 0.249080i 0.0148080 + 0.0107586i
\(537\) −5.96375 18.3545i −0.257355 0.792057i
\(538\) 5.92750 0.255553
\(539\) −11.8979 5.46082i −0.512479 0.235214i
\(540\) 0 0
\(541\) 10.0900 + 31.0538i 0.433802 + 1.33511i 0.894309 + 0.447450i \(0.147668\pi\)
−0.460507 + 0.887656i \(0.652332\pi\)
\(542\) −3.00030 2.17985i −0.128874 0.0936324i
\(543\) 9.86277 7.16572i 0.423252 0.307511i
\(544\) −14.7433 + 45.3752i −0.632114 + 1.94545i
\(545\) 0 0
\(546\) −13.8372 + 10.0533i −0.592179 + 0.430243i
\(547\) 22.4136 + 16.2845i 0.958338 + 0.696273i 0.952764 0.303711i \(-0.0982258\pi\)
0.00557389 + 0.999984i \(0.498226\pi\)
\(548\) −1.74531 5.37150i −0.0745558 0.229459i
\(549\) 9.27977 0.396051
\(550\) 0 0
\(551\) 33.3110 1.41909
\(552\) −3.12260 9.61038i −0.132907 0.409045i
\(553\) 3.62435 + 2.63324i 0.154123 + 0.111977i
\(554\) −16.7276 + 12.1533i −0.710686 + 0.516343i
\(555\) 0 0
\(556\) 3.65924 11.2620i 0.155186 0.477614i
\(557\) −18.9514 + 13.7690i −0.802996 + 0.583411i −0.911792 0.410653i \(-0.865301\pi\)
0.108795 + 0.994064i \(0.465301\pi\)
\(558\) −0.0315794 0.0229438i −0.00133686 0.000971289i
\(559\) 3.26075 + 10.0356i 0.137915 + 0.424459i
\(560\) 0 0
\(561\) 11.9155 + 21.1932i 0.503073 + 0.894778i
\(562\) 18.8514 0.795198
\(563\) −6.82482 21.0046i −0.287632 0.885240i −0.985597 0.169108i \(-0.945911\pi\)
0.697966 0.716131i \(-0.254089\pi\)
\(564\) 4.13532 + 3.00448i 0.174128 + 0.126512i
\(565\) 0 0
\(566\) −1.18899 + 3.65933i −0.0499769 + 0.153813i
\(567\) −0.539926 + 1.66172i −0.0226748 + 0.0697858i
\(568\) −4.43901 + 3.22513i −0.186257 + 0.135323i
\(569\) 11.1119 + 8.07328i 0.465836 + 0.338449i 0.795816 0.605538i \(-0.207042\pi\)
−0.329980 + 0.943988i \(0.607042\pi\)
\(570\) 0 0
\(571\) −26.5201 −1.10983 −0.554915 0.831907i \(-0.687249\pi\)
−0.554915 + 0.831907i \(0.687249\pi\)
\(572\) 16.1127 17.4894i 0.673708 0.731271i
\(573\) −13.4244 −0.560811
\(574\) −3.61040 11.1117i −0.150695 0.463792i
\(575\) 0 0
\(576\) 1.71517 1.24614i 0.0714654 0.0519227i
\(577\) −1.75758 + 5.40927i −0.0731690 + 0.225191i −0.980952 0.194248i \(-0.937773\pi\)
0.907783 + 0.419439i \(0.137773\pi\)
\(578\) −20.7430 + 63.8405i −0.862797 + 2.65542i
\(579\) 6.13058 4.45413i 0.254778 0.185107i
\(580\) 0 0
\(581\) −8.68228 26.7213i −0.360202 1.10859i
\(582\) −3.47096 −0.143876
\(583\) 5.43336 1.09024i 0.225027 0.0451532i
\(584\) −12.2593 −0.507292
\(585\) 0 0
\(586\) 34.5524 + 25.1038i 1.42735 + 1.03703i
\(587\) 10.9590 7.96215i 0.452324 0.328633i −0.338188 0.941078i \(-0.609814\pi\)
0.790513 + 0.612446i \(0.209814\pi\)
\(588\) −1.63233 + 5.02379i −0.0673161 + 0.207178i
\(589\) −0.0397090 + 0.122212i −0.00163618 + 0.00503565i
\(590\) 0 0
\(591\) −5.57508 4.05054i −0.229328 0.166617i
\(592\) −1.69338 5.21169i −0.0695975 0.214199i
\(593\) −21.1786 −0.869702 −0.434851 0.900502i \(-0.643199\pi\)
−0.434851 + 0.900502i \(0.643199\pi\)
\(594\) 0.702153 6.01896i 0.0288097 0.246961i
\(595\) 0 0
\(596\) 3.95083 + 12.1594i 0.161833 + 0.498069i
