Properties

Label 820.2.y.a.653.20
Level $820$
Weight $2$
Character 820.653
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 653.20
Character \(\chi\) \(=\) 820.653
Dual form 820.2.y.a.437.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04526 + 2.52347i) q^{3} +(-1.80283 + 1.32280i) q^{5} +(-2.29298 + 0.949785i) q^{7} +(-3.15402 + 3.15402i) q^{9} +(-0.869165 + 2.09835i) q^{11} +(0.217317 + 0.524650i) q^{13} +(-5.22247 - 3.16672i) q^{15} +(0.755905 - 1.82492i) q^{17} +(-2.21662 - 5.35139i) q^{19} +(-4.79351 - 4.79351i) q^{21} +(3.20260 - 3.20260i) q^{23} +(1.50038 - 4.76958i) q^{25} +(-3.68544 - 1.52656i) q^{27} +(-1.60007 + 3.86291i) q^{29} +3.18030i q^{31} -6.20363 q^{33} +(2.87748 - 4.74547i) q^{35} +(-4.58425 + 4.58425i) q^{37} +(-1.09679 + 1.09679i) q^{39} +(-0.371118 + 6.39236i) q^{41} -0.295330 q^{43} +(1.51401 - 9.85832i) q^{45} +(0.518923 - 1.25279i) q^{47} +(-0.594062 + 0.594062i) q^{49} +5.39524 q^{51} +(-3.48350 + 1.44291i) q^{53} +(-1.20875 - 4.93270i) q^{55} +(11.1871 - 11.1871i) q^{57} -0.558558i q^{59} +(-9.30634 + 9.30634i) q^{61} +(4.23648 - 10.2278i) q^{63} +(-1.08579 - 0.658386i) q^{65} +(-0.648422 + 1.56543i) q^{67} +(11.4292 + 4.73413i) q^{69} +(7.96495 + 3.29919i) q^{71} +6.60714 q^{73} +(13.6042 - 1.19925i) q^{75} -5.63701i q^{77} +(-15.2985 - 6.33686i) q^{79} +2.48565i q^{81} +(-4.88232 - 4.88232i) q^{83} +(1.05124 + 4.28993i) q^{85} -11.4204 q^{87} +(-1.63251 + 3.94123i) q^{89} +(-0.996609 - 0.996609i) q^{91} +(-8.02539 + 3.32422i) q^{93} +(11.0750 + 6.71549i) q^{95} +(12.5206 + 5.18619i) q^{97} +(-3.87688 - 9.35962i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.04526 + 2.52347i 0.603479 + 1.45693i 0.869978 + 0.493091i \(0.164133\pi\)
−0.266499 + 0.963835i \(0.585867\pi\)
\(4\) 0 0
\(5\) −1.80283 + 1.32280i −0.806250 + 0.591576i
\(6\) 0 0
\(7\) −2.29298 + 0.949785i −0.866667 + 0.358985i −0.771311 0.636458i \(-0.780399\pi\)
−0.0953554 + 0.995443i \(0.530399\pi\)
\(8\) 0 0
\(9\) −3.15402 + 3.15402i −1.05134 + 1.05134i
\(10\) 0 0
\(11\) −0.869165 + 2.09835i −0.262063 + 0.632677i −0.999066 0.0432133i \(-0.986241\pi\)
0.737003 + 0.675890i \(0.236241\pi\)
\(12\) 0 0
\(13\) 0.217317 + 0.524650i 0.0602729 + 0.145512i 0.951147 0.308739i \(-0.0999070\pi\)
−0.890874 + 0.454251i \(0.849907\pi\)
\(14\) 0 0
\(15\) −5.22247 3.16672i −1.34844 0.817643i
\(16\) 0 0
\(17\) 0.755905 1.82492i 0.183334 0.442607i −0.805316 0.592846i \(-0.798004\pi\)
0.988650 + 0.150239i \(0.0480042\pi\)
\(18\) 0 0
\(19\) −2.21662 5.35139i −0.508527 1.22769i −0.944731 0.327846i \(-0.893677\pi\)
0.436204 0.899848i \(-0.356323\pi\)
\(20\) 0 0
\(21\) −4.79351 4.79351i −1.04603 1.04603i
\(22\) 0 0
\(23\) 3.20260 3.20260i 0.667788 0.667788i −0.289415 0.957204i \(-0.593461\pi\)
0.957204 + 0.289415i \(0.0934609\pi\)
\(24\) 0 0
\(25\) 1.50038 4.76958i 0.300077 0.953915i
\(26\) 0 0
\(27\) −3.68544 1.52656i −0.709263 0.293787i
\(28\) 0 0
\(29\) −1.60007 + 3.86291i −0.297125 + 0.717324i 0.702857 + 0.711331i \(0.251907\pi\)
−0.999982 + 0.00599253i \(0.998093\pi\)
\(30\) 0 0
\(31\) 3.18030i 0.571198i 0.958349 + 0.285599i \(0.0921926\pi\)
−0.958349 + 0.285599i \(0.907807\pi\)
\(32\) 0 0
\(33\) −6.20363 −1.07991
\(34\) 0 0
\(35\) 2.87748 4.74547i 0.486383 0.802130i
\(36\) 0 0
\(37\) −4.58425 + 4.58425i −0.753646 + 0.753646i −0.975158 0.221512i \(-0.928901\pi\)
0.221512 + 0.975158i \(0.428901\pi\)
\(38\) 0 0
\(39\) −1.09679 + 1.09679i −0.175626 + 0.175626i
\(40\) 0 0
\(41\) −0.371118 + 6.39236i −0.0579590 + 0.998319i
\(42\) 0 0
\(43\) −0.295330 −0.0450374 −0.0225187 0.999746i \(-0.507169\pi\)
−0.0225187 + 0.999746i \(0.507169\pi\)
\(44\) 0 0
\(45\) 1.51401 9.85832i 0.225696 1.46959i
\(46\) 0 0
\(47\) 0.518923 1.25279i 0.0756928 0.182738i −0.881504 0.472177i \(-0.843468\pi\)
0.957197 + 0.289438i \(0.0934685\pi\)
\(48\) 0 0
\(49\) −0.594062 + 0.594062i −0.0848661 + 0.0848661i
\(50\) 0 0
\(51\) 5.39524 0.755485
\(52\) 0 0
\(53\) −3.48350 + 1.44291i −0.478496 + 0.198199i −0.608877 0.793265i \(-0.708380\pi\)
0.130382 + 0.991464i \(0.458380\pi\)
\(54\) 0 0
\(55\) −1.20875 4.93270i −0.162988 0.665125i
\(56\) 0 0
\(57\) 11.1871 11.1871i 1.48177 1.48177i
\(58\) 0 0
\(59\) 0.558558i 0.0727181i −0.999339 0.0363590i \(-0.988424\pi\)
0.999339 0.0363590i \(-0.0115760\pi\)
\(60\) 0 0
\(61\) −9.30634 + 9.30634i −1.19156 + 1.19156i −0.214924 + 0.976631i \(0.568950\pi\)
−0.976631 + 0.214924i \(0.931050\pi\)
\(62\) 0 0
\(63\) 4.23648 10.2278i 0.533747 1.28858i
\(64\) 0 0
\(65\) −1.08579 0.658386i −0.134676 0.0816627i
\(66\) 0 0
\(67\) −0.648422 + 1.56543i −0.0792173 + 0.191247i −0.958526 0.285004i \(-0.908005\pi\)
0.879309 + 0.476252i \(0.158005\pi\)
\(68\) 0 0
\(69\) 11.4292 + 4.73413i 1.37591 + 0.569922i
\(70\) 0 0
\(71\) 7.96495 + 3.29919i 0.945266 + 0.391542i 0.801450 0.598062i \(-0.204063\pi\)
0.143816 + 0.989604i \(0.454063\pi\)
\(72\) 0 0
\(73\) 6.60714 0.773308 0.386654 0.922225i \(-0.373631\pi\)
0.386654 + 0.922225i \(0.373631\pi\)
\(74\) 0 0
\(75\) 13.6042 1.19925i 1.57087 0.138478i
\(76\) 0 0
\(77\) 5.63701i 0.642396i
\(78\) 0 0
\(79\) −15.2985 6.33686i −1.72122 0.712953i −0.999791 0.0204657i \(-0.993485\pi\)
