Properties

Label 825.2
Level 825
Weight 2
Dimension 15942
Nonzero newspaces 42
Newform subspaces 148
Sturm bound 96000
Trace bound 10

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 42 \)
Newform subspaces: \( 148 \)
Sturm bound: \(96000\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(825))\).

Total New Old
Modular forms 25120 16682 8438
Cusp forms 22881 15942 6939
Eisenstein series 2239 740 1499

Trace form

\( 15942q + 2q^{2} - 47q^{3} - 80q^{4} + 12q^{5} - 54q^{6} - 64q^{7} + 62q^{8} - 29q^{9} + O(q^{10}) \) \( 15942q + 2q^{2} - 47q^{3} - 80q^{4} + 12q^{5} - 54q^{6} - 64q^{7} + 62q^{8} - 29q^{9} - 92q^{10} + 14q^{11} - 72q^{12} - 60q^{13} + 78q^{14} - 52q^{15} - 84q^{16} + 34q^{17} - 48q^{18} - 84q^{19} - 72q^{20} - 68q^{21} - 86q^{22} - 12q^{23} - 142q^{24} - 188q^{25} + 62q^{26} - 62q^{27} - 168q^{28} - 8q^{29} - 108q^{30} - 134q^{31} - 14q^{32} - 65q^{33} - 180q^{34} + 40q^{35} - 118q^{36} - 34q^{37} + 34q^{38} - 64q^{39} - 324q^{40} + 104q^{41} - 242q^{42} - 236q^{43} - 258q^{44} - 288q^{45} - 424q^{46} - 202q^{47} - 444q^{48} - 514q^{49} - 372q^{50} - 346q^{51} - 836q^{52} - 282q^{53} - 400q^{54} - 324q^{55} - 520q^{56} - 346q^{57} - 732q^{58} - 266q^{59} - 268q^{60} - 372q^{61} - 268q^{62} - 104q^{63} - 468q^{64} - 4q^{65} - 212q^{66} - 226q^{67} + 24q^{68} + 73q^{69} + 40q^{70} + 172q^{71} + 272q^{72} + 188q^{73} + 358q^{74} + 148q^{75} + 28q^{76} + 186q^{77} + 156q^{78} + 200q^{79} + 308q^{80} + 27q^{81} + 72q^{82} + 186q^{83} + 52q^{84} - 236q^{85} + 148q^{86} + 28q^{87} - 34q^{88} - 64q^{89} - 212q^{90} - 284q^{91} - 294q^{92} - 361q^{93} - 884q^{94} - 272q^{95} - 666q^{96} - 806q^{97} - 850q^{98} - 431q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(825))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
825.2.a \(\chi_{825}(1, \cdot)\) 825.2.a.a 1 1
825.2.a.b 1
825.2.a.c 1
825.2.a.d 2
825.2.a.e 2
825.2.a.f 2
825.2.a.g 2
825.2.a.h 3
825.2.a.i 3
825.2.a.j 3
825.2.a.k 3
825.2.a.l 3
825.2.a.m 3
825.2.a.n 3
825.2.c \(\chi_{825}(199, \cdot)\) 825.2.c.a 2 1
825.2.c.b 2
825.2.c.c 4
825.2.c.d 4
825.2.c.e 4
825.2.c.f 6
825.2.c.g 6
825.2.d \(\chi_{825}(824, \cdot)\) 825.2.d.a 4 1
825.2.d.b 8
825.2.d.c 8
825.2.d.d 8
825.2.d.e 8
825.2.d.f 32
825.2.f \(\chi_{825}(626, \cdot)\) 825.2.f.a 2 1
825.2.f.b 4
825.2.f.c 8
825.2.f.d 8
825.2.f.e 16
825.2.f.f 16
825.2.f.g 16
825.2.j \(\chi_{825}(43, \cdot)\) 825.2.j.a 8 2
825.2.j.b 8
825.2.j.c 24
825.2.j.d 32
825.2.k \(\chi_{825}(518, \cdot)\) 825.2.k.a 4 2
825.2.k.b 4
825.2.k.c 4
825.2.k.d 4
825.2.k.e 4
825.2.k.f 4
825.2.k.g 4
825.2.k.h 4
825.2.k.i 16
825.2.k.j 16
825.2.k.k 28
825.2.k.l 28
825.2.m \(\chi_{825}(16, \cdot)\) 825.2.m.a 4 4
825.2.m.b 4
825.2.m.c 116
825.2.m.d 116
825.2.n \(\chi_{825}(301, \cdot)\) 825.2.n.a 4 4