\(597\) −0.517284 0.375829i −0.0211710 0.0153816i
\(598\) −66.1889 + 48.0890i −2.70666 + 1.96651i
\(599\) −10.4573 + 32.1842i −0.427273 + 1.31501i 0.473529 + 0.880778i \(0.342980\pi\)
−0.900801 + 0.434231i \(0.857020\pi\)
\(600\) 0 0
\(601\) −23.7186 + 17.2325i −0.967500 + 0.702930i −0.954880 0.296990i \(-0.904017\pi\)
−0.0126196 + 0.999920i \(0.504017\pi\)
\(602\) −5.08658 3.69562i −0.207313 0.150622i
\(603\) −0.108307 0.333334i −0.00441060 0.0135744i
\(604\) −9.03538 −0.367644
\(605\) 0 0
\(606\) −12.2600 −0.498028
\(607\) −2.21715 6.82370i −0.0899915 0.276965i 0.895925 0.444206i \(-0.146514\pi\)
−0.985916 + 0.167241i \(0.946514\pi\)
\(608\) −31.6697 23.0094i −1.28438 0.933154i
\(609\) 7.82847 5.68772i 0.317226 0.230478i
\(610\) 0 0
\(611\) −6.32372 + 19.4624i −0.255830 + 0.787364i
\(612\) 7.93678 5.76641i 0.320825 0.233093i
\(613\) −22.2515 16.1667i −0.898731 0.652967i 0.0394084 0.999223i \(-0.487453\pi\)
−0.938140 + 0.346257i \(0.887453\pi\)
\(614\) −18.0965 55.6953i −0.730315 2.24768i
\(615\) 0 0
\(616\) 0.811840 6.95921i 0.0327100 0.280395i
\(617\) −24.0712 −0.969068 −0.484534 0.874772i \(-0.661011\pi\)
−0.484534 + 0.874772i \(0.661011\pi\)
\(618\) −2.39774 7.37950i −0.0964514 0.296847i
\(619\) −21.8216 15.8543i −0.877083 0.637238i 0.0553955 0.998464i \(-0.482358\pi\)
−0.932478 + 0.361227i \(0.882358\pi\)
\(620\) 0 0
\(621\) −2.58268 + 7.94866i −0.103639 + 0.318969i
\(622\) −0.922745 + 2.83992i −0.0369987 + 0.113870i
\(623\) −20.5051 + 14.8978i −0.821521 + 0.596870i
\(624\) 21.1765 + 15.3856i 0.847737 + 0.615917i
\(625\) 0 0
\(626\) 55.5673 2.22092
\(627\) −19.5589 + 3.92463i −0.781108 + 0.156735i
\(628\) 16.9430 0.676098
\(629\) −2.54088 7.82003i −0.101312 0.311805i
\(630\) 0 0
\(631\) −7.87681 + 5.72284i −0.313571 + 0.227823i −0.733427 0.679768i \(-0.762080\pi\)
0.419856 + 0.907591i \(0.362080\pi\)
\(632\) 0.957964 2.94831i 0.0381058 0.117277i
\(633\) −1.18090 + 3.63445i −0.0469367 + 0.144456i
\(634\) 43.5078 31.6103i 1.72792 1.25540i
\(635\) 0 0
\(636\) −0.690983 2.12663i −0.0273993 0.0843262i
\(637\) −21.1478 −0.837904
\(638\) −22.7393 + 24.6821i −0.900256 + 0.977175i
\(639\) 4.53818 0.179528
\(640\) 0 0
\(641\) −20.3196 14.7631i −0.802577 0.583107i 0.109092 0.994032i \(-0.465206\pi\)
−0.911669 + 0.410925i \(0.865206\pi\)
\(642\) 23.2409 16.8855i 0.917245 0.666418i
\(643\) 8.32051 25.6079i 0.328129 1.00988i −0.641880 0.766806i \(-0.721845\pi\)
0.970008 0.243071i \(-0.0781549\pi\)
\(644\) 6.03897 18.5860i 0.237969 0.732393i
\(645\) 0 0
\(646\) −65.1754 47.3527i −2.56429 1.86307i
\(647\) 8.28198 + 25.4893i 0.325598 + 1.00209i 0.971170 + 0.238389i \(0.0766192\pi\)
−0.645572 + 0.763700i \(0.723381\pi\)
\(648\) 1.20906 0.0474962
\(649\) −9.20530 16.3728i −0.361340 0.642687i
\(650\) 0 0
\(651\) 0.0115351 + 0.0355014i 0.000452096 + 0.00139141i
\(652\) −25.3409 18.4112i −0.992425 0.721039i
\(653\) 23.2700 16.9066i 0.910625 0.661608i −0.0305480 0.999533i \(-0.509725\pi\)