−0.721430 0.692487i \(-0.756515\pi\)
\(80\) 0 0
\(81\) 2.48565i 0.276183i
\(82\) 0 0
\(83\) −4.88232 4.88232i −0.535905 0.535905i 0.386419 0.922323i \(-0.373712\pi\)
−0.922323 + 0.386419i \(0.873712\pi\)
\(84\) 0 0
\(85\) 1.05124 + 4.28993i 0.114023 + 0.465308i
\(86\) 0 0
\(87\) −11.4204 −1.22440
\(88\) 0 0
\(89\) −1.63251 + 3.94123i −0.173046 + 0.417770i −0.986479 0.163889i \(-0.947596\pi\)
0.813433 + 0.581659i \(0.197596\pi\)
\(90\) 0 0
\(91\) −0.996609 0.996609i −0.104473 0.104473i
\(92\) 0 0
\(93\) −8.02539 + 3.32422i −0.832194 + 0.344706i
\(94\) 0 0
\(95\) 11.0750 + 6.71549i 1.13627 + 0.688995i
\(96\) 0 0
\(97\) 12.5206 + 5.18619i 1.27127 + 0.526578i 0.913351 0.407174i \(-0.133486\pi\)
0.357921 + 0.933752i \(0.383486\pi\)
\(98\) 0 0
\(99\) −3.87688 9.35962i −0.389641 0.940677i
\(100\) 0 0
\(101\) −3.39945 + 1.40810i −0.338258 + 0.140111i −0.545345 0.838211i \(-0.683601\pi\)
0.207088 + 0.978322i \(0.433601\pi\)
\(102\) 0 0
\(103\) 1.15561i 0.113866i 0.998378 + 0.0569329i \(0.0181321\pi\)
−0.998378 + 0.0569329i \(0.981868\pi\)
\(104\) 0 0
\(105\) 14.9827 + 2.30101i 1.46217 + 0.224555i
\(106\) 0 0
\(107\) −1.95897 1.95897i −0.189381 0.189381i 0.606047 0.795428i \(-0.292754\pi\)
−0.795428 + 0.606047i \(0.792754\pi\)
\(108\) 0 0
\(109\) −16.9082 + 7.00361i −1.61951 + 0.670824i −0.993999 0.109389i \(-0.965111\pi\)
−0.625514 + 0.780213i \(0.715111\pi\)
\(110\) 0 0
\(111\) −16.3599 6.77651i −1.55282 0.643198i
\(112\) 0 0
\(113\) 11.2160 11.2160i 1.05511 1.05511i 0.0567209 0.998390i \(-0.481935\pi\)
0.998390 0.0567209i \(-0.0180645\pi\)
\(114\) 0 0
\(115\) −1.53733 + 10.0101i −0.143357 + 0.933451i
\(116\) 0 0
\(117\) −2.34018 0.969335i −0.216350 0.0896150i
\(118\) 0 0
\(119\) 4.90245i 0.449407i
\(120\) 0 0
\(121\) 4.13055 + 4.13055i 0.375504 + 0.375504i
\(122\) 0 0
\(123\) −16.5188 + 5.74515i −1.48945 + 0.518022i
\(124\) 0 0
\(125\) 3.60427 + 10.5834i 0.322376 + 0.946612i
\(126\) 0 0
\(127\) −0.646133 0.646133i −0.0573351 0.0573351i 0.677858 0.735193i \(-0.262908\pi\)
−0.735193 + 0.677858i \(0.762908\pi\)
\(128\) 0 0
\(129\) −0.308696 0.745257i −0.0271791 0.0656162i
\(130\) 0 0
\(131\) 5.41261 + 5.41261i 0.472902 + 0.472902i 0.902852 0.429951i \(-0.141469\pi\)
−0.429951 + 0.902852i \(0.641469\pi\)
\(132\) 0 0
\(133\) 10.1653 + 10.1653i 0.881447 + 0.881447i
\(134\) 0 0
\(135\) 8.66356 2.12299i 0.745640 0.182718i
\(136\) 0 0
\(137\) 0.277283 0.669422i 0.0236899 0.0571925i −0.911592 0.411096i \(-0.865146\pi\)
0.935282 + 0.353904i \(0.115146\pi\)
\(138\) 0 0
\(139\) 5.04166i 0.427628i 0.976874 + 0.213814i \(0.0685886\pi\)
−0.976874 + 0.213814i \(0.931411\pi\)
\(140\) 0 0
\(141\) 3.70379 0.311916
\(142\) 0 0
\(143\) −1.28978 −0.107857
\(144\) 0 0
\(145\) −2.22522 9.08074i −0.184794 0.754114i
\(146\) 0 0
\(147\) −2.12005 0.878152i −0.174858 0.0724288i
\(148\) 0 0
\(149\) 8.11373 + 19.5883i 0.664703 + 1.60473i 0.790347 + 0.612659i \(0.209900\pi\)
−0.125645 + 0.992075i \(0.540100\pi\)
\(150\) 0 0
\(151\) −5.32915 + 12.8657i −0.433680 + 1.04700i 0.544411 + 0.838819i \(0.316753\pi\)
−0.978091 + 0.208178i \(0.933247\pi\)
\(152\) 0 0
\(153\) 3.37169 + 8.13998i 0.272585 + 0.658078i
\(154\) 0 0
\(155\) −4.20691 5.73353i −0.337907 0.460528i
\(156\) 0 0
\(157\) −9.24064 22.3089i −0.737483 1.78044i −0.615845 0.787868i \(-0.711185\pi\)
−0.121639 0.992574i \(-0.538815\pi\)
\(158\) 0 0
\(159\) −7.28230 7.28230i −0.577524 0.577524i
\(160\) 0 0
\(161\) −4.30173 + 10.3853i −0.339024 + 0.818476i
\(162\) 0 0
\(163\) −11.6422 + 11.6422i −0.911889 + 0.911889i −0.996421 0.0845316i \(-0.973061\pi\)
0.0845316 + 0.996421i \(0.473061\pi\)
\(164\) 0 0
\(165\) 11.1841 8.20618i 0.870679 0.638850i
\(166\) 0 0
\(167\) 3.67687 1.52301i 0.284525 0.117854i −0.235857 0.971788i \(-0.575790\pi\)
0.520382 + 0.853934i \(0.325790\pi\)
\(168\) 0 0
\(169\) 8.96436 8.96436i 0.689566 0.689566i
\(170\) 0 0
\(171\) 23.8697 + 9.88715i 1.82536 + 0.756089i
\(172\) 0 0
\(173\) 7.73026i 0.587721i 0.955848 + 0.293860i \(0.0949401\pi\)
−0.955848 + 0.293860i \(0.905060\pi\)
\(174\) 0 0
\(175\) 1.08972 + 12.3616i 0.0823747 + 0.934449i
\(176\) 0 0
\(177\) 1.40951 0.583836i 0.105945 0.0438838i
\(178\) 0 0
\(179\) 22.3875 9.27320i 1.67332 0.693111i 0.674346 0.738416i \(-0.264426\pi\)
0.998973 + 0.0453042i \(0.0144257\pi\)
\(180\) 0 0
\(181\) 4.39280 1.81956i 0.326514 0.135247i −0.213404 0.976964i \(-0.568455\pi\)
0.539918 + 0.841717i \(0.318455\pi\)
\(182\) 0 0
\(183\) −33.2118 13.7568i −2.45509 1.01693i
\(184\) 0 0
\(185\) 2.20056 14.3287i 0.161788 1.05347i
\(186\) 0 0
\(187\) 3.17231 + 3.17231i 0.231982 + 0.231982i
\(188\) 0 0
\(189\) 9.90056 0.720160
\(190\) 0 0
\(191\) −4.35565 10.5155i −0.315164 0.760873i −0.999497 0.0317038i \(-0.989907\pi\)
0.684333 0.729169i \(-0.260093\pi\)
\(192\) 0 0
\(193\) 9.15193 + 22.0947i 0.658770 + 1.59041i 0.799705 + 0.600393i \(0.204989\pi\)
−0.140934 + 0.990019i \(0.545011\pi\)
\(194\) 0 0
\(195\) 0.526486 3.42815i 0.0377024 0.245495i
\(196\) 0 0
\(197\) 7.41577i 0.528351i 0.964475 + 0.264176i \(0.0850999\pi\)
−0.964475 + 0.264176i \(0.914900\pi\)
\(198\) 0 0
