Properties

Label 825.df
Modulus $825$
Conductor $825$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(825, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([10,17,16])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(47,825)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(825\)
Conductor: \(825\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.7896700404567156612433609552681446075439453125.4

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(13\) \(14\) \(16\) \(17\) \(19\) \(23\)
\(\chi_{825}(47,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(-i\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{825}(92,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(-i\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{825}(158,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(i\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{825}(278,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(i\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{825}(302,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(-i\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{825}(698,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(i\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{825}(713,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(i\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{825}(812,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(-i\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{20}\right)\)