0.941173 + 0.337926i \(0.109725\pi\)
\(654\) −2.39332 + 7.36589i −0.0935863 + 0.288029i
\(655\) 0 0
\(656\) −14.4655 + 10.5098i −0.564784 + 0.410340i
\(657\) 8.20305 + 5.95986i 0.320031 + 0.232516i
\(658\) −3.76795 11.5966i −0.146890 0.452081i
\(659\) 36.5327 1.42311 0.711556 0.702629i \(-0.247991\pi\)
0.711556 + 0.702629i \(0.247991\pi\)
\(660\) 0 0
\(661\) −35.7750 −1.39149 −0.695743 0.718291i \(-0.744925\pi\)
−0.695743 + 0.718291i \(0.744925\pi\)
\(662\) 12.8674 + 39.6018i 0.500106 + 1.53917i
\(663\) 31.7748 + 23.0858i 1.23403 + 0.896576i
\(664\) −15.7291 + 11.4279i −0.610408 + 0.443487i
\(665\) 0 0
\(666\) −0.633284 + 1.94905i −0.0245393 + 0.0755241i
\(667\) 37.4466 27.2065i 1.44994 1.05344i
\(668\) 3.30423 + 2.40066i 0.127844 + 0.0928844i
\(669\) 8.25698 + 25.4124i 0.319233 + 0.982499i
\(670\) 0 0
\(671\) 27.9720 + 12.8384i 1.07985 + 0.495621i
\(672\) −11.3715 −0.438666
\(673\) 3.48925 + 10.7388i 0.134501 + 0.413951i 0.995512 0.0946349i \(-0.0301684\pi\)
−0.861011 + 0.508586i \(0.830168\pi\)
\(674\) 21.4185 + 15.5614i 0.825009 + 0.599404i
\(675\) 0 0
\(676\) 6.49478 19.9889i 0.249799 0.768803i
\(677\) 13.5527 41.7108i 0.520872 1.60308i −0.251466 0.967866i \(-0.580913\pi\)
0.772338 0.635212i \(-0.219087\pi\)
\(678\) 10.6374 7.72851i 0.408526 0.296812i
\(679\) 2.68534 + 1.95101i 0.103054 + 0.0748729i
\(680\) 0 0
\(681\) −12.2373 −0.468935
\(682\) −0.0634474 0.112849i −0.00242953 0.00432121i
\(683\) 18.5355 0.709241 0.354620 0.935010i \(-0.384610\pi\)
0.354620 + 0.935010i \(0.384610\pi\)
\(684\) 2.48739 + 7.65539i 0.0951076 + 0.292711i
\(685\) 0 0
\(686\) 28.2730 20.5415i 1.07947 0.784279i
\(687\) −2.06628 + 6.35937i −0.0788337 + 0.242625i
\(688\) −2.97341 + 9.15120i −0.113360 + 0.348886i
\(689\) 7.24238 5.26190i 0.275913 0.200462i
\(690\) 0 0
\(691\) −8.71597 26.8250i −0.331571 1.02047i −0.968386 0.249455i \(-0.919749\pi\)
0.636815 0.771017i \(-0.280251\pi\)
\(692\) −21.4221 −0.814347
\(693\) −3.92646 + 4.26194i −0.149154 + 0.161898i
\(694\) 8.01596 0.304282
\(695\) 0 0
\(696\) −5.41716 3.93580i −0.205337 0.149186i
\(697\) −21.7052 + 15.7698i −0.822144 + 0.597322i
\(698\) −8.13371 + 25.0330i −0.307865 + 0.947512i
\(699\) 2.01399 6.19844i 0.0761762 0.234446i
\(700\) 0 0
\(701\) −0.255153 0.185379i −0.00963699 0.00700168i 0.582956 0.812503i \(-0.301896\pi\)
−0.592593 + 0.805502i \(0.701896\pi\)
\(702\) −3.02498 9.30992i −0.114170 0.351380i
\(703\) 6.74647 0.254448
\(704\) 6.89405 1.38334i 0.259829 0.0521366i
\(705\) 0 0
\(706\) −3.39362 10.4445i −0.127721 0.393084i
\(707\) 9.48505 + 6.89129i 0.356722 + 0.259174i
\(708\) −6.13154 + 4.45482i −0.230437 + 0.167423i
\(709\) 12.0593 37.1146i 0.452895 1.39387i −0.420693 0.907203i \(-0.638213\pi\)
0.873589 0.486665i \(-0.161787\pi\)
\(710\) 0 0
\(711\) −2.07433 + 1.50709i −0.0777934 + 0.0565202i
\(712\) 14.1892 + 10.3090i 0.531762 + 0.386348i
\(713\) 0.0551768 + 0.169817i 0.00206639 + 0.00635969i
\(714\) −23.4023 −0.875808
\(715\) 0 0
\(716\) −25.8272 −0.965209