\(199\) 13.4266 5.56147i 0.951785 0.394242i 0.147883 0.989005i \(-0.452754\pi\)
0.803901 + 0.594763i \(0.202754\pi\)
\(200\) 0 0
\(201\) −4.62808 −0.326440
\(202\) 0 0
\(203\) 10.3773i 0.728344i
\(204\) 0 0
\(205\) −7.78677 12.0152i −0.543852 0.839181i
\(206\) 0 0
\(207\) 20.2022i 1.40415i
\(208\) 0 0
\(209\) 13.1557 0.909999
\(210\) 0 0
\(211\) −9.64043 + 3.99320i −0.663675 + 0.274903i −0.688984 0.724777i \(-0.741943\pi\)
0.0253091 + 0.999680i \(0.491943\pi\)
\(212\) 0 0
\(213\) 23.5478i 1.61347i
\(214\) 0 0
\(215\) 0.532430 0.390664i 0.0363114 0.0266430i
\(216\) 0 0
\(217\) −3.02060 7.29237i −0.205052 0.495038i
\(218\) 0 0
\(219\) 6.90616 + 16.6729i 0.466675 + 1.12665i
\(220\) 0 0
\(221\) 1.12171 0.0754546
\(222\) 0 0
\(223\) −19.2171 19.2171i −1.28687 1.28687i −0.936676 0.350198i \(-0.886114\pi\)
−0.350198 0.936676i \(-0.613886\pi\)
\(224\) 0 0
\(225\) 10.3111 + 19.7756i 0.687407 + 1.31837i
\(226\) 0 0
\(227\) 12.1762 + 5.04356i 0.808165 + 0.334753i 0.748222 0.663449i \(-0.230908\pi\)
0.0599435 + 0.998202i \(0.480908\pi\)
\(228\) 0 0
\(229\) 20.4572 8.47367i 1.35185 0.559956i 0.415045 0.909801i \(-0.363766\pi\)
0.936808 + 0.349845i \(0.113766\pi\)
\(230\) 0 0
\(231\) 14.2248 5.89211i 0.935924 0.387673i
\(232\) 0 0
\(233\) 4.43350 1.83642i 0.290448 0.120308i −0.232702 0.972548i \(-0.574757\pi\)
0.523150 + 0.852241i \(0.324757\pi\)
\(234\) 0 0
\(235\) 0.721667 + 2.94500i 0.0470764 + 0.192111i
\(236\) 0 0
\(237\) 45.2291i 2.93794i
\(238\) 0 0
\(239\) 10.1625 + 4.20944i 0.657356 + 0.272286i 0.686326 0.727295i \(-0.259223\pi\)
−0.0289695 + 0.999580i \(0.509223\pi\)
\(240\) 0 0
\(241\) −6.66917 + 6.66917i −0.429599 + 0.429599i −0.888492 0.458893i \(-0.848246\pi\)
0.458893 + 0.888492i \(0.348246\pi\)
\(242\) 0 0
\(243\) −17.3288 + 7.17782i −1.11164 + 0.460457i
\(244\) 0 0
\(245\) 0.285165 1.85682i 0.0182185 0.118628i
\(246\) 0 0
\(247\) 2.32590 2.32590i 0.147993 0.147993i
\(248\) 0 0
\(249\) 7.21712 17.4237i 0.457367 1.10418i
\(250\) 0 0
\(251\) 6.83535 + 6.83535i 0.431443 + 0.431443i 0.889119 0.457676i \(-0.151318\pi\)
−0.457676 + 0.889119i \(0.651318\pi\)
\(252\) 0 0
\(253\) 3.93659 + 9.50377i 0.247491 + 0.597497i
\(254\) 0 0
\(255\) −9.72669 + 7.13684i −0.609109 + 0.446926i
\(256\) 0 0
\(257\) −1.79266 4.32787i −0.111823 0.269965i 0.858054 0.513559i \(-0.171673\pi\)
−0.969877 + 0.243594i \(0.921673\pi\)
\(258\) 0 0
\(259\) 6.15756 14.8657i 0.382612 0.923708i
\(260\) 0 0
\(261\) −7.13705 17.2304i −0.441772 1.06653i
\(262\) 0 0
\(263\) 14.0514 + 5.82029i 0.866448 + 0.358895i 0.771226 0.636561i \(-0.219644\pi\)
0.0952222 + 0.995456i \(0.469644\pi\)
\(264\) 0 0
\(265\) 4.37147 7.20931i 0.268537 0.442864i
\(266\) 0 0
\(267\) −11.6520 −0.713090
\(268\) 0 0
\(269\) 21.7159 1.32404 0.662021 0.749485i \(-0.269699\pi\)
0.662021 + 0.749485i \(0.269699\pi\)
\(270\) 0 0
\(271\) 20.1022i 1.22112i 0.791969 + 0.610561i \(0.209056\pi\)
−0.791969 + 0.610561i \(0.790944\pi\)
\(272\) 0 0
\(273\) 1.47320 3.55662i 0.0891622 0.215257i
\(274\) 0 0
\(275\) 8.70416 + 7.29388i 0.524881 + 0.439838i
\(276\) 0 0
\(277\) 14.8375 + 14.8375i 0.891496 + 0.891496i 0.994664 0.103168i \(-0.0328979\pi\)
−0.103168 + 0.994664i \(0.532898\pi\)
\(278\) 0 0
\(279\) −10.0307 10.0307i −0.600524 0.600524i
\(280\) 0 0
\(281\) −11.6260 28.0677i −0.693550 1.67438i −0.737503 0.675344i \(-0.763995\pi\)
0.0439533 0.999034i \(-0.486005\pi\)
\(282\) 0 0
\(283\) −0.609443 0.609443i −0.0362276 0.0362276i 0.688761 0.724989i \(-0.258155\pi\)
−0.724989 + 0.688761i \(0.758155\pi\)
\(284\) 0 0
\(285\) −5.37012 + 34.9669i −0.318098 + 2.07126i
\(286\) 0 0
\(287\) −5.22040 15.0101i −0.308150 0.886016i
\(288\) 0 0
\(289\) 9.26189 + 9.26189i 0.544817 + 0.544817i
\(290\) 0 0
\(291\) 37.0162i 2.16993i
\(292\) 0 0
\(293\) 24.6734 + 10.2201i 1.44144 + 0.597063i 0.960146 0.279498i \(-0.0901682\pi\)
0.481291 + 0.876561i \(0.340168\pi\)
\(294\) 0 0
\(295\) 0.738862 + 1.00698i 0.0430182 + 0.0586289i
\(296\) 0 0
\(297\) 6.40652 6.40652i 0.371744 0.371744i
\(298\) 0 0
\(299\) 2.37622 + 0.984263i 0.137420 + 0.0569214i
\(300\) 0 0
\(301\) 0.677188 0.280500i 0.0390324 0.0161678i
\(302\) 0 0
\(303\) −7.10658 7.10658i −0.408263 0.408263i
\(304\) 0 0
\(305\) 4.46728 29.0882i 0.255796 1.66559i
\(306\) 0 0
\(307\) 10.4642i 0.597222i −0.954375 0.298611i \(-0.903477\pi\)
0.954375 0.298611i \(-0.0965232\pi\)
\(308\) 0 0
\(309\) −2.91615 + 1.20791i −0.165894 + 0.0687156i
\(310\) 0 0
\(311\) −10.1272 24.4492i −0.574261 1.38639i −0.897897 0.440206i \(-0.854905\pi\)
0.323636 0.946182i \(-0.395095\pi\)
\(312\) 0 0
\(313\) −3.51522 1.45605i −0.198692 0.0823008i 0.281119 0.959673i \(-0.409295\pi\)
−0.479810 + 0.877372i \(0.659295\pi\)
\(314\) 0 0
\(315\) 5.89168 + 24.0430i 0.331959 + 1.35467i
\(316\) 0 0
\(317\) −18.2756 + 7.57000i −1.02646 + 0.425174i −0.831434 0.555624i \(-0.812479\pi\)
−0.195027 + 0.980798i \(0.562479\pi\)
\(318\) 0 0
\(319\) −6.71501 6.71501i −0.375968 0.375968i
\(320\) 0 0
\(321\) 2.89578 6.99104i 0.161627 0.390202i
\(322\) 0 0
\(323\) −11.4414 −0.636617
\(324\) 0 0
\(325\) 2.82841 0.249334i 0.156892 0.0138306i
\(326\) 0 0
