Properties

Label 495.2.n.c.181.1
Level $495$
Weight $2$
Character 495.181
Analytic conductor $3.953$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,2,Mod(91,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.1
Root \(-0.104528 + 0.994522i\) of defining polynomial
Character \(\chi\) \(=\) 495.181
Dual form 495.2.n.c.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.564602 - 1.73767i) q^{2} +(-1.08268 + 0.786610i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(-1.41355 + 1.02700i) q^{7} +(-0.978148 - 0.710666i) q^{8} +1.82709 q^{10} +(0.384301 - 3.29428i) q^{11} +(-1.65563 - 5.09549i) q^{13} +(2.58268 + 1.87642i) q^{14} +(-1.50973 + 4.64646i) q^{16} +(-2.26531 + 6.97191i) q^{17} +(-4.86606 - 3.53540i) q^{19} +(-0.413545 - 1.27276i) q^{20} +(-5.94135 + 1.19217i) q^{22} -8.35772 q^{23} +(-0.809017 - 0.587785i) q^{25} +(-7.91949 + 5.75385i) q^{26} +(0.722562 - 2.22382i) q^{28} +(4.48048 - 3.25526i) q^{29} +(-0.00660190 - 0.0203186i) q^{31} +6.50828 q^{32} +13.3939 q^{34} +(-0.539926 - 1.66172i) q^{35} +(0.907432 - 0.659288i) q^{37} +(-3.39596 + 10.4517i) q^{38} +(0.978148 - 0.710666i) q^{40} +(-2.96086 - 2.15119i) q^{41} -1.96950 q^{43} +(2.17524 + 3.86894i) q^{44} +(4.71878 + 14.5229i) q^{46} +(3.09007 + 2.24507i) q^{47} +(-1.21974 + 3.75397i) q^{49} +(-0.564602 + 1.73767i) q^{50} +(5.80067 + 4.21443i) q^{52} +(-0.516329 - 1.58910i) q^{53} +(3.01430 + 1.38348i) q^{55} +2.11251 q^{56} +(-8.18625 - 5.94766i) q^{58} +(4.58172 - 3.32882i) q^{59} +(2.86761 - 8.82559i) q^{61} +(-0.0315794 + 0.0229438i) q^{62} +(-0.655137 - 2.01630i) q^{64} +5.35772 q^{65} +0.350489 q^{67} +(-3.03158 - 9.33024i) q^{68} +(-2.58268 + 1.87642i) q^{70} +(-1.40238 + 4.31607i) q^{71} +(-8.20305 + 5.95986i) q^{73} +(-1.65796 - 1.20458i) q^{74} +8.04935 q^{76} +(2.84001 + 5.05130i) q^{77} +(0.792323 + 2.43852i) q^{79} +(-3.95252 - 2.87167i) q^{80} +(-2.06635 + 6.35956i) q^{82} +(4.96915 - 15.2935i) q^{83} +(-5.93066 - 4.30888i) q^{85} +(1.11198 + 3.42233i) q^{86} +(-2.71704 + 2.94919i) q^{88} +14.5062 q^{89} +(7.57337 + 5.50238i) q^{91} +(9.04870 - 6.57426i) q^{92} +(2.15652 - 6.63708i) q^{94} +(4.86606 - 3.53540i) q^{95} +(-0.587045 - 1.80674i) q^{97} +7.21182 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{4} + 2 q^{5} - 5 q^{7} + q^{8} + 2 q^{10} + q^{11} - 16 q^{13} + 10 q^{14} + 12 q^{16} + 4 q^{17} + 2 q^{19} + 3 q^{20} - 9 q^{22} - 10 q^{23} - 2 q^{25} - 16 q^{26} - 5 q^{28} + 16 q^{29}+ \cdots - 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.564602 1.73767i −0.399234 1.22872i −0.925615 0.378467i \(-0.876451\pi\)
0.526381 0.850249i \(-0.323549\pi\)
\(3\) 0 0
\(4\) −1.08268 + 0.786610i −0.541338 + 0.393305i
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) −1.41355 + 1.02700i −0.534270 + 0.388170i −0.821953 0.569556i \(-0.807115\pi\)
0.287683 + 0.957726i \(0.407115\pi\)
\(8\) −0.978148 0.710666i −0.345827 0.251258i
\(9\) 0 0
\(10\) 1.82709 0.577777
\(11\) 0.384301 3.29428i 0.115871 0.993264i
\(12\) 0 0
\(13\) −1.65563 5.09549i −0.459188 1.41323i −0.866147 0.499789i \(-0.833411\pi\)
0.406960 0.913446i \(-0.366589\pi\)
\(14\) 2.58268 + 1.87642i 0.690249 + 0.501495i
\(15\) 0 0
\(16\) −1.50973 + 4.64646i −0.377432 + 1.16162i
\(17\) −2.26531 + 6.97191i −0.549419 + 1.69094i 0.160826 + 0.986983i \(0.448584\pi\)
−0.710245 + 0.703955i \(0.751416\pi\)
\(18\) 0 0
\(19\) −4.86606 3.53540i −1.11635 0.811077i −0.132699 0.991156i \(-0.542364\pi\)
−0.983652 + 0.180080i \(0.942364\pi\)
\(20\) −0.413545 1.27276i −0.0924716 0.284598i
\(21\) 0 0
\(22\) −5.94135 + 1.19217i −1.26670 + 0.254172i
\(23\) −8.35772 −1.74270 −0.871352 0.490658i \(-0.836756\pi\)
−0.871352 + 0.490658i \(0.836756\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) −7.91949 + 5.75385i −1.55314 + 1.12842i
\(27\) 0 0
\(28\) 0.722562 2.22382i 0.136551 0.420262i
\(29\) 4.48048 3.25526i 0.832005 0.604487i −0.0881210 0.996110i \(-0.528086\pi\)
0.920126 + 0.391623i \(0.128086\pi\)
\(30\) 0 0
\(31\) −0.00660190 0.0203186i −0.00118574 0.00364932i 0.950462 0.310841i \(-0.100611\pi\)
−0.951648 + 0.307192i \(0.900611\pi\)
\(32\) 6.50828 1.15051
\(33\) 0 0
\(34\) 13.3939 2.29703
\(35\) −0.539926 1.66172i −0.0912642 0.280882i
\(36\) 0 0
\(37\) 0.907432 0.659288i 0.149181 0.108386i −0.510691 0.859764i \(-0.670610\pi\)
0.659872 + 0.751378i \(0.270610\pi\)
\(38\) −3.39596 + 10.4517i −0.550897 + 1.69549i
\(39\) 0 0
\(40\) 0.978148 0.710666i 0.154659 0.112366i
\(41\) −2.96086 2.15119i −0.462409 0.335960i 0.332066 0.943256i \(-0.392254\pi\)
−0.794476 + 0.607296i \(0.792254\pi\)
\(42\) 0 0
\(43\) −1.96950 −0.300346 −0.150173 0.988660i \(-0.547983\pi\)
−0.150173 + 0.988660i \(0.547983\pi\)
\(44\) 2.17524 + 3.86894i 0.327930 + 0.583264i
\(45\) 0 0
\(46\) 4.71878 + 14.5229i 0.695747 + 2.14129i
\(47\) 3.09007 + 2.24507i 0.450733 + 0.327476i 0.789885 0.613255i \(-0.210140\pi\)
−0.339152 + 0.940731i \(0.610140\pi\)
\(48\) 0 0
\(49\) −1.21974 + 3.75397i −0.174248 + 0.536282i
\(50\) −0.564602 + 1.73767i −0.0798468 + 0.245743i
\(51\) 0 0
\(52\) 5.80067 + 4.21443i 0.804408 + 0.584437i
\(53\) −0.516329 1.58910i −0.0709232 0.218279i 0.909312 0.416115i \(-0.136609\pi\)
−0.980235 + 0.197836i \(0.936609\pi\)
\(54\) 0 0
\(55\) 3.01430 + 1.38348i 0.406448 + 0.186549i
\(56\) 2.11251 0.282296
\(57\) 0 0
\(58\) −8.18625 5.94766i −1.07491 0.780966i
\(59\) 4.58172 3.32882i 0.596489 0.433375i −0.248142 0.968724i \(-0.579820\pi\)
0.844631 + 0.535349i \(0.179820\pi\)
\(60\) 0 0
\(61\) 2.86761 8.82559i 0.367160 1.13000i −0.581458 0.813576i \(-0.697518\pi\)
0.948618 0.316425i \(-0.102482\pi\)
\(62\) −0.0315794 + 0.0229438i −0.00401059 + 0.00291387i
\(63\) 0 0
\(64\) −0.655137 2.01630i −0.0818921 0.252038i
\(65\) 5.35772 0.664543
\(66\) 0 0
\(67\) 0.350489 0.0428190 0.0214095 0.999771i \(-0.493185\pi\)
0.0214095 + 0.999771i \(0.493185\pi\)
\(68\) −3.03158 9.33024i −0.367633 1.13146i
\(69\) 0 0
\(70\) −2.58268 + 1.87642i −0.308689 + 0.224276i
\(71\) −1.40238 + 4.31607i −0.166431 + 0.512223i −0.999139 0.0414901i \(-0.986790\pi\)
0.832708 + 0.553713i \(0.186790\pi\)
\(72\) 0 0
\(73\) −8.20305 + 5.95986i −0.960094 + 0.697549i −0.953173 0.302427i \(-0.902203\pi\)