\(717\) −3.35032 10.3112i −0.125120 0.385080i
\(718\) −3.63203 2.63882i −0.135546 0.0984800i
\(719\) −23.0320 + 16.7337i −0.858948 + 0.624062i −0.927598 0.373579i \(-0.878131\pi\)
0.0686507 + 0.997641i \(0.478131\pi\)
\(720\) 0 0
\(721\) −2.29295 + 7.05698i −0.0853939 + 0.262816i
\(722\) 25.3911 18.4477i 0.944957 0.686552i
\(723\) −21.9894 15.9762i −0.817793 0.594161i
\(724\) −5.04156 15.5163i −0.187368 0.576659i
\(725\) 0 0
\(726\) 10.4436 17.1715i 0.387599 0.637294i
\(727\) −45.8400 −1.70011 −0.850057 0.526691i \(-0.823432\pi\)
−0.850057 + 0.526691i \(0.823432\pi\)
\(728\) −3.49753 10.7643i −0.129627 0.398951i
\(729\) −0.809017 0.587785i −0.0299636 0.0217698i
\(730\) 0 0
\(731\) −4.46153 + 13.7312i −0.165016 + 0.507866i
\(732\) 3.83761 11.8109i 0.141842 0.436545i
\(733\) 30.7169 22.3171i 1.13455 0.824301i 0.148202 0.988957i \(-0.452651\pi\)
0.986351 + 0.164656i \(0.0526513\pi\)
\(734\) −2.18751 1.58932i −0.0807423 0.0586627i
\(735\) 0 0
\(736\) −54.3944 −2.00500
\(737\) 0.134693 1.15461i 0.00496149 0.0425306i
\(738\) 6.68684 0.246146
\(739\) 6.52725 + 20.0888i 0.240109 + 0.738979i 0.996403 + 0.0847466i \(0.0270081\pi\)
−0.756294 + 0.654232i \(0.772992\pi\)
\(740\) 0 0
\(741\) −26.0710 + 18.9417i −0.957741 + 0.695840i
\(742\) −1.64831 + 5.07298i −0.0605113 + 0.186235i
\(743\) −2.46606 + 7.58976i −0.0904711 + 0.278441i −0.986047 0.166467i \(-0.946764\pi\)
0.895576 + 0.444909i \(0.146764\pi\)
\(744\) 0.0208973 0.0151828i 0.000766134 0.000556629i
\(745\) 0 0
\(746\) −13.7385 42.2829i −0.503004 1.54809i
\(747\) 16.0805 0.588355
\(748\) 31.9015 6.40126i 1.16643 0.234053i
\(749\) −27.4718 −1.00380
\(750\) 0 0
\(751\) 7.78664 + 5.65733i 0.284139 + 0.206439i 0.720721 0.693226i \(-0.243811\pi\)
−0.436582 + 0.899664i \(0.643811\pi\)
\(752\) −15.0968 + 10.9684i −0.550523 + 0.399978i
\(753\) 1.71332 5.27307i 0.0624370 0.192161i
\(754\) −16.7529 + 51.5600i −0.610104 + 1.87771i
\(755\) 0 0
\(756\) 1.89169 + 1.37440i 0.0688002 + 0.0499863i
\(757\) 14.4049 + 44.3338i 0.523555 + 1.61134i 0.767155 + 0.641462i \(0.221672\pi\)
−0.243600 + 0.969876i \(0.578328\pi\)
\(758\) −29.1076 −1.05724
\(759\) −18.7818 + 20.3865i −0.681735 + 0.739984i
\(760\) 0 0
\(761\) −6.79661 20.9178i −0.246377 0.758270i −0.995407 0.0957342i \(-0.969480\pi\)
0.749030 0.662536i \(-0.230520\pi\)
\(762\) −18.7533 13.6251i −0.679361 0.493585i
\(763\) 5.99195 4.35341i 0.216923 0.157604i
\(764\) −5.55158 + 17.0860i −0.200849 + 0.618151i
\(765\) 0 0
\(766\) 5.79425 4.20977i 0.209355 0.152105i
\(767\) −24.5476 17.8348i −0.886361 0.643979i
\(768\) 6.47244 + 19.9201i 0.233554 + 0.718805i
\(769\) 48.0330 1.73211 0.866057 0.499946i \(-0.166647\pi\)
0.866057 + 0.499946i \(0.166647\pi\)
\(770\) 0 0
\(771\) 18.9439 0.682249
\(772\) −3.13377 9.64476i −0.112787 0.347123i
\(773\) −13.8222 10.0424i −0.497148 0.361199i 0.310778 0.950482i \(-0.399410\pi\)
−0.807927 + 0.589283i \(0.799410\pi\)
\(774\) 2.91121 2.11512i 0.104641 0.0760263i
\(775\) 0 0