\(327\) −35.3468 35.3468i −1.95468 1.95468i
\(328\) 0 0
\(329\) 3.36550i 0.185546i
\(330\) 0 0
\(331\) −15.0178 6.22056i −0.825451 0.341913i −0.0703507 0.997522i \(-0.522412\pi\)
−0.755100 + 0.655609i \(0.772412\pi\)
\(332\) 0 0
\(333\) 28.9177i 1.58468i
\(334\) 0 0
\(335\) −0.901760 3.67993i −0.0492684 0.201056i
\(336\) 0 0
\(337\) 13.2195 0.720110 0.360055 0.932931i \(-0.382758\pi\)
0.360055 + 0.932931i \(0.382758\pi\)
\(338\) 0 0
\(339\) 40.0268 + 16.5796i 2.17396 + 0.900482i
\(340\) 0 0
\(341\) −6.67338 2.76420i −0.361384 0.149690i
\(342\) 0 0
\(343\) 7.44644 17.9773i 0.402070 0.970683i
\(344\) 0 0
\(345\) −26.8672 + 6.58376i −1.44648 + 0.354458i
\(346\) 0 0
\(347\) 1.28017 3.09060i 0.0687231 0.165912i −0.885786 0.464094i \(-0.846380\pi\)
0.954509 + 0.298181i \(0.0963801\pi\)
\(348\) 0 0
\(349\) −14.0112 + 14.0112i −0.750002 + 0.750002i −0.974479 0.224477i \(-0.927933\pi\)
0.224477 + 0.974479i \(0.427933\pi\)
\(350\) 0 0
\(351\) 2.26531i 0.120913i
\(352\) 0 0
\(353\) 1.30579 1.30579i 0.0695003 0.0695003i −0.671502 0.741003i \(-0.734351\pi\)
0.741003 + 0.671502i \(0.234351\pi\)
\(354\) 0 0
\(355\) −18.7236 + 4.58819i −0.993747 + 0.243516i
\(356\) 0 0
\(357\) −12.3712 + 5.12432i −0.654753 + 0.271208i
\(358\) 0 0
\(359\) −20.1309 −1.06247 −0.531233 0.847226i \(-0.678271\pi\)
−0.531233 + 0.847226i \(0.678271\pi\)
\(360\) 0 0
\(361\) −10.2890 + 10.2890i −0.541524 + 0.541524i
\(362\) 0 0
\(363\) −6.10584 + 14.7408i −0.320473 + 0.773691i
\(364\) 0 0
\(365\) −11.9115 + 8.73995i −0.623479 + 0.457470i
\(366\) 0 0
\(367\) −19.8546 −1.03640 −0.518200 0.855260i \(-0.673398\pi\)
−0.518200 + 0.855260i \(0.673398\pi\)
\(368\) 0 0
\(369\) −18.9911 21.3322i −0.988640 1.11051i
\(370\) 0 0
\(371\) 6.61716 6.61716i 0.343546 0.343546i
\(372\) 0 0
\(373\) −8.58554 + 8.58554i −0.444543 + 0.444543i −0.893535 0.448993i \(-0.851783\pi\)
0.448993 + 0.893535i \(0.351783\pi\)
\(374\) 0 0
\(375\) −22.9396 + 20.1577i −1.18460 + 1.04094i
\(376\) 0 0
\(377\) −2.37439 −0.122288
\(378\) 0 0
\(379\) 7.66393i 0.393669i −0.980437 0.196835i \(-0.936934\pi\)
0.980437 0.196835i \(-0.0630662\pi\)
\(380\) 0 0
\(381\) 0.955124 2.30587i 0.0489325 0.118133i
\(382\) 0 0
\(383\) −16.7420 6.93476i −0.855476 0.354350i −0.0885396 0.996073i \(-0.528220\pi\)
−0.766937 + 0.641723i \(0.778220\pi\)
\(384\) 0 0
\(385\) 7.45665 + 10.1626i 0.380026 + 0.517932i
\(386\) 0 0
\(387\) 0.931479 0.931479i 0.0473497 0.0473497i
\(388\) 0 0
\(389\) 17.2766 + 17.2766i 0.875961 + 0.875961i 0.993114 0.117153i \(-0.0373768\pi\)
−0.117153 + 0.993114i \(0.537377\pi\)
\(390\) 0 0
\(391\) −3.42362 8.26534i −0.173140 0.417996i
\(392\) 0 0
\(393\) −8.00099 + 19.3161i −0.403597 + 0.974369i
\(394\) 0 0
\(395\) 35.9631 8.81268i 1.80950 0.443414i
\(396\) 0 0
\(397\) −10.8240 26.1315i −0.543242 1.31150i −0.922423 0.386180i \(-0.873794\pi\)
0.379181 0.925322i \(-0.376206\pi\)
\(398\) 0 0
\(399\) −15.0266 + 36.2773i −0.752269 + 1.81614i
\(400\) 0 0
\(401\) 21.5874 21.5874i 1.07803 1.07803i 0.0813390 0.996686i \(-0.474080\pi\)
0.996686 0.0813390i \(-0.0259196\pi\)
\(402\) 0 0
\(403\) −1.66854 + 0.691132i −0.0831160 + 0.0344278i
\(404\) 0 0
\(405\) −3.28802 4.48120i −0.163383 0.222672i
\(406\) 0 0
\(407\) −5.63490 13.6038i −0.279311 0.674317i
\(408\) 0 0
\(409\) −20.0737 −0.992581 −0.496291 0.868156i \(-0.665305\pi\)
−0.496291 + 0.868156i \(0.665305\pi\)
\(410\) 0 0
\(411\) 1.97910 0.0976217
\(412\) 0 0
\(413\) 0.530510 + 1.28076i 0.0261047 + 0.0630223i
\(414\) 0 0
\(415\) 15.2603 + 2.34364i 0.749101 + 0.115045i
\(416\) 0 0
\(417\) −12.7225 + 5.26982i −0.623022 + 0.258064i
\(418\) 0 0
\(419\) 1.64729 1.64729i 0.0804754 0.0804754i −0.665723 0.746199i \(-0.731877\pi\)
0.746199 + 0.665723i \(0.231877\pi\)
\(420\) 0 0
\(421\) −9.57202 + 23.1089i −0.466512 + 1.12626i 0.499164 + 0.866508i \(0.333641\pi\)
−0.965675 + 0.259752i \(0.916359\pi\)
\(422\) 0 0
\(423\) 2.31464 + 5.58803i 0.112542 + 0.271700i
\(424\) 0 0
\(425\) −7.56993 6.34342i −0.367196 0.307701i
\(426\) 0 0
\(427\) 12.5003 30.1783i 0.604930 1.46043i
\(428\) 0 0
\(429\) −1.34815 3.25473i −0.0650895 0.157140i
\(430\) 0 0
\(431\) 19.9917 + 19.9917i 0.962969 + 0.962969i 0.999338 0.0363698i \(-0.0115794\pi\)
−0.0363698 + 0.999338i \(0.511579\pi\)
\(432\) 0 0
\(433\) 5.40420 5.40420i 0.259709 0.259709i −0.565226 0.824936i \(-0.691211\pi\)
0.824936 + 0.565226i \(0.191211\pi\)
\(434\) 0 0
\(435\) 20.5891 15.1070i 0.987170 0.724323i
\(436\) 0 0
\(437\) −24.2373 10.0394i −1.15943 0.480251i
\(438\) 0 0
\(439\) −11.1265 + 26.8618i −0.531040 + 1.28204i 0.399795 + 0.916605i \(0.369081\pi\)
−0.930835 + 0.365440i \(0.880919\pi\)
\(440\) 0 0
\(441\) 3.74738i 0.178446i
\(442\) 0 0
\(443\) 40.0241 1.90160 0.950802 0.309800i \(-0.100262\pi\)
0.950802 + 0.309800i \(0.100262\pi\)
\(444\) 0 0
\(445\) −2.27034 9.26486i −0.107624 0.439197i
\(446\) 0 0
\(447\) −40.9495 + 40.9495i −1.93685 + 1.93685i
\(448\) 0 0
\(449\) −25.9798 + 25.9798i −1.22606 + 1.22606i −0.260623 + 0.965441i \(0.583928\pi\)
−0.965441 + 0.260623i \(0.916072\pi\)
\(450\) 0 0
\(451\) −13.0909 6.33476i −0.616424 0.298292i
\(452\) 0 0
\(453\) −38.0366 −1.78711