825.2.n.b 4
825.2.n.c 4
825.2.n.d 4
825.2.n.e 4
825.2.n.f 4
825.2.n.g 8
825.2.n.h 8
825.2.n.i 8
825.2.n.j 8
825.2.n.k 8
825.2.n.l 8
825.2.n.m 16
825.2.n.n 16
825.2.n.o 24
825.2.n.p 24
825.2.o \(\chi_{825}(421, \cdot)\) 825.2.o.a 4 4
825.2.o.b 4
825.2.o.c 116
825.2.o.d 116
825.2.p \(\chi_{825}(181, \cdot)\) 825.2.p.a 4 4
825.2.p.b 116
825.2.p.c 120
825.2.q \(\chi_{825}(166, \cdot)\) 825.2.q.a 48 4
825.2.q.b 48
825.2.q.c 48
825.2.q.d 48
825.2.r \(\chi_{825}(31, \cdot)\) 825.2.r.a 4 4
825.2.r.b 116
825.2.r.c 120
825.2.s \(\chi_{825}(479, \cdot)\) 825.2.s.a 464 4
825.2.v \(\chi_{825}(379, \cdot)\) 825.2.v.a 240 4
825.2.x \(\chi_{825}(131, \cdot)\) 825.2.x.a 8 4
825.2.x.b 8
825.2.x.c 448
825.2.bd \(\chi_{825}(281, \cdot)\) 825.2.bd.a 464 4
825.2.bf \(\chi_{825}(266, \cdot)\) 825.2.bf.a 464 4
825.2.bi \(\chi_{825}(101, \cdot)\) 825.2.bi.a 8 4
825.2.bi.b 8
825.2.bi.c 8
825.2.bi.d 16
825.2.bi.e 48
825.2.bi.f 56
825.2.bi.g 56
825.2.bi.h 80
825.2.bj \(\chi_{825}(116, \cdot)\) 825.2.bj.a 464 4
825.2.bl \(\chi_{825}(34, \cdot)\) 825.2.bl.a 104 4
825.2.bl.b 104
825.2.bo \(\chi_{825}(134, \cdot)\) 825.2.bo.a 464 4
825.2.br \(\chi_{825}(29, \cdot)\) 825.2.br.a 464 4
825.2.bs \(\chi_{825}(74, \cdot)\) 825.2.bs.a 8 4
825.2.bs.b 8
825.2.bs.c 8
825.2.bs.d 8
825.2.bs.e 16
825.2.bs.f 16
825.2.bs.g 48
825.2.bs.h 48
825.2.bs.i 112
825.2.bu \(\chi_{825}(239, \cdot)\) 825.2.bu.a 464 4
825.2.bv \(\chi_{825}(229, \cdot)\) 825.2.bv.a 240 4
825.2.bx \(\chi_{825}(49, \cdot)\) 825.2.bx.a 8 4
825.2.bx.b 8
825.2.bx.c 8
825.2.bx.d 8
825.2.bx.e 16
825.2.bx.f 16
825.2.bx.g 16
825.2.bx.h 16
825.2.bx.i 16
825.2.bx.j 32
825.2.by \(\chi_{825}(4, \cdot)\) 825.2.by.a 240 4
825.2.cb \(\chi_{825}(169, \cdot)\) 825.2.cb.a 240 4
825.2.ce \(\chi_{825}(164, \cdot)\) 825.2.ce.a 8 4
825.2.ce.b 8
825.2.ce.c 448
825.2.cg \(\chi_{825}(41, \cdot)\) 825.2.cg.a 464 4
825.2.ci \(\chi_{825}(113, \cdot)\) 825.2.ci.a 928 8
825.2.cl \(\chi_{825}(28, \cdot)\) 825.2.cl.a 480 8
825.2.cm \(\chi_{825}(13, \cdot)\) 825.2.cm.a 480 8
825.2.cs \(\chi_{825}(23, \cdot)\) 825.2.cs.a 400 8
825.2.cs.b 400
825.2.ct \(\chi_{825}(218, \cdot)\) 825.2.ct.a 128 8
825.2.ct.b 160
825.2.ct.c 256
825.2.cu \(\chi_{825}(53, \cdot)\) 825.2.cu.a 928 8
825.2.cv \(\chi_{825}(38, \cdot)\) 825.2.cv.a 928 8
825.2.cw \(\chi_{825}(7, \cdot)\) 825.2.cw.a 64 8
825.2.cw.b 96
825.2.cw.c 128
825.2.cx \(\chi_{825}(52, \cdot)\) 825.2.cx.a 480 8
825.2.cy \(\chi_{825}(172, \cdot)\) 825.2.cy.a 480 8
825.2.cz \(\chi_{825}(142, \cdot)\) 825.2.cz.a 480 8
825.2.df \(\chi_{825}(47, \cdot)\) 825.2.df.a 928 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(825))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(825)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(275))\)\(^{\oplus 2}\)