\(776\) 0.709771 2.18445i 0.0254793 0.0784172i
\(777\) 1.58550 1.15193i 0.0568795 0.0413254i
\(778\) −52.1653 37.9003i −1.87022 1.35879i
\(779\) −6.80242 20.9357i −0.243722 0.750099i
\(780\) 0 0
\(781\) 13.6794 + 6.27849i 0.489488 + 0.224662i
\(782\) −111.942 −4.00304
\(783\) 1.71139 + 5.26712i 0.0611602 + 0.188232i
\(784\) −15.6012 11.3349i −0.557186 0.404819i
\(785\) 0 0
\(786\) 0.547722 1.68571i 0.0195366 0.0601275i
\(787\) 6.95034 21.3910i 0.247753 0.762505i −0.747418 0.664354i \(-0.768707\pi\)
0.995171 0.0981518i \(-0.0312931\pi\)
\(788\) −7.46092 + 5.42068i −0.265784 + 0.193104i
\(789\) 2.59591 + 1.88604i 0.0924170 + 0.0671449i
\(790\) 0 0
\(791\) −12.5739 −0.447076
\(792\) 3.64445 + 1.67271i 0.129500 + 0.0594371i
\(793\) 49.7184 1.76555
\(794\) 13.1118 + 40.3540i 0.465321 + 1.43211i
\(795\) 0 0
\(796\) −0.692261 + 0.502957i −0.0245365 + 0.0178268i
\(797\) 1.05615 3.25051i 0.0374109 0.115139i −0.930607 0.366020i \(-0.880720\pi\)
0.968018 + 0.250881i \(0.0807203\pi\)
\(798\) 5.93355 18.2616i 0.210045 0.646453i
\(799\) −22.6524 + 16.4579i −0.801383 + 0.582239i
\(800\) 0 0
\(801\) −4.48265 13.7962i −0.158387 0.487464i
\(802\) −10.4046 −0.367398
\(803\) 16.4810 + 29.3135i 0.581603 + 1.03445i
\(804\) −0.469045 −0.0165420
\(805\) 0 0
\(806\) −0.169194 0.122926i −0.00595959 0.00432990i
\(807\) 2.62464 1.90691i 0.0923916 0.0671264i
\(808\) 2.50703 7.71584i 0.0881969 0.271442i
\(809\) −3.12679 + 9.62328i −0.109932 + 0.338336i −0.990856 0.134921i \(-0.956922\pi\)
0.880924 + 0.473257i \(0.156922\pi\)
\(810\) 0 0
\(811\) −20.5287 14.9150i −0.720862 0.523737i 0.165798 0.986160i \(-0.446980\pi\)
−0.886659 + 0.462423i \(0.846980\pi\)
\(812\) −4.00168 12.3159i −0.140432 0.432204i
\(813\) −2.02977 −0.0711872
\(814\) −4.60538 + 4.99887i −0.161419 + 0.175210i
\(815\) 0 0
\(816\) 11.0674 + 34.0618i 0.387435 + 1.19240i
\(817\) −9.58370 6.96297i −0.335291 0.243603i
\(818\) 37.6232 27.3349i 1.31547 0.955741i
\(819\) −2.89277 + 8.90304i −0.101082 + 0.311097i
\(820\) 0 0
\(821\) −1.21284 + 0.881177i −0.0423282 + 0.0307533i −0.608748 0.793363i \(-0.708328\pi\)
0.566420 + 0.824117i \(0.308328\pi\)
\(822\) −6.23830 4.53239i −0.217586 0.158085i
\(823\) 5.90982 + 18.1885i 0.206003 + 0.634013i 0.999671 + 0.0256610i \(0.00816904\pi\)
−0.793667 + 0.608352i \(0.791831\pi\)
\(824\) 5.13460 0.178872
\(825\) 0 0
\(826\) 18.0794 0.629062
\(827\) 5.13910 + 15.8165i 0.178704 + 0.549994i 0.999783 0.0208200i \(-0.00662770\pi\)
−0.821079 + 0.570814i \(0.806628\pi\)
\(828\) 9.04870 + 6.57426i 0.314464 + 0.228471i
\(829\) −20.7881 + 15.1034i −0.722001 + 0.524564i −0.887023 0.461725i \(-0.847231\pi\)
0.165022 + 0.986290i \(0.447231\pi\)
\(830\) 0 0
\(831\) −3.49701 + 10.7627i −0.121310 + 0.373354i
\(832\) 9.18940 6.67649i 0.318585 0.231466i
\(833\) −23.4093 17.0078i −0.811083 0.589286i
\(834\) −4.99586 15.3757i −0.172992 0.532416i
\(835\) 0 0
\(836\) −3.09338 + 26.5169i −0.106987 + 0.917105i
\(837\) −0.0213642 −0.000738455