−0.00692130 + 0.999976i \(0.502203\pi\)
\(74\) −1.65796 1.20458i −0.192734 0.140029i
\(75\) 0 0
\(76\) 8.04935 0.923324
\(77\) 2.84001 + 5.05130i 0.323649 + 0.575649i
\(78\) 0 0
\(79\) 0.792323 + 2.43852i 0.0891433 + 0.274355i 0.985683 0.168608i \(-0.0539273\pi\)
−0.896540 + 0.442963i \(0.853927\pi\)
\(80\) −3.95252 2.87167i −0.441905 0.321063i
\(81\) 0 0
\(82\) −2.06635 + 6.35956i −0.228190 + 0.702296i
\(83\) 4.96915 15.2935i 0.545435 1.67868i −0.174519 0.984654i \(-0.555837\pi\)
0.719954 0.694022i \(-0.244163\pi\)
\(84\) 0 0
\(85\) −5.93066 4.30888i −0.643271 0.467364i
\(86\) 1.11198 + 3.42233i 0.119908 + 0.369040i
\(87\) 0 0
\(88\) −2.71704 + 2.94919i −0.289637 + 0.314384i
\(89\) 14.5062 1.53765 0.768825 0.639459i \(-0.220841\pi\)
0.768825 + 0.639459i \(0.220841\pi\)
\(90\) 0 0
\(91\) 7.57337 + 5.50238i 0.793905 + 0.576806i
\(92\) 9.04870 6.57426i 0.943392 0.685414i
\(93\) 0 0
\(94\) 2.15652 6.63708i 0.222428 0.684562i
\(95\) 4.86606 3.53540i 0.499247 0.362725i
\(96\) 0 0
\(97\) −0.587045 1.80674i −0.0596054 0.183446i 0.916820 0.399300i \(-0.130747\pi\)
−0.976426 + 0.215853i \(0.930747\pi\)
\(98\) 7.21182 0.728504
\(99\) 0 0
\(100\) 1.33826 0.133826
\(101\) −2.07354 6.38170i −0.206325 0.635003i −0.999656 0.0262128i \(-0.991655\pi\)
0.793332 0.608790i \(-0.208345\pi\)
\(102\) 0 0
\(103\) 3.43572 2.49620i 0.338532 0.245958i −0.405510 0.914090i \(-0.632906\pi\)
0.744042 + 0.668133i \(0.232906\pi\)
\(104\) −2.00174 + 6.16074i −0.196287 + 0.604110i
\(105\) 0 0
\(106\) −2.46980 + 1.79442i −0.239888 + 0.174289i
\(107\) −12.7202 9.24174i −1.22970 0.893433i −0.232837 0.972516i \(-0.574801\pi\)
−0.996868 + 0.0790831i \(0.974801\pi\)
\(108\) 0 0
\(109\) 4.23895 0.406018 0.203009 0.979177i \(-0.434928\pi\)
0.203009 + 0.979177i \(0.434928\pi\)
\(110\) 0.702153 6.01896i 0.0669477 0.573885i
\(111\) 0 0
\(112\) −2.63785 8.11848i −0.249254 0.767124i
\(113\) −5.82203 4.22996i −0.547691 0.397921i 0.279242 0.960221i \(-0.409917\pi\)
−0.826933 + 0.562300i \(0.809917\pi\)
\(114\) 0 0
\(115\) 2.58268 7.94866i 0.240836 0.741216i
\(116\) −2.29029 + 7.04879i −0.212648 + 0.654463i
\(117\) 0 0
\(118\) −8.37122 6.08205i −0.770633 0.559898i
\(119\) −3.95804 12.1816i −0.362833 1.11668i
\(120\) 0 0
\(121\) −10.7046 2.53200i −0.973148 0.230181i
\(122\) −16.9550 −1.53503
\(123\) 0 0
\(124\) 0.0231305 + 0.0168053i 0.00207718 + 0.00150916i
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) 3.92051 12.0661i 0.347889 1.07069i −0.612130 0.790757i \(-0.709687\pi\)
0.960019 0.279935i \(-0.0903131\pi\)
\(128\) 7.39685 5.37413i 0.653796 0.475010i
\(129\) 0 0
\(130\) −3.02498 9.30992i −0.265308 0.816534i
\(131\) 0.970102 0.0847582 0.0423791 0.999102i \(-0.486506\pi\)
0.0423791 + 0.999102i \(0.486506\pi\)
\(132\) 0 0
\(133\) 10.5093 0.911268
\(134\) −0.197887 0.609032i −0.0170948 0.0526124i
\(135\) 0 0
\(136\) 7.17051 5.20968i 0.614866 0.446726i
\(137\) −1.30416 + 4.01379i −0.111422 + 0.342921i −0.991184 0.132493i \(-0.957702\pi\)
0.879762 + 0.475414i \(0.157702\pi\)
\(138\) 0 0
\(139\) −7.15855 + 5.20099i −0.607180 + 0.441142i −0.848420 0.529323i \(-0.822446\pi\)
0.241240 + 0.970465i \(0.422446\pi\)
\(140\) 1.89169 + 1.37440i 0.159877 + 0.116158i
\(141\) 0 0
\(142\) 8.29167 0.695821
\(143\) −17.4223 + 3.49590i −1.45692 + 0.292342i
\(144\) 0 0
\(145\) 1.71139 + 5.26712i 0.142123 + 0.437411i
\(146\) 14.9877 + 10.8892i 1.24039 + 0.901197i
\(147\) 0 0
\(148\) −0.463852 + 1.42759i −0.0381284 + 0.117347i
\(149\) −2.95222 + 9.08598i −0.241855 + 0.744353i 0.754283 + 0.656549i \(0.227985\pi\)
−0.996138 + 0.0878033i \(0.972015\pi\)
\(150\) 0 0
\(151\) 5.46214 + 3.96848i 0.444503 + 0.322950i 0.787422 0.616415i \(-0.211416\pi\)
−0.342919 + 0.939365i \(0.611416\pi\)
\(152\) 2.24724 + 6.91629i 0.182275 + 0.560985i
\(153\) 0 0
\(154\) 7.17400 7.78696i 0.578097 0.627491i
\(155\) 0.0213642 0.00171601
\(156\) 0 0
\(157\) 10.2425 + 7.44162i 0.817441 + 0.593906i 0.915978 0.401228i \(-0.131416\pi\)
−0.0985374 + 0.995133i \(0.531416\pi\)
\(158\) 3.78999 2.75359i 0.301515 0.219064i
\(159\) 0 0
\(160\) −2.01117 + 6.18975i −0.158997 + 0.489342i
\(161\) 11.8140 8.58338i 0.931074 0.676465i
\(162\) 0 0
\(163\) −7.23278 22.2602i −0.566515 1.74355i −0.663407 0.748259i \(-0.730890\pi\)
0.0968923 0.995295i \(-0.469110\pi\)
\(164\) 4.89781 0.382454
\(165\) 0 0
\(166\) −29.3805 −2.28037
\(167\) −0.943091 2.90254i −0.0729786 0.224605i 0.907913 0.419158i \(-0.137675\pi\)
−0.980892 + 0.194553i \(0.937675\pi\)
\(168\) 0 0
\(169\) −12.7057 + 9.23123i −0.977362 + 0.710095i
\(170\) −4.13893 + 12.7383i −0.317442 + 0.976985i
\(171\) 0 0
\(172\) 2.13233 1.54923i 0.162589 0.118128i
\(173\) 12.9503 + 9.40893i 0.984592 + 0.715348i 0.958730 0.284318i \(-0.0917670\pi\)
0.0258617 + 0.999666i \(0.491767\pi\)
\(174\) 0 0
\(175\) 1.74724 0.132079
\(176\) 14.7266 + 6.75911i 1.11006 + 0.509487i
\(177\) 0 0
\(178\) −8.19021 25.2069i −0.613883 1.88934i
\(179\) −15.6133 11.3437i −1.16699 0.847870i −0.176347 0.984328i \(-0.556428\pi\)
−0.990646 + 0.136458i \(0.956428\pi\)
\(180\) 0 0
\(181\) −3.76724 + 11.5944i −0.280017 + 0.861804i 0.707831 + 0.706382i \(0.249674\pi\)
−0.987848 + 0.155422i \(0.950326\pi\)
\(182\) 5.28536 16.2667i 0.391777 1.20576i
\(183\) 0 0
\(184\) 8.17508 + 5.93954i 0.602675 + 0.437869i
\(185\) 0.346608 + 1.06675i 0.0254831 + 0.0784290i
\(186\) 0 0
\(187\) 22.0969 + 10.1419i 1.61589 + 0.741649i
\(188\) −5.11153 −0.372797
\(189\) 0 0
\(190\) −8.89074 6.45950i −0.645002 0.468621i
\(191\) −10.8605 + 7.89064i −0.785841 + 0.570947i −0.906726 0.421720i \(-0.861427\pi\)
0.120885 + 0.992666i \(0.461427\pi\)
\(192\) 0 0
\(193\) 2.34167 7.20693i 0.168557 0.518766i −0.830723 0.556685i \(-0.812073\pi\)
0.999281 + 0.0379190i \(0.0120729\pi\)
\(194\) −2.80806 + 2.04018i −0.201607 + 0.146476i
\(195\) 0 0
\(196\) −1.63233 5.02379i −0.116595 0.358842i
\(197\) 6.89118 0.490976 0.245488 0.969400i \(-0.421052\pi\)
0.245488 + 0.969400i \(0.421052\pi\)
\(198\) 0 0
\(199\) 0.639398 0.0453257 0.0226629 0.999743i \(-0.492786\pi\)
0.0226629 + 0.999743i \(0.492786\pi\)
\(200\) 0.373619 + 1.14988i 0.0264189 + 0.0813089i
\(201\) 0 0
\(202\) −9.91854 + 7.20624i −0.697866 + 0.507029i