\(454\) 0 0
\(455\) 3.11503 + 0.478398i 0.146035 + 0.0224276i
\(456\) 0 0
\(457\) −8.99976 + 21.7273i −0.420991 + 1.01636i 0.561065 + 0.827772i \(0.310392\pi\)
−0.982056 + 0.188590i \(0.939608\pi\)
\(458\) 0 0
\(459\) −5.57169 + 5.57169i −0.260064 + 0.260064i
\(460\) 0 0
\(461\) −26.3042 −1.22511 −0.612555 0.790428i \(-0.709858\pi\)
−0.612555 + 0.790428i \(0.709858\pi\)
\(462\) 0 0
\(463\) 22.2106 9.19993i 1.03221 0.427557i 0.198703 0.980060i \(-0.436327\pi\)
0.833511 + 0.552503i \(0.186327\pi\)
\(464\) 0 0
\(465\) 10.0711 16.6090i 0.467036 0.770225i
\(466\) 0 0
\(467\) −26.8274 + 26.8274i −1.24142 + 1.24142i −0.282013 + 0.959411i \(0.591002\pi\)
−0.959411 + 0.282013i \(0.908998\pi\)
\(468\) 0 0
\(469\) 4.20536i 0.194186i
\(470\) 0 0
\(471\) 46.6370 46.6370i 2.14892 2.14892i
\(472\) 0 0
\(473\) 0.256691 0.619707i 0.0118027 0.0284941i
\(474\) 0 0
\(475\) −28.8496 + 2.54319i −1.32371 + 0.116690i
\(476\) 0 0
\(477\) 6.43606 15.5380i 0.294687 0.711438i
\(478\) 0 0
\(479\) 31.8708 + 13.2013i 1.45621 + 0.603183i 0.963668 0.267104i \(-0.0860668\pi\)
0.492545 + 0.870287i \(0.336067\pi\)
\(480\) 0 0
\(481\) −3.40136 1.40889i −0.155089 0.0642398i
\(482\) 0 0
\(483\) −30.7034 −1.39705
\(484\) 0 0
\(485\) −29.4328 + 7.21244i −1.33647 + 0.327500i
\(486\) 0 0
\(487\) 7.09877i 0.321676i 0.986981 + 0.160838i \(0.0514197\pi\)
−0.986981 + 0.160838i \(0.948580\pi\)
\(488\) 0 0
\(489\) −41.5479 17.2097i −1.87886 0.778250i
\(490\) 0 0
\(491\) 8.49502i 0.383375i −0.981456 0.191687i \(-0.938604\pi\)
0.981456 0.191687i \(-0.0613960\pi\)
\(492\) 0 0
\(493\) 5.83999 + 5.83999i 0.263020 + 0.263020i
\(494\) 0 0
\(495\) 19.3703 + 11.7454i 0.870630 + 0.527918i
\(496\) 0 0
\(497\) −21.3970 −0.959788
\(498\) 0 0
\(499\) 14.1912 34.2605i 0.635284 1.53371i −0.197610 0.980281i \(-0.563318\pi\)
0.832895 0.553432i \(-0.186682\pi\)
\(500\) 0 0
\(501\) 7.68654 + 7.68654i 0.343409 + 0.343409i
\(502\) 0 0
\(503\) 20.5844 8.52633i 0.917813 0.380170i 0.126771 0.991932i \(-0.459539\pi\)
0.791042 + 0.611762i \(0.209539\pi\)
\(504\) 0 0
\(505\) 4.26599 7.03536i 0.189834 0.313069i
\(506\) 0 0
\(507\) 31.9913 + 13.2512i 1.42079 + 0.588509i
\(508\) 0 0
\(509\) −5.09125 12.2914i −0.225666 0.544805i 0.769975 0.638074i \(-0.220268\pi\)
−0.995641 + 0.0932686i \(0.970268\pi\)
\(510\) 0 0
\(511\) −15.1501 + 6.27537i −0.670200 + 0.277606i
\(512\) 0 0
\(513\) 23.1060i 1.02016i
\(514\) 0 0
\(515\) −1.52865 2.08337i −0.0673602 0.0918042i
\(516\) 0 0
\(517\) 2.17777 + 2.17777i 0.0957781 + 0.0957781i
\(518\) 0 0
\(519\) −19.5071 + 8.08010i −0.856266 + 0.354677i
\(520\) 0 0
\(521\) −16.4966 6.83314i −0.722731 0.299365i −0.00917005 0.999958i \(-0.502919\pi\)
−0.713561 + 0.700593i \(0.752919\pi\)
\(522\) 0 0
\(523\) 9.16926 9.16926i 0.400944 0.400944i −0.477622 0.878566i \(-0.658501\pi\)
0.878566 + 0.477622i \(0.158501\pi\)
\(524\) 0 0
\(525\) −30.0551 + 15.6709i −1.31171 + 0.683934i
\(526\) 0 0
\(527\) 5.80378 + 2.40400i 0.252817 + 0.104720i
\(528\) 0 0
\(529\) 2.48672i 0.108118i
\(530\) 0 0
\(531\) 1.76171 + 1.76171i 0.0764515 + 0.0764515i
\(532\) 0 0
\(533\) −3.43440 + 1.19446i −0.148760 + 0.0517379i
\(534\) 0 0
\(535\) 6.12303 + 0.940357i 0.264721 + 0.0406552i
\(536\) 0 0
\(537\) 46.8013 + 46.8013i 2.01963 + 2.01963i
\(538\) 0 0
\(539\) −0.730213 1.76289i −0.0314525 0.0759330i
\(540\) 0 0
\(541\) −12.0018 12.0018i −0.515998 0.515998i 0.400360 0.916358i \(-0.368885\pi\)
−0.916358 + 0.400360i \(0.868885\pi\)
\(542\) 0 0
\(543\) 9.18320 + 9.18320i 0.394089 + 0.394089i
\(544\) 0 0
\(545\) 21.2182 34.9925i 0.908888 1.49892i
\(546\) 0 0
\(547\) 5.16807 12.4768i 0.220971 0.533470i −0.774052 0.633122i \(-0.781773\pi\)
0.995022 + 0.0996520i \(0.0317730\pi\)
\(548\) 0 0
\(549\) 58.7049i 2.50546i
\(550\) 0 0
\(551\) 24.2187 1.03175
\(552\) 0 0
\(553\) 41.0980 1.74766
\(554\) 0 0
\(555\) 38.4582 9.42409i 1.63246 0.400030i
\(556\) 0 0
\(557\) 21.1427 + 8.75761i 0.895847 + 0.371072i 0.782622 0.622498i \(-0.213882\pi\)
0.113225 + 0.993569i \(0.463882\pi\)
\(558\) 0 0
\(559\) −0.0641803 0.154945i −0.00271454 0.00655347i
\(560\) 0 0
\(561\) −4.68936 + 11.3211i −0.197985 + 0.477978i
\(562\) 0 0
\(563\) −9.13510 22.0541i −0.384998 0.929468i −0.990982 0.133992i \(-0.957220\pi\)
0.605984 0.795477i \(-0.292780\pi\)
\(564\) 0 0
\(565\) −5.38396 + 35.0570i −0.226505 + 1.47486i
\(566\) 0 0
\(567\) −2.36083 5.69955i −0.0991456 0.239359i
\(568\) 0 0
\(569\) −12.5492 12.5492i −0.526091 0.526091i 0.393313 0.919405i \(-0.371329\pi\)
−0.919405 + 0.393313i \(0.871329\pi\)
\(570\) 0 0
\(571\) 4.25403 10.2701i 0.178025 0.429792i −0.809527 0.587083i \(-0.800276\pi\)
0.987552 + 0.157291i \(0.0502762\pi\)
\(572\) 0 0
\(573\) 21.9827 21.9827i 0.918341 0.918341i
\(574\) 0 0
\(575\) −10.4699 20.0802i −0.436625 0.837401i
\(576\) 0 0
\(577\) 31.8895 13.2091i 1.32758 0.549901i 0.397615 0.917553i \(-0.369838\pi\)
0.929964 + 0.367652i \(0.119838\pi\)
\(578\) 0 0
\(579\) −46.1893 + 46.1893i −1.91956 + 1.91956i
\(580\) 0 0
\(581\) 15.8322 + 6.55793i 0.656832 + 0.272069i
\(582\) 0 0
\(583\) 8.56374i 0.354674i
\(584\) 0 0
\(585\) 5.50118 1.34805i 0.227446 0.0557352i