\(838\) 7.61367 + 23.4325i 0.263010 + 0.809461i
\(839\) 22.9737 + 16.6914i 0.793141 + 0.576250i 0.908894 0.417028i \(-0.136928\pi\)
−0.115753 + 0.993278i \(0.536928\pi\)
\(840\) 0 0
\(841\) 0.516507 1.58965i 0.0178106 0.0548154i
\(842\) −1.66539 + 5.12555i −0.0573932 + 0.176638i
\(843\) 8.34720 6.06459i 0.287493 0.208876i
\(844\) 4.13743 + 3.00602i 0.142416 + 0.103471i
\(845\) 0 0
\(846\) 6.97864 0.239930
\(847\) −17.7318 + 7.41457i −0.609273 + 0.254768i
\(848\) 8.16320 0.280325
\(849\) 0.650755 + 2.00282i 0.0223339 + 0.0687365i
\(850\) 0 0
\(851\) 7.58406 5.51014i 0.259978 0.188885i
\(852\) 1.87674 5.77602i 0.0642962 0.197883i
\(853\) −4.66838 + 14.3678i −0.159842 + 0.491943i −0.998619 0.0525314i \(-0.983271\pi\)
0.838777 + 0.544475i \(0.183271\pi\)
\(854\) −23.9666 + 17.4128i −0.820122 + 0.595853i
\(855\) 0 0
\(856\) 5.87441 + 18.0796i 0.200783 + 0.617947i
\(857\) −2.37040 −0.0809713 −0.0404856 0.999180i \(-0.512891\pi\)
−0.0404856 + 0.999180i \(0.512891\pi\)
\(858\) 3.76194 32.2479i 0.128430 1.10092i
\(859\) 45.0423 1.53682 0.768411 0.639956i \(-0.221048\pi\)
0.768411 + 0.639956i \(0.221048\pi\)
\(860\) 0 0
\(861\) −5.17333 3.75865i −0.176307 0.128094i
\(862\) 17.0323 12.3747i 0.580123 0.421484i
\(863\) 7.73191 23.7964i 0.263197 0.810038i −0.728906 0.684614i \(-0.759971\pi\)
0.992103 0.125424i \(-0.0400292\pi\)
\(864\) 2.01117 6.18975i 0.0684214 0.210579i
\(865\) 0 0
\(866\) −16.5018 11.9893i −0.560754 0.407412i
\(867\) 11.3530 + 34.9411i 0.385570 + 1.18666i
\(868\) 0.0499551 0.00169559
\(869\) −8.33767 + 1.67301i −0.282836 + 0.0567530i
\(870\) 0 0
\(871\) −0.580278 1.78591i −0.0196620 0.0605133i
\(872\) −4.14632 3.01248i −0.140412 0.102015i
\(873\) −1.53690 + 1.11663i −0.0520163 + 0.0377920i
\(874\) 28.3825 87.3522i 0.960051 2.95473i
\(875\) 0 0
\(876\) 10.9778 7.97585i 0.370906 0.269479i
\(877\) −39.5411 28.7283i −1.33521 0.970085i −0.999606 0.0280807i \(-0.991060\pi\)
−0.335601 0.942004i \(-0.608940\pi\)
\(878\) −0.561002 1.72659i −0.0189329 0.0582695i
\(879\) 23.3755 0.788435
\(880\) 0 0
\(881\) 44.5530 1.50103 0.750515 0.660853i \(-0.229805\pi\)
0.750515 + 0.660853i \(0.229805\pi\)
\(882\) 2.22857 + 6.85885i 0.0750400 + 0.230949i
\(883\) −35.6410 25.8947i −1.19941 0.871426i −0.205187 0.978723i \(-0.565780\pi\)
−0.994227 + 0.107297i \(0.965780\pi\)
\(884\) 42.5230 30.8948i 1.43020 1.03910i
\(885\) 0 0
\(886\) −6.20076 + 19.0840i −0.208319 + 0.641139i
\(887\) −9.81279 + 7.12941i −0.329481 + 0.239382i −0.740210 0.672375i \(-0.765274\pi\)
0.410729 + 0.911757i \(0.365274\pi\)
\(888\) −1.09714 0.797116i −0.0368175 0.0267495i
\(889\) 6.85007 + 21.0823i 0.229744 + 0.707079i
\(890\) 0 0
\(891\) −1.62543 2.89102i −0.0544538 0.0968528i
\(892\) 35.7585 1.19728
\(893\) −7.09925 21.8493i −0.237567 0.731158i
\(894\) 14.1216 + 10.2599i 0.472296 + 0.343143i
\(895\) 0 0
\(896\) 4.93655 15.1931i 0.164919 0.507567i
\(897\) −13.8372 + 42.5867i −0.462012 + 1.42193i
\(898\) 42.8963 31.1660i 1.43147 1.04002i