\(203\) −2.99021 + 9.20292i −0.209872 + 0.645918i
\(204\) 0 0
\(205\) 2.96086 2.15119i 0.206796 0.150246i
\(206\) −6.27737 4.56078i −0.437365 0.317765i
\(207\) 0 0
\(208\) 26.1755 1.81495
\(209\) −13.5167 + 14.6715i −0.934966 + 1.01485i
\(210\) 0 0
\(211\) −1.18090 3.63445i −0.0812968 0.250206i 0.902144 0.431435i \(-0.141992\pi\)
−0.983441 + 0.181229i \(0.941992\pi\)
\(212\) 1.80902 + 1.31433i 0.124244 + 0.0902684i
\(213\) 0 0
\(214\) −8.87723 + 27.3213i −0.606835 + 1.86765i
\(215\) 0.608609 1.87310i 0.0415068 0.127745i
\(216\) 0 0
\(217\) 0.0301993 + 0.0219411i 0.00205006 + 0.00148946i
\(218\) −2.39332 7.36589i −0.162096 0.498881i
\(219\) 0 0
\(220\) −4.35177 + 0.873212i −0.293396 + 0.0588720i
\(221\) 39.2758 2.64198
\(222\) 0 0
\(223\) 21.6171 + 15.7057i 1.44758 + 1.05173i 0.986388 + 0.164434i \(0.0525797\pi\)
0.461197 + 0.887298i \(0.347420\pi\)
\(224\) −9.19975 + 6.68401i −0.614684 + 0.446594i
\(225\) 0 0
\(226\) −4.06312 + 12.5050i −0.270275 + 0.831820i
\(227\) 9.90020 7.19291i 0.657099 0.477411i −0.208583 0.978005i \(-0.566885\pi\)
0.865682 + 0.500594i \(0.166885\pi\)
\(228\) 0 0
\(229\) −2.06628 6.35937i −0.136544 0.420239i 0.859283 0.511500i \(-0.170910\pi\)
−0.995827 + 0.0912615i \(0.970910\pi\)
\(230\) −15.2703 −1.00689
\(231\) 0 0
\(232\) −6.69598 −0.439612
\(233\) 2.01399 + 6.19844i 0.131941 + 0.406073i 0.995102 0.0988565i \(-0.0315185\pi\)
−0.863161 + 0.504930i \(0.831518\pi\)
\(234\) 0 0
\(235\) −3.09007 + 2.24507i −0.201574 + 0.146452i
\(236\) −2.34204 + 7.20806i −0.152454 + 0.469205i
\(237\) 0 0
\(238\) −18.9328 + 13.7555i −1.22723 + 0.891637i
\(239\) −8.77126 6.37269i −0.567366 0.412215i 0.266782 0.963757i \(-0.414040\pi\)
−0.834147 + 0.551542i \(0.814040\pi\)
\(240\) 0 0
\(241\) 27.1803 1.75084 0.875420 0.483363i \(-0.160585\pi\)
0.875420 + 0.483363i \(0.160585\pi\)
\(242\) 1.64409 + 20.0306i 0.105686 + 1.28762i
\(243\) 0 0
\(244\) 3.83761 + 11.8109i 0.245678 + 0.756118i
\(245\) −3.19332 2.32008i −0.204014 0.148225i
\(246\) 0 0
\(247\) −9.95823 + 30.6483i −0.633627 + 1.95010i
\(248\) −0.00798208 + 0.0245663i −0.000506862 + 0.00155996i
\(249\) 0 0
\(250\) −1.47815 1.07394i −0.0934863 0.0679217i
\(251\) −1.71332 5.27307i −0.108144 0.332833i 0.882311 0.470666i \(-0.155986\pi\)
−0.990455 + 0.137833i \(0.955986\pi\)
\(252\) 0 0
\(253\) −3.21188 + 27.5327i −0.201929 + 1.73097i
\(254\) −23.1804 −1.45447
\(255\) 0 0
\(256\) −16.9451 12.3113i −1.05907 0.769457i
\(257\) −15.3260 + 11.1350i −0.956008 + 0.694580i −0.952220 0.305413i \(-0.901206\pi\)
−0.00378765 + 0.999993i \(0.501206\pi\)
\(258\) 0 0
\(259\) −0.605607 + 1.86387i −0.0376306 + 0.115815i
\(260\) −5.80067 + 4.21443i −0.359742 + 0.261368i
\(261\) 0 0
\(262\) −0.547722 1.68571i −0.0338384 0.104144i
\(263\) −3.20873 −0.197859 −0.0989293 0.995094i \(-0.531542\pi\)
−0.0989293 + 0.995094i \(0.531542\pi\)
\(264\) 0 0
\(265\) 1.67088 0.102641
\(266\) −5.93355 18.2616i −0.363809 1.11969i
\(267\) 0 0
\(268\) −0.379466 + 0.275698i −0.0231796 + 0.0168409i
\(269\) 1.00252 3.08544i 0.0611248 0.188123i −0.915831 0.401563i \(-0.868467\pi\)
0.976956 + 0.213441i \(0.0684669\pi\)
\(270\) 0 0
\(271\) 1.64212 1.19307i 0.0997517 0.0724738i −0.536791 0.843715i \(-0.680364\pi\)
0.636543 + 0.771241i \(0.280364\pi\)
\(272\) −28.9747 21.0514i −1.75685 1.27643i
\(273\) 0 0
\(274\) 7.71096 0.465836
\(275\) −2.24724 + 2.43925i −0.135514 + 0.147092i
\(276\) 0 0
\(277\) 3.49701 + 10.7627i 0.210115 + 0.646668i 0.999464 + 0.0327234i \(0.0104180\pi\)
−0.789349 + 0.613944i \(0.789582\pi\)
\(278\) 13.0793 + 9.50268i 0.784446 + 0.569933i
\(279\) 0 0
\(280\) −0.652802 + 2.00912i −0.0390124 + 0.120068i
\(281\) 3.18835 9.81272i 0.190201 0.585378i −0.809798 0.586708i \(-0.800424\pi\)
0.999999 + 0.00133051i \(0.000423516\pi\)
\(282\) 0 0
\(283\) 1.70370 + 1.23781i 0.101274 + 0.0735801i 0.637270 0.770641i \(-0.280064\pi\)
−0.535996 + 0.844221i \(0.680064\pi\)
\(284\) −1.87674 5.77602i −0.111364 0.342744i
\(285\) 0 0
\(286\) 15.9113 + 28.3003i 0.940858 + 1.67343i
\(287\) 6.39459 0.377461
\(288\) 0 0
\(289\) −29.7227 21.5948i −1.74839 1.27028i
\(290\) 8.18625 5.94766i 0.480713 0.349259i
\(291\) 0 0
\(292\) 4.19315 12.9052i 0.245386 0.755220i
\(293\) −18.9111 + 13.7398i −1.10480 + 0.802685i −0.981837 0.189726i \(-0.939240\pi\)
−0.122964 + 0.992411i \(0.539240\pi\)
\(294\) 0 0
\(295\) 1.75006 + 5.38614i 0.101893 + 0.313593i
\(296\) −1.35614 −0.0788238
\(297\) 0 0
\(298\) 17.4552 1.01115
\(299\) 13.8372 + 42.5867i 0.800228 + 2.46285i
\(300\) 0 0
\(301\) 2.78398 2.02268i 0.160466 0.116585i
\(302\) 3.81196 11.7320i 0.219353 0.675100i
\(303\) 0 0
\(304\) 23.7735 17.2725i 1.36351 0.990645i
\(305\) 7.50749 + 5.45451i 0.429878 + 0.312325i
\(306\) 0 0
\(307\) −32.0518 −1.82929 −0.914646 0.404256i \(-0.867531\pi\)
−0.914646 + 0.404256i \(0.867531\pi\)
\(308\) −7.04821 3.23494i −0.401609 0.184328i
\(309\) 0 0
\(310\) −0.0120623 0.0371239i −0.000685091 0.00210849i
\(311\) 1.32220 + 0.960634i 0.0749751 + 0.0544726i 0.624641 0.780912i \(-0.285245\pi\)
−0.549666 + 0.835384i \(0.685245\pi\)
\(312\) 0 0
\(313\) 9.39813 28.9245i 0.531214 1.63491i −0.220477 0.975392i \(-0.570761\pi\)
0.751691 0.659516i \(-0.229239\pi\)
\(314\) 7.14811 21.9996i 0.403391 1.24151i
\(315\) 0 0
\(316\) −2.77599 2.01688i −0.156162 0.113458i
\(317\) 9.09561 + 27.9934i 0.510861 + 1.57227i 0.790690 + 0.612217i \(0.209722\pi\)
−0.279829 + 0.960050i \(0.590278\pi\)
\(318\) 0 0
\(319\) −9.00190 16.0110i −0.504010 0.896443i
\(320\) 2.12007 0.118515
\(321\) 0 0
\(322\) −21.5853 15.6826i −1.20290 0.873958i
\(323\) 35.6717 25.9170i 1.98482 1.44206i
\(324\) 0 0
\(325\) −1.65563 + 5.09549i −0.0918376 + 0.282647i
\(326\) −34.5972 + 25.1363i −1.91616 + 1.39217i
\(327\) 0 0
\(328\) 1.36738 + 4.20837i 0.0755010 + 0.232368i
\(329\) −6.67364 −0.367929
\(330\) 0 0
\(331\) −22.7902 −1.25266 −0.626332 0.779557i \(-0.715444\pi\)
−0.626332 + 0.779557i \(0.715444\pi\)
\(332\) 6.65002 + 20.4666i 0.364967 + 1.12325i
\(333\) 0 0
\(334\) −4.51117 + 3.27756i −0.246840 + 0.179340i
\(335\) −0.108307 + 0.333334i −0.00591744 + 0.0182120i
\(336\) 0 0
\(337\) 11.7227 8.51705i 0.638577 0.463954i −0.220784 0.975323i \(-0.570862\pi\)