\(586\) 0 0
\(587\) 39.4204 16.3285i 1.62705 0.673948i 0.632157 0.774840i \(-0.282170\pi\)
0.994897 + 0.100892i \(0.0321698\pi\)
\(588\) 0 0
\(589\) 17.0190 7.04951i 0.701256 0.290470i
\(590\) 0 0
\(591\) −18.7135 + 7.75137i −0.769769 + 0.318849i
\(592\) 0 0
\(593\) −37.3814 15.4839i −1.53507 0.635847i −0.554530 0.832164i \(-0.687102\pi\)
−0.980541 + 0.196317i \(0.937102\pi\)
\(594\) 0 0
\(595\) −6.48498 8.83829i −0.265858 0.362334i
\(596\) 0 0
\(597\) 28.0684 + 28.0684i 1.14876 + 1.14876i
\(598\) 0 0
\(599\) 17.5398 0.716655 0.358328 0.933596i \(-0.383347\pi\)
0.358328 + 0.933596i \(0.383347\pi\)
\(600\) 0 0
\(601\) −3.91884 9.46091i −0.159853 0.385918i 0.823578 0.567203i \(-0.191974\pi\)
−0.983431 + 0.181285i \(0.941974\pi\)
\(602\) 0 0
\(603\) −2.89226 6.98254i −0.117782 0.284351i
\(604\) 0 0
\(605\) −12.9106 1.98277i −0.524889 0.0806110i
\(606\) 0 0
\(607\) 32.2107i 1.30739i −0.756757 0.653696i \(-0.773218\pi\)
0.756757 0.653696i \(-0.226782\pi\)
\(608\) 0 0
\(609\) 26.1868 10.8469i 1.06114 0.439540i
\(610\) 0 0
\(611\) 0.770048 0.0311528
\(612\) 0 0
\(613\) 21.5184i 0.869120i 0.900643 + 0.434560i \(0.143096\pi\)
−0.900643 + 0.434560i \(0.856904\pi\)
\(614\) 0 0
\(615\) 22.1810 32.2087i 0.894423 1.29878i
\(616\) 0 0
\(617\) 34.8623i 1.40350i 0.712421 + 0.701752i \(0.247599\pi\)
−0.712421 + 0.701752i \(0.752401\pi\)
\(618\) 0 0
\(619\) −3.84142 −0.154400 −0.0771999 0.997016i \(-0.524598\pi\)
−0.0771999 + 0.997016i \(0.524598\pi\)
\(620\) 0 0
\(621\) −16.6919 + 6.91403i −0.669825 + 0.277451i
\(622\) 0 0
\(623\) 10.5877i 0.424188i
\(624\) 0 0
\(625\) −20.4977 14.3124i −0.819908 0.572495i
\(626\) 0 0
\(627\) 13.7511 + 33.1980i 0.549165 + 1.32580i
\(628\) 0 0
\(629\) 4.90062 + 11.8311i 0.195400 + 0.471738i
\(630\) 0 0
\(631\) 33.6465 1.33945 0.669724 0.742610i \(-0.266413\pi\)
0.669724 + 0.742610i \(0.266413\pi\)
\(632\) 0 0
\(633\) −20.1534 20.1534i −0.801027 0.801027i
\(634\) 0 0
\(635\) 2.01958 + 0.310161i 0.0801444 + 0.0123084i
\(636\) 0 0
\(637\) −0.440774 0.182575i −0.0174641 0.00723387i
\(638\) 0 0
\(639\) −35.5274 + 14.7159i −1.40544 + 0.582153i
\(640\) 0 0
\(641\) −26.7063 + 11.0621i −1.05484 + 0.436927i −0.841616 0.540077i \(-0.818395\pi\)
−0.213220 + 0.977004i \(0.568395\pi\)
\(642\) 0 0
\(643\) −0.526272 + 0.217989i −0.0207541 + 0.00859664i −0.393036 0.919523i \(-0.628575\pi\)
0.372282 + 0.928120i \(0.378575\pi\)
\(644\) 0 0
\(645\) 1.54235 + 0.935228i 0.0607301 + 0.0368246i
\(646\) 0 0
\(647\) 20.0557i 0.788469i −0.919010 0.394235i \(-0.871010\pi\)
0.919010 0.394235i \(-0.128990\pi\)
\(648\) 0 0
\(649\) 1.17205 + 0.485479i 0.0460070 + 0.0190567i
\(650\) 0 0
\(651\) 15.2448 15.2448i 0.597490 0.597490i
\(652\) 0 0
\(653\) 23.8380 9.87402i 0.932853 0.386400i 0.136093 0.990696i \(-0.456545\pi\)
0.796760 + 0.604296i \(0.206545\pi\)
\(654\) 0 0
\(655\) −16.9178 2.59819i −0.661034 0.101520i
\(656\) 0 0
\(657\) −20.8391 + 20.8391i −0.813011 + 0.813011i
\(658\) 0 0
\(659\) 6.23462 15.0517i 0.242866 0.586331i −0.754699 0.656071i \(-0.772217\pi\)
0.997565 + 0.0697400i \(0.0222170\pi\)
\(660\) 0 0
\(661\) −6.55557 6.55557i −0.254982 0.254982i 0.568027 0.823010i \(-0.307707\pi\)
−0.823010 + 0.568027i \(0.807707\pi\)
\(662\) 0 0
\(663\) 1.17248 + 2.83061i 0.0455352 + 0.109932i
\(664\) 0 0
\(665\) −31.7731 4.87963i −1.23211 0.189224i
\(666\) 0 0
\(667\) 7.24697 + 17.4957i 0.280604 + 0.677437i
\(668\) 0 0
\(669\) 28.4070 68.5807i 1.09828 2.65148i
\(670\) 0 0
\(671\) −11.4392 27.6167i −0.441606 1.06613i
\(672\) 0 0
\(673\) 24.5595 + 10.1729i 0.946698 + 0.392135i 0.801989 0.597339i \(-0.203775\pi\)
0.144709 + 0.989474i \(0.453775\pi\)
\(674\) 0 0
\(675\) −12.8106 + 15.2876i −0.493081 + 0.588419i
\(676\) 0 0
\(677\) 33.3330 1.28109 0.640545 0.767921i \(-0.278709\pi\)
0.640545 + 0.767921i \(0.278709\pi\)
\(678\) 0 0
\(679\) −33.6353 −1.29080
\(680\) 0 0
\(681\) 35.9982i 1.37945i
\(682\) 0 0
\(683\) −6.07764 + 14.6727i −0.232554 + 0.561436i −0.996477 0.0838724i \(-0.973271\pi\)
0.763922 + 0.645309i \(0.223271\pi\)
\(684\) 0 0
\(685\) 0.385618 + 1.57364i 0.0147337 + 0.0601258i
\(686\) 0 0
\(687\) 42.7661 + 42.7661i 1.63163 + 1.63163i
\(688\) 0 0
\(689\) −1.51405 1.51405i −0.0576806 0.0576806i
\(690\) 0 0
\(691\) 7.83159 + 18.9071i 0.297928 + 0.719261i 0.999975 + 0.00713041i \(0.00226970\pi\)
−0.702047 + 0.712131i \(0.747730\pi\)
\(692\) 0 0
\(693\) 17.7793 + 17.7793i 0.675378 + 0.675378i
\(694\) 0 0
\(695\) −6.66912 9.08924i −0.252974 0.344775i
\(696\) 0 0
\(697\) 11.3850 + 5.50928i 0.431238 + 0.208679i
\(698\) 0 0
\(699\) 9.26828 + 9.26828i 0.350559 + 0.350559i
\(700\) 0 0
\(701\) 1.26900i 0.0479295i 0.999713 + 0.0239647i \(0.00762894\pi\)
−0.999713 + 0.0239647i \(0.992371\pi\)
\(702\) 0 0
\(703\) 34.6937 + 14.3706i 1.30850 + 0.541997i
\(704\) 0 0
\(705\) −6.67730 + 4.89939i −0.251482 + 0.184522i
\(706\) 0 0
\(707\) 6.45749 6.45749i 0.242859 0.242859i
\(708\) 0 0
\(709\) −17.7782 7.36397i −0.667674 0.276560i 0.0229895 0.999736i \(-0.492682\pi\)
−0.690664 + 0.723176i \(0.742682\pi\)
\(710\) 0 0
\(711\) 68.2386 28.2654i 2.55915 1.06003i
\(712\) 0 0