\(899\) 0.0957219 + 0.0695461i 0.00319251 + 0.00231949i
\(900\) 0 0
\(901\) 12.2487 0.408063
\(902\) 20.1561 + 9.25112i 0.671125 + 0.308029i
\(903\) −3.44118 −0.114515
\(904\) 2.68872 + 8.27504i 0.0894256 + 0.275224i
\(905\) 0 0
\(906\) −9.97983 + 7.25077i −0.331558 + 0.240891i
\(907\) −10.1565 + 31.2586i −0.337242 + 1.03793i 0.628365 + 0.777919i \(0.283725\pi\)
−0.965607 + 0.260006i \(0.916275\pi\)
\(908\) −5.06069 + 15.5752i −0.167945 + 0.516881i
\(909\) −5.42860 + 3.94411i −0.180055 + 0.130818i
\(910\) 0 0
\(911\) −14.4328 44.4195i −0.478179 1.47168i −0.841622 0.540067i \(-0.818399\pi\)
0.363443 0.931617i \(-0.381601\pi\)
\(912\) −29.3857 −0.973058
\(913\) 48.4714 + 22.2471i 1.60417 + 0.736271i
\(914\) −6.49842 −0.214949
\(915\) 0 0
\(916\) 7.23946 + 5.25978i 0.239199 + 0.173788i
\(917\) −1.37128 + 0.996296i −0.0452838 + 0.0329006i
\(918\) 4.13893 12.7383i 0.136605 0.420427i
\(919\) 2.26765 6.97910i 0.0748028 0.230219i −0.906663 0.421855i \(-0.861379\pi\)
0.981466 + 0.191636i \(0.0613792\pi\)
\(920\) 0 0
\(921\) −25.9304 18.8396i −0.854437 0.620785i
\(922\) −14.2183 43.7594i −0.468255 1.44114i
\(923\) 24.3143 0.800314
\(924\) 3.80067 + 6.75996i 0.125033 + 0.222386i
\(925\) 0 0
\(926\) −10.0919 31.0596i −0.331640 1.02068i
\(927\) −3.43572 2.49620i −0.112844 0.0819859i
\(928\) −29.1603 + 21.1862i −0.957232 + 0.695470i
\(929\) 3.93333 12.1055i 0.129048 0.397170i −0.865569 0.500790i \(-0.833043\pi\)
0.994617 + 0.103621i \(0.0330428\pi\)
\(930\) 0 0
\(931\) 19.2071 13.9548i 0.629488 0.457350i
\(932\) −7.05626 5.12667i −0.231135 0.167930i
\(933\) 0.505035 + 1.55434i 0.0165341 + 0.0508868i
\(934\) −46.0888 −1.50807
\(935\) 0 0
\(936\) 6.47778 0.211733
\(937\) −5.94961 18.3110i −0.194365 0.598195i −0.999983 0.00575961i \(-0.998167\pi\)
0.805618 0.592435i \(-0.201833\pi\)
\(938\) 0.905199 + 0.657665i 0.0295558 + 0.0214735i
\(939\) 24.6046 17.8763i 0.802942 0.583371i
\(940\) 0 0
\(941\) −12.7530 + 39.2496i −0.415735 + 1.27950i 0.495857 + 0.868404i \(0.334854\pi\)
−0.911592 + 0.411096i \(0.865146\pi\)
\(942\) 18.7140 13.5965i 0.609735 0.442998i
\(943\) −24.7461 17.9791i −0.805842 0.585479i
\(944\) −8.55007 26.3144i −0.278281 0.856461i
\(945\) 0 0
\(946\) 11.7015 2.34798i 0.380448 0.0763395i
\(947\) 50.3012 1.63457 0.817285 0.576233i \(-0.195478\pi\)
0.817285 + 0.576233i \(0.195478\pi\)
\(948\) 1.06034 + 3.26338i 0.0344381 + 0.105990i
\(949\) 43.9496 + 31.9312i 1.42666 + 1.03653i
\(950\) 0 0
\(951\) 9.09561 27.9934i 0.294945 0.907749i
\(952\) 4.78550 14.7282i 0.155099 0.477345i
\(953\) −7.30203 + 5.30523i −0.236536 + 0.171853i −0.699739 0.714399i \(-0.746700\pi\)
0.463203 + 0.886252i \(0.346700\pi\)
\(954\) −2.46980 1.79442i −0.0799628 0.0580963i
\(955\) 0 0
\(956\) −14.5093 −0.469263
\(957\) −2.12833 + 18.2443i −0.0687991 + 0.589756i
\(958\) 9.56617 0.309069
\(959\) 2.27868 + 7.01305i 0.0735824 + 0.226463i
\(960\) 0 0
\(961\) 25.0792 18.2211i 0.809005 0.587777i
\(962\) −3.39296 + 10.4425i −0.109393 + 0.336678i