0.859361 + 0.511369i \(0.170862\pi\)
\(338\) 23.2145 + 16.8663i 1.26270 + 0.917406i
\(339\) 0 0
\(340\) 9.81040 0.532043
\(341\) −0.0694723 + 0.0139401i −0.00376213 + 0.000754899i
\(342\) 0 0
\(343\) −5.91066 18.1911i −0.319146 0.982229i
\(344\) 1.92646 + 1.39966i 0.103868 + 0.0754644i
\(345\) 0 0
\(346\) 9.03783 27.8156i 0.485877 1.49537i
\(347\) −1.35574 + 4.17255i −0.0727802 + 0.223994i −0.980829 0.194870i \(-0.937572\pi\)
0.908049 + 0.418864i \(0.137572\pi\)
\(348\) 0 0
\(349\) −11.6548 8.46769i −0.623866 0.453265i 0.230404 0.973095i \(-0.425995\pi\)
−0.854270 + 0.519830i \(0.825995\pi\)
\(350\) −0.986494 3.03612i −0.0527303 0.162287i
\(351\) 0 0
\(352\) 2.50114 21.4401i 0.133311 1.14276i
\(353\) 6.01065 0.319914 0.159957 0.987124i \(-0.448864\pi\)
0.159957 + 0.987124i \(0.448864\pi\)
\(354\) 0 0
\(355\) −3.67147 2.66748i −0.194861 0.141575i
\(356\) −15.7055 + 11.4107i −0.832389 + 0.604766i
\(357\) 0 0
\(358\) −10.8963 + 33.5354i −0.575888 + 1.77240i
\(359\) −1.98787 + 1.44428i −0.104916 + 0.0762259i −0.639006 0.769201i \(-0.720654\pi\)
0.534090 + 0.845427i \(0.320654\pi\)
\(360\) 0 0
\(361\) 5.30818 + 16.3369i 0.279378 + 0.859836i
\(362\) 22.2742 1.17070
\(363\) 0 0
\(364\) −12.5277 −0.656632
\(365\) −3.13328 9.64326i −0.164004 0.504751i
\(366\) 0 0
\(367\) −1.19726 + 0.869862i −0.0624966 + 0.0454064i −0.618595 0.785710i \(-0.712298\pi\)
0.556098 + 0.831116i \(0.312298\pi\)
\(368\) 12.6179 38.8338i 0.657752 2.02435i
\(369\) 0 0
\(370\) 1.65796 1.20458i 0.0861933 0.0626231i
\(371\) 2.36186 + 1.71599i 0.122622 + 0.0890898i
\(372\) 0 0
\(373\) −24.3331 −1.25992 −0.629961 0.776627i \(-0.716929\pi\)
−0.629961 + 0.776627i \(0.716929\pi\)
\(374\) 5.14728 44.1232i 0.266159 2.28156i
\(375\) 0 0
\(376\) −1.42705 4.39201i −0.0735945 0.226501i
\(377\) −24.0052 17.4408i −1.23633 0.898245i
\(378\) 0 0
\(379\) 4.92299 15.1514i 0.252877 0.778276i −0.741363 0.671104i \(-0.765820\pi\)
0.994241 0.107172i \(-0.0341795\pi\)
\(380\) −2.48739 + 7.65539i −0.127600 + 0.392713i
\(381\) 0 0
\(382\) 19.8432 + 14.4169i 1.01527 + 0.737634i
\(383\) 1.21133 + 3.72809i 0.0618960 + 0.190496i 0.977223 0.212215i \(-0.0680678\pi\)
−0.915327 + 0.402712i \(0.868068\pi\)
\(384\) 0 0
\(385\) −5.68168 + 1.14007i −0.289565 + 0.0581033i
\(386\) −13.8454 −0.704710
\(387\) 0 0
\(388\) 2.05678 + 1.49434i 0.104417 + 0.0758635i
\(389\) −28.5510 + 20.7435i −1.44759 + 1.05174i −0.461209 + 0.887292i \(0.652584\pi\)
−0.986386 + 0.164447i \(0.947416\pi\)
\(390\) 0 0
\(391\) 18.9328 58.2693i 0.957475 2.94680i
\(392\) 3.86090 2.80511i 0.195005 0.141679i
\(393\) 0 0
\(394\) −3.89078 11.9746i −0.196015 0.603271i
\(395\) −2.56401 −0.129009
\(396\) 0 0
\(397\) 23.2231 1.16553 0.582767 0.812639i \(-0.301970\pi\)
0.582767 + 0.812639i \(0.301970\pi\)
\(398\) −0.361006 1.11106i −0.0180956 0.0556925i
\(399\) 0 0
\(400\) 3.95252 2.87167i 0.197626 0.143584i
\(401\) −1.75973 + 5.41589i −0.0878766 + 0.270457i −0.985332 0.170649i \(-0.945414\pi\)
0.897455 + 0.441106i \(0.145414\pi\)
\(402\) 0 0
\(403\) −0.0926028 + 0.0672799i −0.00461287 + 0.00335145i
\(404\) 7.26488 + 5.27824i 0.361441 + 0.262602i
\(405\) 0 0
\(406\) 17.6799 0.877438
\(407\) −1.82315 3.24270i −0.0903704 0.160735i
\(408\) 0 0
\(409\) 7.86540 + 24.2072i 0.388919 + 1.19697i 0.933597 + 0.358324i \(0.116652\pi\)
−0.544679 + 0.838645i \(0.683348\pi\)
\(410\) −5.40977 3.93043i −0.267169 0.194110i
\(411\) 0 0
\(412\) −1.75624 + 5.40515i −0.0865237 + 0.266292i
\(413\) −3.05777 + 9.41086i −0.150463 + 0.463078i
\(414\) 0 0
\(415\) 13.0094 + 9.45188i 0.638606 + 0.463975i
\(416\) −10.7753 33.1629i −0.528301 1.62594i
\(417\) 0 0
\(418\) 33.1258 + 15.2039i 1.62023 + 0.743645i
\(419\) 13.4850 0.658786 0.329393 0.944193i \(-0.393156\pi\)
0.329393 + 0.944193i \(0.393156\pi\)
\(420\) 0 0
\(421\) −2.38633 1.73377i −0.116303 0.0844990i 0.528113 0.849174i \(-0.322900\pi\)
−0.644416 + 0.764675i \(0.722900\pi\)
\(422\) −5.64872 + 4.10404i −0.274975 + 0.199781i
\(423\) 0 0
\(424\) −0.624271 + 1.92131i −0.0303173 + 0.0933070i
\(425\) 5.93066 4.30888i 0.287679 0.209011i
\(426\) 0 0
\(427\) 5.01039 + 15.4204i 0.242470 + 0.746246i
\(428\) 21.0415 1.01708
\(429\) 0 0
\(430\) −3.59845 −0.173533
\(431\) −3.56072 10.9588i −0.171514 0.527866i 0.827943 0.560812i \(-0.189511\pi\)
−0.999457 + 0.0329464i \(0.989511\pi\)
\(432\) 0 0
\(433\) −9.03174 + 6.56194i −0.434038 + 0.315347i −0.783261 0.621693i \(-0.786445\pi\)
0.349224 + 0.937039i \(0.386445\pi\)
\(434\) 0.0210757 0.0648642i 0.00101166 0.00311358i
\(435\) 0 0
\(436\) −4.58941 + 3.33440i −0.219793 + 0.159689i
\(437\) 40.6692 + 29.5479i 1.94547 + 1.41347i
\(438\) 0 0
\(439\) 0.993624 0.0474231 0.0237115 0.999719i \(-0.492452\pi\)
0.0237115 + 0.999719i \(0.492452\pi\)
\(440\) −1.96523 3.49541i −0.0936888 0.166637i
\(441\) 0 0
\(442\) −22.1752 68.2483i −1.05477 3.24624i
\(443\) −8.88506 6.45537i −0.422142 0.306704i 0.356357 0.934350i \(-0.384019\pi\)
−0.778499 + 0.627646i \(0.784019\pi\)
\(444\) 0 0
\(445\) −4.48265 + 13.7962i −0.212498 + 0.654002i
\(446\) 15.0863 46.4307i 0.714355 2.19856i
\(447\) 0 0
\(448\) 2.99681 + 2.17731i 0.141586 + 0.102868i
\(449\) −8.96777 27.5999i −0.423215 1.30252i −0.904693 0.426064i \(-0.859900\pi\)
0.481478 0.876458i \(-0.340100\pi\)
\(450\) 0 0
\(451\) −8.22451 + 8.92722i −0.387277 + 0.420366i
\(452\) 9.63070 0.452990
\(453\) 0 0
\(454\) −18.0886 13.1421i −0.848938 0.616790i
\(455\) −7.57337 + 5.50238i −0.355045 + 0.257955i
\(456\) 0 0
\(457\) −1.09908 + 3.38262i −0.0514129 + 0.158232i −0.973466 0.228830i \(-0.926510\pi\)
0.922054 + 0.387062i \(0.126510\pi\)
\(458\) −9.88383 + 7.18103i −0.461841 + 0.335547i
\(459\) 0 0
\(460\) 3.45630 + 10.6374i 0.161151 + 0.495971i
\(461\) −25.1829 −1.17288 −0.586441 0.809992i \(-0.699472\pi\)
−0.586441 + 0.809992i \(0.699472\pi\)
\(462\) 0 0
\(463\) −17.8743 −0.830690 −0.415345 0.909664i \(-0.636339\pi\)
−0.415345 + 0.909664i \(0.636339\pi\)
\(464\) 8.36114 + 25.7329i 0.388156 + 1.19462i
\(465\) 0 0
\(466\) 9.63371 6.99930i 0.446273 0.324236i
\(467\) 7.79502 23.9906i 0.360711 1.11015i −0.591913 0.806002i \(-0.701627\pi\)
0.952624 0.304151i \(-0.0983729\pi\)
\(468\) 0 0
\(469\) −0.495432 + 0.359952i −0.0228769 + 0.0166210i