\(713\) 10.1852 + 10.1852i 0.381439 + 0.381439i
\(714\) 0 0
\(715\) 2.32526 1.70613i 0.0869597 0.0638056i
\(716\) 0 0
\(717\) 30.0447i 1.12204i
\(718\) 0 0
\(719\) −8.58842 + 3.55744i −0.320294 + 0.132670i −0.537037 0.843558i \(-0.680457\pi\)
0.216743 + 0.976229i \(0.430457\pi\)
\(720\) 0 0
\(721\) −1.09758 2.64980i −0.0408761 0.0986837i
\(722\) 0 0
\(723\) −23.8004 9.85846i −0.885147 0.366640i
\(724\) 0 0
\(725\) 16.0237 + 13.4275i 0.595106 + 0.498685i
\(726\) 0 0
\(727\) −24.1084 + 9.98604i −0.894132 + 0.370362i −0.781961 0.623327i \(-0.785781\pi\)
−0.112171 + 0.993689i \(0.535781\pi\)
\(728\) 0 0
\(729\) −30.9532 30.9532i −1.14641 1.14641i
\(730\) 0 0
\(731\) −0.223242 + 0.538953i −0.00825689 + 0.0199339i
\(732\) 0 0
\(733\) −27.0851 −1.00041 −0.500206 0.865906i \(-0.666743\pi\)
−0.500206 + 0.865906i \(0.666743\pi\)
\(734\) 0 0
\(735\) 4.98370 1.22125i 0.183827 0.0450463i
\(736\) 0 0
\(737\) −2.72123 2.72123i −0.100238 0.100238i
\(738\) 0 0
\(739\) 19.9991i 0.735680i 0.929889 + 0.367840i \(0.119903\pi\)
−0.929889 + 0.367840i \(0.880097\pi\)
\(740\) 0 0
\(741\) 8.30049 + 3.43817i 0.304926 + 0.126304i
\(742\) 0 0
\(743\) 24.9057i 0.913702i 0.889543 + 0.456851i \(0.151023\pi\)
−0.889543 + 0.456851i \(0.848977\pi\)
\(744\) 0 0
\(745\) −40.5391 24.5814i −1.48524 0.900594i
\(746\) 0 0
\(747\) 30.7979 1.12684
\(748\) 0 0
\(749\) 6.35250 + 2.63129i 0.232115 + 0.0961452i
\(750\) 0 0
\(751\) 0.790995 + 0.327641i 0.0288638 + 0.0119558i 0.397069 0.917789i \(-0.370027\pi\)
−0.368205 + 0.929745i \(0.620027\pi\)
\(752\) 0 0
\(753\) −10.1041 + 24.3935i −0.368214 + 0.888948i
\(754\) 0 0
\(755\) −7.41126 30.2441i −0.269723 1.10070i
\(756\) 0 0
\(757\) −7.61370 + 18.3811i −0.276725 + 0.668073i −0.999741 0.0227584i \(-0.992755\pi\)
0.723016 + 0.690831i \(0.242755\pi\)
\(758\) 0 0
\(759\) −19.8677 + 19.8677i −0.721153 + 0.721153i
\(760\) 0 0
\(761\) 33.5780i 1.21720i 0.793476 + 0.608601i \(0.208269\pi\)
−0.793476 + 0.608601i \(0.791731\pi\)
\(762\) 0 0
\(763\) 32.1183 32.1183i 1.16276 1.16276i
\(764\) 0 0
\(765\) −16.8462 10.2149i −0.609075 0.369321i
\(766\) 0 0
\(767\) 0.293047 0.121384i 0.0105813 0.00438293i
\(768\) 0 0
\(769\) −6.48872 −0.233989 −0.116995 0.993133i \(-0.537326\pi\)
−0.116995 + 0.993133i \(0.537326\pi\)
\(770\) 0 0
\(771\) 9.04746 9.04746i 0.325836 0.325836i
\(772\) 0 0
\(773\) 8.18288 19.7552i 0.294318 0.710546i −0.705680 0.708530i \(-0.749359\pi\)
0.999998 0.00201531i \(-0.000641494\pi\)
\(774\) 0 0
\(775\) 15.1687 + 4.77167i 0.544875 + 0.171403i
\(776\) 0 0
\(777\) 43.9493 1.57667
\(778\) 0 0
\(779\) 35.0306 12.1834i 1.25510 0.436517i
\(780\) 0 0
\(781\) −13.8457 + 13.8457i −0.495439 + 0.495439i
\(782\) 0 0
\(783\) 11.7939 11.7939i 0.421480 0.421480i
\(784\) 0 0
\(785\) 46.1695 + 27.9955i 1.64786 + 0.999204i
\(786\) 0 0
\(787\) −48.8135 −1.74001 −0.870007 0.493040i \(-0.835886\pi\)
−0.870007 + 0.493040i \(0.835886\pi\)
\(788\) 0 0
\(789\) 41.5421i 1.47894i
\(790\) 0 0
\(791\) −15.0653 + 36.3708i −0.535660 + 1.29320i
\(792\) 0 0
\(793\) −6.90499 2.86014i −0.245204 0.101567i
\(794\) 0 0
\(795\) 22.7618 + 3.49569i 0.807277 + 0.123979i
\(796\) 0 0
\(797\) 1.84186 1.84186i 0.0652419 0.0652419i −0.673733 0.738975i \(-0.735310\pi\)
0.738975 + 0.673733i \(0.235310\pi\)
\(798\) 0 0
\(799\) −1.89398 1.89398i −0.0670044 0.0670044i
\(800\) 0 0
\(801\) −7.28177 17.5797i −0.257289 0.621150i
\(802\) 0 0
\(803\) −5.74270 + 13.8641i −0.202656 + 0.489254i
\(804\) 0 0
\(805\) −5.98242 24.4132i −0.210852 0.860454i
\(806\) 0 0
\(807\) 22.6987 + 54.7995i 0.799032 + 1.92903i
\(808\) 0 0
\(809\) −12.7020 + 30.6653i −0.446578 + 1.07813i 0.527018 + 0.849854i \(0.323310\pi\)
−0.973596 + 0.228280i \(0.926690\pi\)
\(810\) 0 0
\(811\) −8.24669 + 8.24669i −0.289581 + 0.289581i −0.836914 0.547334i \(-0.815643\pi\)
0.547334 + 0.836914i \(0.315643\pi\)
\(812\) 0 0
\(813\) −50.7273 + 21.0120i −1.77909 + 0.736921i
\(814\) 0 0
\(815\) 5.58857 36.3893i 0.195759 1.27466i
\(816\) 0 0
\(817\) 0.654635 + 1.58043i 0.0229028 + 0.0552922i
\(818\) 0 0
\(819\) 6.28666 0.219674
\(820\) 0 0
\(821\) 25.6132 0.893906 0.446953 0.894557i \(-0.352509\pi\)
0.446953 + 0.894557i \(0.352509\pi\)
\(822\) 0 0
\(823\) −3.70858 8.95330i −0.129273 0.312092i 0.845969 0.533232i \(-0.179023\pi\)
−0.975242 + 0.221139i \(0.929023\pi\)
\(824\) 0 0
\(825\) −9.30782 + 29.5887i −0.324057 + 1.03015i
\(826\) 0 0
\(827\) −1.61762 + 0.670040i −0.0562501 + 0.0232996i −0.410631 0.911802i \(-0.634692\pi\)
0.354381 + 0.935101i \(0.384692\pi\)
\(828\) 0 0
\(829\) −2.91568 + 2.91568i −0.101266 + 0.101266i −0.755924 0.654659i \(-0.772812\pi\)
0.654659 + 0.755924i \(0.272812\pi\)
\(830\) 0 0
\(831\) −21.9329 + 52.9508i −0.760845 + 1.83684i
\(832\) 0 0
\(833\) 0.635060 + 1.53317i 0.0220035 + 0.0531212i
\(834\) 0 0
\(835\) −4.61413 + 7.60950i −0.159679 + 0.263338i
\(836\) 0 0
\(837\) 4.85491 11.7208i 0.167810 0.405130i
\(838\) 0 0
\(839\) −11.3314 27.3564i −0.391203 0.944448i −0.989678 0.143307i \(-0.954226\pi\)
0.598475 0.801141i \(-0.295774\pi\)
\(840\) 0 0
\(841\) 8.14426 + 8.14426i 0.280837 + 0.280837i
\(842\) 0 0
\(843\) 58.6758 58.6758i 2.02090 2.02090i