\(963\) 4.85867 14.9534i 0.156568 0.481868i
\(964\) −29.4275 + 21.3803i −0.947796 + 0.688614i
\(965\) 0 0
\(966\) −8.24484 25.3750i −0.265273 0.816428i
\(967\) 30.2503 0.972785 0.486392 0.873740i \(-0.338313\pi\)
0.486392 + 0.873740i \(0.338313\pi\)
\(968\) 8.67130 + 10.0841i 0.278706 + 0.324114i
\(969\) −44.0926 −1.41646
\(970\) 0 0
\(971\) −10.3785 7.54040i −0.333061 0.241983i 0.408667 0.912683i \(-0.365994\pi\)
−0.741728 + 0.670700i \(0.765994\pi\)
\(972\) −1.08268 + 0.786610i −0.0347269 + 0.0252305i
\(973\) −4.77751 + 14.7037i −0.153160 + 0.471378i
\(974\) 5.10687 15.7173i 0.163635 0.503616i
\(975\) 0 0
\(976\) 36.6785 + 26.6485i 1.17405 + 0.852996i
\(977\) 4.06641 + 12.5151i 0.130096 + 0.400394i 0.994795 0.101896i \(-0.0324909\pi\)
−0.864699 + 0.502290i \(0.832491\pi\)
\(978\) −42.7645 −1.36746
\(979\) 5.57474 47.7875i 0.178169 1.52729i
\(980\) 0 0
\(981\) 1.30991 + 4.03149i 0.0418222 + 0.128715i
\(982\) −51.4562 37.3851i −1.64203 1.19301i
\(983\) 18.1519 13.1881i 0.578954 0.420635i −0.259393 0.965772i \(-0.583522\pi\)
0.838347 + 0.545137i \(0.183522\pi\)
\(984\) −1.36738 + 4.20837i −0.0435905 + 0.134158i
\(985\) 0 0
\(986\) −60.0110 + 43.6005i −1.91114 + 1.38852i
\(987\) −5.39908 3.92266i −0.171855 0.124860i
\(988\) 13.3267 + 41.0154i 0.423979 + 1.30487i
\(989\) −16.4605 −0.523414
\(990\) 0 0
\(991\) 22.9146 0.727907 0.363953 0.931417i \(-0.381427\pi\)
0.363953 + 0.931417i \(0.381427\pi\)
\(992\) −0.0429671 0.132239i −0.00136421 0.00419859i
\(993\) 18.4377 + 13.3958i 0.585102 + 0.425101i
\(994\) −11.7207 + 8.51555i −0.371757 + 0.270097i
\(995\) 0 0
\(996\) 6.65002 20.4666i 0.210714 0.648511i
\(997\) −13.6234 + 9.89794i −0.431456 + 0.313471i −0.782231 0.622989i \(-0.785918\pi\)
0.350775 + 0.936460i \(0.385918\pi\)
\(998\) 28.9705 + 21.0483i 0.917045 + 0.666272i
\(999\) 0.346608 + 1.06675i 0.0109662 + 0.0337505i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.2.n.j.676.1 8
5.2 odd 4 825.2.bx.e.49.4 16
5.3 odd 4 825.2.bx.e.49.1 16
5.4 even 2 165.2.m.c.16.2 8
11.3 even 5 9075.2.a.co.1.1 4
11.8 odd 10 9075.2.a.df.1.4 4
11.9 even 5 inner 825.2.n.j.526.1 8
15.14 odd 2 495.2.n.c.181.1 8
55.9 even 10 165.2.m.c.31.2 yes 8
55.14 even 10 1815.2.a.u.1.4 4
55.19 odd 10 1815.2.a.q.1.1 4
55.42 odd 20 825.2.bx.e.724.1 16
55.53 odd 20 825.2.bx.e.724.4 16
165.14 odd 10 5445.2.a.bj.1.1 4
165.74 even 10 5445.2.a.bq.1.4 4
165.119 odd 10 495.2.n.c.361.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.2.m.c.16.2 8 5.4 even 2
165.2.m.c.31.2 yes 8 55.9 even 10
495.2.n.c.181.1 8 15.14 odd 2
495.2.n.c.361.1 8 165.119 odd 10
825.2.n.j.526.1 8 11.9 even 5 inner
825.2.n.j.676.1 8 1.1 even 1 trivial
825.2.bx.e.49.1 16 5.3 odd 4
825.2.bx.e.49.4 16 5.2 odd 4
825.2.bx.e.724.1 16 55.42 odd 20
825.2.bx.e.724.4 16 55.53 odd 20
1815.2.a.q.1.1 4 55.19 odd 10
1815.2.a.u.1.4 4 55.14 even 10
5445.2.a.bj.1.1 4 165.14 odd 10
5445.2.a.bq.1.4 4 165.74 even 10
9075.2.a.co.1.1 4 11.3 even 5
9075.2.a.df.1.4 4 11.8 odd 10