\(470\) 5.64583 + 4.10194i 0.260423 + 0.189208i
\(471\) 0 0
\(472\) −6.84727 −0.315171
\(473\) −0.756881 + 6.48809i −0.0348014 + 0.298323i
\(474\) 0 0
\(475\) 1.85867 + 5.72040i 0.0852816 + 0.262470i
\(476\) 13.8674 + 10.0753i 0.635613 + 0.461800i
\(477\) 0 0
\(478\) −6.12135 + 18.8396i −0.279984 + 0.861702i
\(479\) 1.61793 4.97948i 0.0739252 0.227518i −0.907266 0.420558i \(-0.861834\pi\)
0.981191 + 0.193039i \(0.0618345\pi\)
\(480\) 0 0
\(481\) −4.86176 3.53228i −0.221677 0.161058i
\(482\) −15.3461 47.2304i −0.698995 2.15128i
\(483\) 0 0
\(484\) 13.5813 5.67904i 0.617333 0.258138i
\(485\) 1.89972 0.0862617
\(486\) 0 0
\(487\) −7.31762 5.31656i −0.331593 0.240917i 0.409513 0.912304i \(-0.365699\pi\)
−0.741106 + 0.671388i \(0.765699\pi\)
\(488\) −9.07699 + 6.59482i −0.410896 + 0.298533i
\(489\) 0 0
\(490\) −2.22857 + 6.85885i −0.100677 + 0.309851i
\(491\) −28.1629 + 20.4615i −1.27097 + 0.923416i −0.999241 0.0389565i \(-0.987597\pi\)
−0.271733 + 0.962373i \(0.587597\pi\)
\(492\) 0 0
\(493\) 12.5457 + 38.6117i 0.565030 + 1.73898i
\(494\) 58.8789 2.64909
\(495\) 0 0
\(496\) 0.104377 0.00468664
\(497\) −2.45028 7.54120i −0.109910 0.338269i
\(498\) 0 0
\(499\) −15.8561 + 11.5201i −0.709815 + 0.515711i −0.883114 0.469158i \(-0.844557\pi\)
0.173299 + 0.984869i \(0.444557\pi\)
\(500\) −0.413545 + 1.27276i −0.0184943 + 0.0569196i
\(501\) 0 0
\(502\) −8.19549 + 5.95437i −0.365783 + 0.265757i
\(503\) 14.8989 + 10.8247i 0.664307 + 0.482647i 0.868115 0.496364i \(-0.165332\pi\)
−0.203808 + 0.979011i \(0.565332\pi\)
\(504\) 0 0
\(505\) 6.71011 0.298596
\(506\) 49.6561 9.96384i 2.20748 0.442947i
\(507\) 0 0
\(508\) 5.24667 + 16.1476i 0.232783 + 0.716433i
\(509\) 1.00187 + 0.727900i 0.0444070 + 0.0322636i 0.609767 0.792580i \(-0.291263\pi\)
−0.565360 + 0.824844i \(0.691263\pi\)
\(510\) 0 0
\(511\) 5.47459 16.8491i 0.242182 0.745359i
\(512\) −6.17504 + 19.0048i −0.272901 + 0.839902i
\(513\) 0 0
\(514\) 28.0019 + 20.3446i 1.23511 + 0.897362i
\(515\) 1.31233 + 4.03893i 0.0578281 + 0.177977i
\(516\) 0 0
\(517\) 8.58340 9.31678i 0.377498 0.409752i
\(518\) 3.58071 0.157327
\(519\) 0 0
\(520\) −5.24064 3.80755i −0.229817 0.166972i
\(521\) 26.8472 19.5057i 1.17620 0.854558i 0.184461 0.982840i \(-0.440946\pi\)
0.991738 + 0.128282i \(0.0409462\pi\)
\(522\) 0 0
\(523\) 4.06383 12.5072i 0.177699 0.546901i −0.822047 0.569419i \(-0.807168\pi\)
0.999746 + 0.0225177i \(0.00716820\pi\)
\(524\) −1.05031 + 0.763092i −0.0458829 + 0.0333359i
\(525\) 0 0
\(526\) 1.81165 + 5.57570i 0.0789919 + 0.243112i
\(527\) 0.156615 0.00682224
\(528\) 0 0
\(529\) 46.8514 2.03702
\(530\) −0.943380 2.90342i −0.0409778 0.126117i
\(531\) 0 0
\(532\) −11.3781 + 8.26669i −0.493304 + 0.358407i
\(533\) −6.05930 + 18.6486i −0.262458 + 0.807761i
\(534\) 0 0
\(535\) 12.7202 9.24174i 0.549941 0.399555i
\(536\) −0.342830 0.249080i −0.0148080 0.0107586i
\(537\) 0 0
\(538\) −5.92750 −0.255553
\(539\) 11.8979 + 5.46082i 0.512479 + 0.235214i
\(540\) 0 0
\(541\) 10.0900 + 31.0538i 0.433802 + 1.33511i 0.894309 + 0.447450i \(0.147668\pi\)
−0.460507 + 0.887656i \(0.652332\pi\)
\(542\) −3.00030 2.17985i −0.128874 0.0936324i
\(543\) 0 0
\(544\) −14.7433 + 45.3752i −0.632114 + 1.94545i
\(545\) −1.30991 + 4.03149i −0.0561103 + 0.172690i
\(546\) 0 0
\(547\) −22.4136 16.2845i −0.958338 0.696273i −0.00557389 0.999984i \(-0.501774\pi\)
−0.952764 + 0.303711i \(0.901774\pi\)
\(548\) −1.74531 5.37150i −0.0745558 0.229459i
\(549\) 0 0
\(550\) 5.50739 + 2.52775i 0.234836 + 0.107784i
\(551\) −33.3110 −1.41909
\(552\) 0 0
\(553\) −3.62435 2.63324i −0.154123 0.111977i
\(554\) 16.7276 12.1533i 0.710686 0.516343i
\(555\) 0 0
\(556\) 3.65924 11.2620i 0.155186 0.477614i
\(557\) −18.9514 + 13.7690i −0.802996 + 0.583411i −0.911792 0.410653i \(-0.865301\pi\)
0.108795 + 0.994064i \(0.465301\pi\)
\(558\) 0 0
\(559\) 3.26075 + 10.0356i 0.137915 + 0.424459i
\(560\) 8.53627 0.360723
\(561\) 0 0
\(562\) −18.8514 −0.795198
\(563\) −6.82482 21.0046i −0.287632 0.885240i −0.985597 0.169108i \(-0.945911\pi\)
0.697966 0.716131i \(-0.254089\pi\)
\(564\) 0 0
\(565\) 5.82203 4.22996i 0.244935 0.177956i
\(566\) 1.18899 3.65933i 0.0499769 0.153813i
\(567\) 0 0
\(568\) 4.43901 3.22513i 0.186257 0.135323i
\(569\) −11.1119 8.07328i −0.465836 0.338449i 0.329980 0.943988i \(-0.392958\pi\)
−0.795816 + 0.605538i \(0.792958\pi\)
\(570\) 0 0
\(571\) −26.5201 −1.10983 −0.554915 0.831907i \(-0.687249\pi\)
−0.554915 + 0.831907i \(0.687249\pi\)
\(572\) 16.1127 17.4894i 0.673708 0.731271i
\(573\) 0 0
\(574\) −3.61040 11.1117i −0.150695 0.463792i
\(575\) 6.76153 + 4.91254i 0.281975 + 0.204867i
\(576\) 0 0
\(577\) 1.75758 5.40927i 0.0731690 0.225191i −0.907783 0.419439i \(-0.862227\pi\)
0.980952 + 0.194248i \(0.0622267\pi\)
\(578\) −20.7430 + 63.8405i −0.862797 + 2.65542i
\(579\) 0 0
\(580\) −5.99606 4.35639i −0.248973 0.180889i
\(581\) 8.68228 + 26.7213i 0.360202 + 1.10859i
\(582\) 0 0
\(583\) −5.43336 + 1.09024i −0.225027 + 0.0451532i
\(584\) 12.2593 0.507292
\(585\) 0 0
\(586\) 34.5524 + 25.1038i 1.42735 + 1.03703i
\(587\) 10.9590 7.96215i 0.452324 0.328633i −0.338188 0.941078i \(-0.609814\pi\)
0.790513 + 0.612446i \(0.209814\pi\)
\(588\) 0 0
\(589\) −0.0397090 + 0.122212i −0.00163618 + 0.00503565i
\(590\) 8.37122 6.08205i 0.344638 0.250394i
\(591\) 0 0
\(592\) 1.69338 + 5.21169i 0.0695975 + 0.214199i
\(593\) −21.1786 −0.869702 −0.434851 0.900502i \(-0.643199\pi\)
−0.434851 + 0.900502i \(0.643199\pi\)
\(594\) 0 0
\(595\) 12.8085 0.525097
\(596\) −3.95083 12.1594i −0.161833 0.498069i
\(597\) 0 0
\(598\) 66.1889 48.0890i 2.70666 1.96651i
\(599\) 10.4573 32.1842i 0.427273 1.31501i −0.473529 0.880778i \(-0.657020\pi\)
0.900801 0.434231i \(-0.142980\pi\)
\(600\) 0 0
\(601\) −23.7186 + 17.2325i −0.967500 + 0.702930i −0.954880 0.296990i \(-0.904017\pi\)
−0.0126196 + 0.999920i \(0.504017\pi\)
\(602\) −5.08658 3.69562i −0.207313 0.150622i
\(603\) 0 0
\(604\) −9.03538 −0.367644
\(605\) 5.71598 9.39827i 0.232388 0.382094i
\(606\) 0 0
\(607\) 2.21715 + 6.82370i 0.0899915 + 0.276965i 0.985916 0.167241i \(-0.0534857\pi\)
−0.895925 + 0.444206i \(0.853486\pi\)
\(608\) −31.6697 23.0094i −1.28438 0.933154i
\(609\) 0 0
\(610\) 5.23938 16.1252i 0.212136 0.652888i
\(611\) 6.32372 19.4624i 0.255830 0.787364i
\(612\) 0 0
\(613\) 22.2515 + 16.1667i 0.898731 + 0.652967i 0.938140 0.346257i \(-0.112547\pi\)
−0.0394084 + 0.999223i \(0.512547\pi\)
\(614\) 18.0965 + 55.6953i 0.730315 + 2.24768i
\(615\) 0 0
\(616\) 0.811840 6.95921i 0.0327100 0.280395i
\(617\) −24.0712 −0.969068 −0.484534 0.874772i \(-0.661011\pi\)
−0.484534 + 0.874772i \(0.661011\pi\)
\(618\) 0 0
\(619\) −21.8216 15.8543i −0.877083 0.637238i 0.0553955 0.998464i \(-0.482358\pi\)
−0.932478 + 0.361227i \(0.882358\pi\)
\(620\) −0.0231305 + 0.0168053i −0.000928944 + 0.000674917i
\(621\) 0 0
\(622\) 0.922745 2.83992i 0.0369987 0.113870i
\(623\) −20.5051 + 14.8978i −0.821521 + 0.596870i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) −55.5673 −2.22092
\(627\) 0 0
\(628\) −16.9430 −0.676098
\(629\) 2.54088 + 7.82003i 0.101312 + 0.311805i
\(630\) 0 0
\(631\) −7.87681 + 5.72284i −0.313571 + 0.227823i −0.733427 0.679768i \(-0.762080\pi\)
0.419856 + 0.907591i \(0.362080\pi\)
\(632\) 0.957964 2.94831i 0.0381058 0.117277i
\(633\) 0 0
\(634\) 43.5078 31.6103i 1.72792 1.25540i
\(635\) 10.2640 + 7.45726i 0.407316 + 0.295932i
\(636\) 0 0
\(637\) 21.1478 0.837904
\(638\) −22.7393 + 24.6821i −0.900256 + 0.977175i
\(639\) 0 0
\(640\) 2.82535 + 8.69552i 0.111682 + 0.343721i
\(641\) 20.3196 + 14.7631i 0.802577 + 0.583107i 0.911669 0.410925i \(-0.134794\pi\)
−0.109092 + 0.994032i \(0.534794\pi\)
\(642\) 0 0
\(643\) −8.32051 + 25.6079i −0.328129 + 1.00988i 0.641880 + 0.766806i \(0.278155\pi\)
−0.970008 + 0.243071i \(0.921845\pi\)
\(644\) −6.03897 + 18.5860i −0.237969 + 0.732393i
\(645\) 0 0
\(646\) −65.1754 47.3527i −2.56429 1.86307i
\(647\) 8.28198 + 25.4893i 0.325598 + 1.00209i 0.971170 + 0.238389i \(0.0766192\pi\)
−0.645572 + 0.763700i \(0.723381\pi\)
\(648\) 0 0
\(649\) −9.20530 16.3728i −0.361340 0.642687i
\(650\) 9.78903 0.383957
\(651\) 0 0
\(652\) 25.3409 + 18.4112i 0.992425 + 0.721039i
\(653\) 23.2700 16.9066i 0.910625 0.661608i −0.0305480 0.999533i \(-0.509725\pi\)
0.941173 + 0.337926i \(0.109725\pi\)
\(654\) 0 0
\(655\) −0.299778 + 0.922622i −0.0117133 + 0.0360498i
\(656\) 14.4655 10.5098i 0.564784 0.410340i
\(657\) 0 0
\(658\) 3.76795 + 11.5966i 0.146890 + 0.452081i
\(659\) −36.5327 −1.42311 −0.711556 0.702629i \(-0.752009\pi\)
−0.711556 + 0.702629i \(0.752009\pi\)
\(660\) 0 0
\(661\) −35.7750 −1.39149 −0.695743 0.718291i \(-0.744925\pi\)
−0.695743 + 0.718291i \(0.744925\pi\)
\(662\) 12.8674 + 39.6018i 0.500106 + 1.53917i
\(663\) 0 0
\(664\) −15.7291 + 11.4279i −0.610408 + 0.443487i
\(665\) −3.24754 + 9.99490i −0.125934 + 0.387586i
\(666\) 0 0
\(667\) −37.4466 + 27.2065i −1.44994 + 1.05344i
\(668\) 3.30423 + 2.40066i 0.127844 + 0.0928844i
\(669\) 0 0
\(670\) 0.640375 0.0247398
\(671\) −27.9720 12.8384i −1.07985 0.495621i
\(672\) 0 0
\(673\) −3.48925 10.7388i −0.134501 0.413951i 0.861011 0.508586i \(-0.169832\pi\)
−0.995512 + 0.0946349i \(0.969832\pi\)
\(674\) −21.4185 15.5614i −0.825009 0.599404i
\(675\) 0 0
\(676\) 6.49478 19.9889i 0.249799 0.768803i
\(677\) 13.5527 41.7108i 0.520872 1.60308i −0.251466 0.967866i \(-0.580913\pi\)
0.772338 0.635212i \(-0.219087\pi\)
\(678\) 0 0
\(679\) 2.68534 + 1.95101i 0.103054 + 0.0748729i
\(680\) 2.73889 + 8.42944i 0.105032 + 0.323254i
\(681\) 0 0
\(682\) 0.0634474 + 0.112849i 0.00242953 + 0.00432121i
\(683\) 18.5355 0.709241 0.354620 0.935010i \(-0.384610\pi\)
0.354620 + 0.935010i \(0.384610\pi\)
\(684\) 0 0
\(685\) −3.41434 2.48066i −0.130455 0.0947811i
\(686\) −28.2730 + 20.5415i −1.07947 + 0.784279i
\(687\) 0 0
\(688\) 2.97341 9.15120i 0.113360 0.348886i
\(689\) −7.24238 + 5.26190i −0.275913 + 0.200462i
\(690\) 0 0
\(691\) −8.71597 26.8250i −0.331571 1.02047i −0.968386 0.249455i \(-0.919749\pi\)
0.636815 0.771017i \(-0.280251\pi\)
\(692\) −21.4221 −0.814347
\(693\) 0 0
\(694\) 8.01596 0.304282
\(695\) −2.73432 8.41538i −0.103719 0.319214i
\(696\) 0 0
\(697\) 21.7052 15.7698i 0.822144 0.597322i
\(698\) −8.13371 + 25.0330i −0.307865 + 0.947512i
\(699\) 0 0
\(700\) −1.89169 + 1.37440i −0.0714993 + 0.0519473i
\(701\) 0.255153 + 0.185379i 0.00963699 + 0.00700168i 0.592593 0.805502i \(-0.298104\pi\)
−0.582956 + 0.812503i \(0.698104\pi\)
\(702\) 0 0
\(703\) −6.74647 −0.254448
\(704\) −6.89405 + 1.38334i −0.259829 + 0.0521366i
\(705\) 0 0
\(706\) −3.39362 10.4445i −0.127721 0.393084i
\(707\) 9.48505 + 6.89129i 0.356722 + 0.259174i
\(708\) 0 0
\(709\) 12.0593 37.1146i 0.452895 1.39387i −0.420693 0.907203i \(-0.638213\pi\)
0.873589 0.486665i \(-0.161787\pi\)
\(710\) −2.56227 + 7.88585i −0.0961602 + 0.295951i
\(711\) 0 0
\(712\) −14.1892 10.3090i −0.531762 0.386348i
\(713\) 0.0551768 + 0.169817i 0.00206639 + 0.00635969i
\(714\) 0 0
\(715\) 2.05898 17.6498i 0.0770014 0.660067i
\(716\) 25.8272 0.965209
\(717\) 0 0
\(718\) 3.63203 + 2.63882i 0.135546 + 0.0984800i
\(719\) 23.0320 16.7337i 0.858948 0.624062i −0.0686507 0.997641i \(-0.521869\pi\)
0.927598 + 0.373579i \(0.121869\pi\)
\(720\) 0 0
\(721\) −2.29295 + 7.05698i −0.0853939 + 0.262816i
\(722\) 25.3911 18.4477i 0.944957 0.686552i
\(723\) 0 0
\(724\) −5.04156 15.5163i −0.187368 0.576659i
\(725\) −5.53818 −0.205683
\(726\) 0 0
\(727\) 45.8400 1.70011 0.850057 0.526691i \(-0.176568\pi\)
0.850057 + 0.526691i \(0.176568\pi\)
\(728\) −3.49753 10.7643i −0.129627 0.398951i
\(729\) 0 0
\(730\) −14.9877 + 10.8892i −0.554720 + 0.403028i
\(731\) 4.46153 13.7312i 0.165016 0.507866i
\(732\) 0 0
\(733\) −30.7169 + 22.3171i −1.13455 + 0.824301i −0.986351 0.164656i \(-0.947349\pi\)
−0.148202 + 0.988957i \(0.547349\pi\)
\(734\) 2.18751 + 1.58932i 0.0807423 + 0.0586627i
\(735\) 0 0
\(736\) −54.3944 −2.00500
\(737\) 0.134693 1.15461i 0.00496149 0.0425306i
\(738\) 0 0
\(739\) 6.52725 + 20.0888i 0.240109 + 0.738979i 0.996403 + 0.0847466i \(0.0270081\pi\)
−0.756294 + 0.654232i \(0.772992\pi\)
\(740\) −1.21438 0.882299i −0.0446415 0.0324340i
\(741\) 0 0
\(742\) 1.64831 5.07298i 0.0605113 0.186235i
\(743\) −2.46606 + 7.58976i −0.0904711 + 0.278441i −0.986047 0.166467i \(-0.946764\pi\)
0.895576 + 0.444909i \(0.146764\pi\)
\(744\) 0 0
\(745\) −7.72900 5.61545i −0.283169 0.205734i
\(746\) 13.7385 + 42.2829i 0.503004 + 1.54809i
\(747\) 0 0
\(748\) −31.9015 + 6.40126i −1.16643 + 0.234053i
\(749\) 27.4718 1.00380
\(750\) 0 0
\(751\) 7.78664 + 5.65733i 0.284139 + 0.206439i 0.720721 0.693226i \(-0.243811\pi\)
−0.436582 + 0.899664i \(0.643811\pi\)
\(752\) −15.0968 + 10.9684i −0.550523 + 0.399978i
\(753\) 0 0
\(754\) −16.7529 + 51.5600i −0.610104 + 1.87771i
\(755\) −5.46214 + 3.96848i −0.198788 + 0.144428i
\(756\) 0 0
\(757\) −14.4049 44.3338i −0.523555 1.61134i −0.767155 0.641462i \(-0.778328\pi\)
0.243600 0.969876i \(-0.421672\pi\)
\(758\) −29.1076 −1.05724
\(759\) 0 0
\(760\) −7.27222 −0.263791
\(761\) 6.79661 + 20.9178i 0.246377 + 0.758270i 0.995407 + 0.0957342i \(0.0305199\pi\)
−0.749030 + 0.662536i \(0.769480\pi\)
\(762\) 0 0
\(763\) −5.99195 + 4.35341i −0.216923 + 0.157604i
\(764\) 5.55158 17.0860i 0.200849 0.618151i
\(765\) 0 0
\(766\) 5.79425 4.20977i 0.209355 0.152105i
\(767\) −24.5476 17.8348i −0.886361 0.643979i
\(768\) 0 0
\(769\) 48.0330 1.73211 0.866057 0.499946i \(-0.166647\pi\)
0.866057 + 0.499946i \(0.166647\pi\)
\(770\) 5.18895 + 9.22918i 0.186997 + 0.332597i
\(771\) 0 0
\(772\) 3.13377 + 9.64476i 0.112787 + 0.347123i
\(773\) −13.8222 10.0424i −0.497148 0.361199i 0.310778 0.950482i \(-0.399410\pi\)
−0.807927 + 0.589283i \(0.799410\pi\)
\(774\) 0 0
\(775\) −0.00660190 + 0.0203186i −0.000237147 + 0.000729864i
\(776\) −0.709771 + 2.18445i −0.0254793 + 0.0784172i
\(777\) 0 0
\(778\) 52.1653 + 37.9003i 1.87022 + 1.35879i
\(779\) 6.80242 + 20.9357i 0.243722 + 0.750099i
\(780\) 0 0
\(781\) 13.6794 + 6.27849i 0.489488 + 0.224662i
\(782\) −111.942 −4.00304
\(783\) 0 0
\(784\) −15.6012 11.3349i −0.557186 0.404819i
\(785\) −10.2425 + 7.44162i −0.365571 + 0.265603i
\(786\) 0 0
\(787\) −6.95034 + 21.3910i −0.247753 + 0.762505i 0.747418 + 0.664354i \(0.231293\pi\)
−0.995171 + 0.0981518i \(0.968707\pi\)
\(788\) −7.46092 + 5.42068i −0.265784 + 0.193104i
\(789\) 0 0
\(790\) 1.44765 + 4.45540i 0.0515050 + 0.158516i
\(791\) 12.5739 0.447076
\(792\) 0 0
\(793\) −49.7184 −1.76555
\(794\) −13.1118 40.3540i −0.465321 1.43211i
\(795\) 0 0
\(796\) −0.692261 + 0.502957i −0.0245365 + 0.0178268i
\(797\) 1.05615 3.25051i 0.0374109 0.115139i −0.930607 0.366020i \(-0.880720\pi\)
0.968018 + 0.250881i \(0.0807203\pi\)
\(798\) 0 0
\(799\) −22.6524 + 16.4579i −0.801383 + 0.582239i
\(800\) −5.26531 3.82547i −0.186157 0.135251i
\(801\) 0 0
\(802\) 10.4046 0.367398
\(803\) 16.4810 + 29.3135i 0.581603 + 1.03445i
\(804\) 0 0
\(805\) 4.51255 + 13.8882i 0.159047 + 0.489495i
\(806\) 0.169194 + 0.122926i 0.00595959 + 0.00432990i
\(807\) 0 0
\(808\) −2.50703 + 7.71584i −0.0881969 + 0.271442i
\(809\) 3.12679 9.62328i 0.109932 0.338336i −0.880924 0.473257i \(-0.843078\pi\)
0.990856 + 0.134921i \(0.0430781\pi\)
\(810\) 0 0
\(811\) −20.5287 14.9150i −0.720862 0.523737i 0.165798 0.986160i \(-0.446980\pi\)
−0.886659 + 0.462423i \(0.846980\pi\)
\(812\) −4.00168 12.3159i −0.140432 0.432204i
\(813\) 0 0
\(814\) −4.60538 + 4.99887i −0.161419 + 0.175210i
\(815\) 23.4058 0.819868
\(816\) 0 0
\(817\) 9.58370 + 6.96297i 0.335291 + 0.243603i
\(818\) 37.6232 27.3349i 1.31547 0.955741i
\(819\) 0 0
\(820\) −1.51351 + 4.65809i −0.0528539 + 0.162668i
\(821\) 1.21284 0.881177i 0.0423282 0.0307533i −0.566420 0.824117i \(-0.691672\pi\)
0.608748 + 0.793363i \(0.291672\pi\)
\(822\) 0 0
\(823\) −5.90982 18.1885i −0.206003 0.634013i −0.999671 0.0256610i \(-0.991831\pi\)
0.793667 0.608352i \(-0.208169\pi\)
\(824\) −5.13460 −0.178872
\(825\) 0 0
\(826\) 18.0794 0.629062
\(827\) 5.13910 + 15.8165i 0.178704 + 0.549994i 0.999783 0.0208200i \(-0.00662770\pi\)
−0.821079 + 0.570814i \(0.806628\pi\)
\(828\) 0 0
\(829\) −20.7881 + 15.1034i −0.722001 + 0.524564i −0.887023 0.461725i \(-0.847231\pi\)
0.165022 + 0.986290i \(0.447231\pi\)
\(830\) 9.07908 27.9425i 0.315140 0.969900i
\(831\) 0 0
\(832\) −9.18940 + 6.67649i −0.318585 + 0.231466i
\(833\) −23.4093 17.0078i −0.811083 0.589286i
\(834\) 0 0
\(835\) 3.05191 0.105616
\(836\) 3.09338 26.5169i 0.106987 0.917105i
\(837\) 0 0
\(838\) −7.61367 23.4325i −0.263010 0.809461i
\(839\) −22.9737 16.6914i −0.793141 0.576250i 0.115753 0.993278i \(-0.463072\pi\)
−0.908894 + 0.417028i \(0.863072\pi\)
\(840\) 0 0
\(841\) 0.516507 1.58965i 0.0178106 0.0548154i
\(842\) −1.66539 + 5.12555i −0.0573932 + 0.176638i
\(843\) 0 0
\(844\) 4.13743 + 3.00602i 0.142416 + 0.103471i
\(845\) −4.85315 14.9365i −0.166953 0.513830i
\(846\) 0 0
\(847\) 17.7318 7.41457i 0.609273 0.254768i
\(848\) 8.16320 0.280325
\(849\) 0 0
\(850\) −10.8359 7.87272i −0.371667 0.270032i
\(851\) −7.58406 + 5.51014i −0.259978 + 0.188885i
\(852\) 0 0
\(853\) 4.66838 14.3678i 0.159842 0.491943i −0.838777 0.544475i \(-0.816729\pi\)
0.998619 + 0.0525314i \(0.0167290\pi\)
\(854\) 23.9666 17.4128i 0.820122 0.595853i
\(855\) 0 0
\(856\) 5.87441 + 18.0796i 0.200783 + 0.617947i
\(857\) −2.37040 −0.0809713 −0.0404856 0.999180i \(-0.512891\pi\)
−0.0404856 + 0.999180i \(0.512891\pi\)
\(858\) 0 0
\(859\) 45.0423 1.53682 0.768411 0.639956i \(-0.221048\pi\)
0.768411 + 0.639956i \(0.221048\pi\)
\(860\) 0.814477 + 2.50670i 0.0277734 + 0.0854779i
\(861\) 0 0
\(862\) −17.0323 + 12.3747i −0.580123 + 0.421484i
\(863\) 7.73191 23.7964i 0.263197 0.810038i −0.728906 0.684614i \(-0.759971\pi\)
0.992103 0.125424i \(-0.0400292\pi\)
\(864\) 0 0
\(865\) −12.9503 + 9.40893i −0.440323 + 0.319913i
\(866\) 16.5018 + 11.9893i 0.560754 + 0.407412i
\(867\) 0 0
\(868\) −0.0499551 −0.00169559
\(869\) 8.33767 1.67301i 0.282836 0.0567530i
\(870\) 0 0
\(871\) −0.580278 1.78591i −0.0196620 0.0605133i
\(872\) −4.14632 3.01248i −0.140412 0.102015i
\(873\) 0 0
\(874\) 28.3825 87.3522i 0.960051 2.95473i
\(875\) −0.539926 + 1.66172i −0.0182528 + 0.0561765i
\(876\) 0 0
\(877\) 39.5411 + 28.7283i 1.33521 + 0.970085i 0.999606 + 0.0280807i \(0.00893953\pi\)
0.335601 + 0.942004i \(0.391060\pi\)
\(878\) −0.561002 1.72659i −0.0189329 0.0582695i
\(879\) 0 0
\(880\) −10.9791 + 11.9171i −0.370104 + 0.401726i
\(881\) −44.5530 −1.50103 −0.750515 0.660853i \(-0.770195\pi\)
−0.750515 + 0.660853i \(0.770195\pi\)
\(882\) 0 0
\(883\) 35.6410 + 25.8947i 1.19941 + 0.871426i 0.994227 0.107297i \(-0.0342196\pi\)
0.205187 + 0.978723i \(0.434220\pi\)
\(884\) −42.5230 + 30.8948i −1.43020 + 1.03910i
\(885\) 0 0
\(886\) −6.20076 + 19.0840i −0.208319 + 0.641139i
\(887\) −9.81279 + 7.12941i −0.329481 + 0.239382i −0.740210 0.672375i \(-0.765274\pi\)
0.410729 + 0.911757i \(0.365274\pi\)
\(888\) 0 0
\(889\) 6.85007 + 21.0823i 0.229744 + 0.707079i
\(890\) 26.5041 0.888419
\(891\) 0 0
\(892\) −35.7585 −1.19728
\(893\) −7.09925 21.8493i −0.237567 0.731158i
\(894\) 0 0
\(895\) 15.6133 11.3437i 0.521895 0.379179i
\(896\) −4.93655 + 15.1931i −0.164919 + 0.507567i
\(897\) 0 0
\(898\) −42.8963 + 31.1660i −1.43147 + 1.04002i
\(899\) −0.0957219 0.0695461i −0.00319251 0.00231949i
\(900\) 0 0
\(901\) 12.2487 0.408063
\(902\) 20.1561 + 9.25112i 0.671125 + 0.308029i
\(903\) 0 0
\(904\) 2.68872 + 8.27504i 0.0894256 + 0.275224i
\(905\) −9.86277 7.16572i −0.327850 0.238197i
\(906\) 0 0
\(907\) 10.1565 31.2586i 0.337242 1.03793i −0.628365 0.777919i \(-0.716275\pi\)
0.965607 0.260006i \(-0.0837246\pi\)
\(908\) −5.06069 + 15.5752i −0.167945 + 0.516881i
\(909\) 0 0
\(910\) 13.8372 + 10.0533i 0.458700 + 0.333265i
\(911\) 14.4328 + 44.4195i 0.478179 + 1.47168i 0.841622 + 0.540067i \(0.181601\pi\)
−0.363443 + 0.931617i \(0.618399\pi\)
\(912\) 0 0
\(913\) −48.4714 22.2471i −1.60417 0.736271i
\(914\) 6.49842 0.214949
\(915\) 0 0
\(916\) 7.23946 + 5.25978i 0.239199 + 0.173788i
\(917\) −1.37128 + 0.996296i −0.0452838 + 0.0329006i
\(918\) 0 0
\(919\) 2.26765 6.97910i 0.0748028 0.230219i −0.906663 0.421855i \(-0.861379\pi\)
0.981466 + 0.191636i \(0.0613792\pi\)
\(920\) −8.17508 + 5.93954i −0.269524 + 0.195821i
\(921\) 0 0
\(922\) 14.2183 + 43.7594i 0.468255 + 1.44114i
\(923\) 24.3143 0.800314
\(924\) 0 0
\(925\) −1.12165 −0.0368795
\(926\) 10.0919 + 31.0596i 0.331640 + 1.02068i
\(927\) 0 0
\(928\) 29.1603 21.1862i 0.957232 0.695470i
\(929\) −3.93333 + 12.1055i −0.129048 + 0.397170i −0.994617 0.103621i \(-0.966957\pi\)
0.865569 + 0.500790i \(0.166957\pi\)
\(930\) 0 0
\(931\) 19.2071 13.9548i 0.629488 0.457350i
\(932\) −7.05626 5.12667i −0.231135 0.167930i
\(933\) 0 0
\(934\) −46.0888 −1.50807
\(935\) −16.4738 + 17.8814i −0.538752 + 0.584784i
\(936\) 0 0
\(937\) 5.94961 + 18.3110i 0.194365 + 0.598195i 0.999983 + 0.00575961i \(0.00183335\pi\)
−0.805618 + 0.592435i \(0.798167\pi\)
\(938\) 0.905199 + 0.657665i 0.0295558 + 0.0214735i
\(939\) 0 0
\(940\) 1.57955 4.86136i 0.0515193 0.158560i
\(941\) 12.7530 39.2496i 0.415735 1.27950i −0.495857 0.868404i \(-0.665146\pi\)
0.911592 0.411096i \(-0.134854\pi\)
\(942\) 0 0
\(943\) 24.7461 + 17.9791i 0.805842 + 0.585479i
\(944\) 8.55007 + 26.3144i 0.278281 + 0.856461i
\(945\) 0 0
\(946\) 11.7015 2.34798i 0.380448 0.0763395i
\(947\) 50.3012 1.63457 0.817285 0.576233i \(-0.195478\pi\)
0.817285 + 0.576233i \(0.195478\pi\)
\(948\) 0 0
\(949\) 43.9496 + 31.9312i 1.42666 + 1.03653i
\(950\) 8.89074 6.45950i 0.288454 0.209574i
\(951\) 0 0
\(952\) −4.78550 + 14.7282i −0.155099 + 0.477345i
\(953\) −7.30203 + 5.30523i −0.236536 + 0.171853i −0.699739 0.714399i \(-0.746700\pi\)
0.463203 + 0.886252i \(0.346700\pi\)
\(954\) 0 0
\(955\) −4.14836 12.7673i −0.134238 0.413141i
\(956\) 14.5093 0.469263
\(957\) 0 0
\(958\) −9.56617 −0.309069
\(959\) −2.27868 7.01305i −0.0735824 0.226463i
\(960\) 0 0
\(961\) 25.0792 18.2211i 0.809005 0.587777i
\(962\) −3.39296 + 10.4425i −0.109393 + 0.336678i
\(963\) 0 0
\(964\) −29.4275 + 21.3803i −0.947796 + 0.688614i
\(965\) 6.13058 + 4.45413i 0.197350 + 0.143384i
\(966\) 0 0
\(967\) −30.2503 −0.972785 −0.486392 0.873740i \(-0.661687\pi\)
−0.486392 + 0.873740i \(0.661687\pi\)
\(968\) 8.67130 + 10.0841i 0.278706 + 0.324114i
\(969\) 0 0
\(970\) −1.07258 3.30107i −0.0344386 0.105991i
\(971\) 10.3785 + 7.54040i 0.333061 + 0.241983i 0.741728 0.670700i \(-0.234006\pi\)
−0.408667 + 0.912683i \(0.634006\pi\)
\(972\) 0 0
\(973\) 4.77751 14.7037i 0.153160 0.471378i
\(974\) −5.10687 + 15.7173i −0.163635 + 0.503616i
\(975\) 0 0
\(976\) 36.6785 + 26.6485i 1.17405 + 0.852996i
\(977\) 4.06641 + 12.5151i 0.130096 + 0.400394i 0.994795 0.101896i \(-0.0324909\pi\)
−0.864699 + 0.502290i \(0.832491\pi\)
\(978\) 0 0
\(979\) 5.57474 47.7875i 0.178169 1.52729i
\(980\) 5.28233 0.168738
\(981\) 0 0
\(982\) 51.4562 + 37.3851i 1.64203 + 1.19301i
\(983\) 18.1519 13.1881i 0.578954 0.420635i −0.259393 0.965772i \(-0.583522\pi\)
0.838347 + 0.545137i \(0.183522\pi\)
\(984\) 0 0
\(985\) −2.12949 + 6.55390i −0.0678513 + 0.208825i
\(986\) 60.0110 43.6005i 1.91114 1.38852i
\(987\) 0 0
\(988\) −13.3267 41.0154i −0.423979 1.30487i
\(989\) 16.4605 0.523414
\(990\) 0 0
\(991\) 22.9146 0.727907 0.363953 0.931417i \(-0.381427\pi\)
0.363953 + 0.931417i \(0.381427\pi\)
\(992\) −0.0429671 0.132239i −0.00136421 0.00419859i
\(993\) 0 0
\(994\) −11.7207 + 8.51555i −0.371757 + 0.270097i
\(995\) −0.197585 + 0.608104i −0.00626386 + 0.0192782i
\(996\) 0 0
\(997\) 13.6234 9.89794i 0.431456 0.313471i −0.350775 0.936460i \(-0.614082\pi\)
0.782231 + 0.622989i \(0.214082\pi\)
\(998\) 28.9705 + 21.0483i 0.917045 + 0.666272i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.n.c.181.1 8
3.2 odd 2 165.2.m.c.16.2 8
11.3 even 5 5445.2.a.bj.1.1 4
11.8 odd 10 5445.2.a.bq.1.4 4
11.9 even 5 inner 495.2.n.c.361.1 8
15.2 even 4 825.2.bx.e.49.1 16
15.8 even 4 825.2.bx.e.49.4 16
15.14 odd 2 825.2.n.j.676.1 8
33.8 even 10 1815.2.a.q.1.1 4
33.14 odd 10 1815.2.a.u.1.4 4
33.20 odd 10 165.2.m.c.31.2 yes 8
165.14 odd 10 9075.2.a.co.1.1 4
165.53 even 20 825.2.bx.e.724.1 16
165.74 even 10 9075.2.a.df.1.4 4
165.119 odd 10 825.2.n.j.526.1 8
165.152 even 20 825.2.bx.e.724.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.2.m.c.16.2 8 3.2 odd 2
165.2.m.c.31.2 yes 8 33.20 odd 10
495.2.n.c.181.1 8 1.1 even 1 trivial
495.2.n.c.361.1 8 11.9 even 5 inner
825.2.n.j.526.1 8 165.119 odd 10
825.2.n.j.676.1 8 15.14 odd 2
825.2.bx.e.49.1 16 15.2 even 4
825.2.bx.e.49.4 16 15.8 even 4
825.2.bx.e.724.1 16 165.53 even 20
825.2.bx.e.724.4 16 165.152 even 20
1815.2.a.q.1.1 4 33.8 even 10
1815.2.a.u.1.4 4 33.14 odd 10
5445.2.a.bj.1.1 4 11.3 even 5
5445.2.a.bq.1.4 4 11.8 odd 10
9075.2.a.co.1.1 4 165.14 odd 10
9075.2.a.df.1.4 4 165.74 even 10