\(844\) 0 0
\(845\) −4.30312 + 28.0193i −0.148032 + 0.963893i
\(846\) 0 0
\(847\) −13.3944 5.54815i −0.460237 0.190637i
\(848\) 0 0
\(849\) 0.900888 2.17494i 0.0309184 0.0746436i
\(850\) 0 0
\(851\) 29.3630i 1.00655i
\(852\) 0 0
\(853\) 23.1225 0.791701 0.395850 0.918315i \(-0.370450\pi\)
0.395850 + 0.918315i \(0.370450\pi\)
\(854\) 0 0
\(855\) −56.1117 + 13.7501i −1.91898 + 0.470242i
\(856\) 0 0
\(857\) 21.5664 21.5664i 0.736695 0.736695i −0.235242 0.971937i \(-0.575588\pi\)
0.971937 + 0.235242i \(0.0755883\pi\)
\(858\) 0 0
\(859\) −17.0661 + 17.0661i −0.582286 + 0.582286i −0.935531 0.353245i \(-0.885078\pi\)
0.353245 + 0.935531i \(0.385078\pi\)
\(860\) 0 0
\(861\) 32.4208 28.8629i 1.10490 0.983645i
\(862\) 0 0
\(863\) 42.3869 1.44287 0.721433 0.692484i \(-0.243484\pi\)
0.721433 + 0.692484i \(0.243484\pi\)
\(864\) 0 0
\(865\) −10.2256 13.9363i −0.347681 0.473850i
\(866\) 0 0
\(867\) −13.6911 + 33.0531i −0.464973 + 1.12254i
\(868\) 0 0
\(869\) 26.5939 26.5939i 0.902137 0.902137i
\(870\) 0 0
\(871\) −0.962214 −0.0326034
\(872\) 0 0
\(873\) −55.8476 + 23.1328i −1.89016 + 0.782928i
\(874\) 0 0
\(875\) −18.3165 20.8444i −0.619212 0.704669i
\(876\) 0 0
\(877\) 37.2642 37.2642i 1.25832 1.25832i 0.306432 0.951893i \(-0.400865\pi\)
0.951893 0.306432i \(-0.0991351\pi\)
\(878\) 0 0
\(879\) 72.9453i 2.46038i
\(880\) 0 0
\(881\) −5.85422 + 5.85422i −0.197234 + 0.197234i −0.798813 0.601579i \(-0.794538\pi\)
0.601579 + 0.798813i \(0.294538\pi\)
\(882\) 0 0
\(883\) 0.941166 2.27217i 0.0316727 0.0764648i −0.907252 0.420588i \(-0.861824\pi\)
0.938924 + 0.344123i \(0.111824\pi\)
\(884\) 0 0
\(885\) −1.76880 + 2.91705i −0.0594574 + 0.0980557i
\(886\) 0 0
\(887\) −16.0975 + 38.8628i −0.540501 + 1.30488i 0.383870 + 0.923387i \(0.374591\pi\)
−0.924370 + 0.381497i \(0.875409\pi\)
\(888\) 0 0
\(889\) 2.09526 + 0.867886i 0.0702728 + 0.0291080i
\(890\) 0 0
\(891\) −5.21576 2.16044i −0.174735 0.0723774i
\(892\) 0 0
\(893\) −7.85443 −0.262839
\(894\) 0 0
\(895\) −28.0942 + 46.3322i −0.939085 + 1.54872i
\(896\) 0 0
\(897\) 7.02513i 0.234562i
\(898\) 0 0
\(899\) −12.2852 5.08869i −0.409734 0.169717i
\(900\) 0 0
\(901\) 7.44781i 0.248122i
\(902\) 0 0
\(903\) 1.41567 + 1.41567i 0.0471105 + 0.0471105i
\(904\) 0 0
\(905\) −5.51255 + 9.09116i −0.183243 + 0.302200i
\(906\) 0 0
\(907\) 11.6665 0.387381 0.193691 0.981063i \(-0.437954\pi\)
0.193691 + 0.981063i \(0.437954\pi\)
\(908\) 0 0
\(909\) 6.28077 15.1631i 0.208320 0.502929i
\(910\) 0 0
\(911\) −14.7560 14.7560i −0.488889 0.488889i 0.419067 0.907956i \(-0.362357\pi\)
−0.907956 + 0.419067i \(0.862357\pi\)
\(912\) 0 0
\(913\) 14.4884 6.00128i 0.479495 0.198613i
\(914\) 0 0
\(915\) 78.0727 19.1316i 2.58100 0.632470i
\(916\) 0 0
\(917\) −17.5518 7.27021i −0.579613 0.240083i
\(918\) 0 0
\(919\) −8.87243 21.4199i −0.292675 0.706579i 0.707325 0.706888i \(-0.249902\pi\)
−1.00000 0.000309256i \(0.999902\pi\)
\(920\) 0 0
\(921\) 26.4060 10.9377i 0.870108 0.360410i
\(922\) 0 0
\(923\) 4.89578i 0.161147i
\(924\) 0 0
\(925\) 14.9868 + 28.7431i 0.492763 + 0.945066i
\(926\) 0 0
\(927\) −3.64483 3.64483i −0.119712 0.119712i
\(928\) 0 0
\(929\) −46.8801 + 19.4184i −1.53809 + 0.637097i −0.981113 0.193434i \(-0.938038\pi\)
−0.556974 + 0.830530i \(0.688038\pi\)
\(930\) 0 0
\(931\) 4.49587 + 1.86225i 0.147346 + 0.0610328i
\(932\) 0 0
\(933\) 51.1114 51.1114i 1.67331 1.67331i
\(934\) 0 0
\(935\) −9.91547 1.52279i −0.324271 0.0498006i
\(936\) 0 0
\(937\) −42.1938 17.4772i −1.37841 0.570957i −0.434355 0.900742i \(-0.643024\pi\)
−0.944056 + 0.329785i \(0.893024\pi\)
\(938\) 0 0
\(939\) 10.3925i 0.339146i
\(940\) 0 0
\(941\) 5.12402 + 5.12402i 0.167038 + 0.167038i 0.785676 0.618638i \(-0.212315\pi\)
−0.618638 + 0.785676i \(0.712315\pi\)
\(942\) 0 0
\(943\) 19.2836 + 21.6607i 0.627961 + 0.705370i
\(944\) 0 0
\(945\) −17.8490 + 13.0965i −0.580629 + 0.426029i
\(946\) 0 0
\(947\) 42.0766 + 42.0766i 1.36731 + 1.36731i 0.864259 + 0.503047i \(0.167788\pi\)
0.503047 + 0.864259i \(0.332212\pi\)
\(948\) 0 0
\(949\) 1.43584 + 3.46644i 0.0466095 + 0.112525i
\(950\) 0 0
\(951\) −38.2054 38.2054i −1.23889 1.23889i
\(952\) 0 0
\(953\) 22.4782 + 22.4782i 0.728141 + 0.728141i 0.970249 0.242108i \(-0.0778389\pi\)
−0.242108 + 0.970249i \(0.577839\pi\)
\(954\) 0 0
\(955\) 21.7624 + 13.1959i 0.704215 + 0.427010i
\(956\) 0 0
\(957\) 9.92623 23.9640i 0.320869 0.774647i
\(958\) 0 0
\(959\) 1.79833i 0.0580712i
\(960\) 0 0
\(961\) 20.8857 0.673733
\(962\) 0 0
\(963\) 12.3573 0.398208
\(964\) 0 0
\(965\) −45.7263 27.7268i −1.47198 0.892557i
\(966\) 0 0
\(967\) 42.8066 + 17.7311i 1.37657 + 0.570192i 0.943561 0.331199i \(-0.107453\pi\)
0.433005 + 0.901391i \(0.357453\pi\)
\(968\) 0 0
\(969\) −11.9592 28.8720i −0.384185 0.927504i
\(970\) 0 0
\(971\) 3.93390 9.49727i 0.126245 0.304782i −0.848102 0.529833i \(-0.822255\pi\)
0.974347 + 0.225051i \(0.0722548\pi\)
\(972\) 0 0
\(973\) −4.78849 11.5604i −0.153512 0.370611i
\(974\) 0 0
\(975\) 3.58560 + 6.87680i 0.114831 + 0.220234i
\(976\) 0 0
\(977\) −1.85824 4.48618i −0.0594502 0.143526i 0.891363 0.453290i \(-0.149750\pi\)
−0.950813 + 0.309764i \(0.899750\pi\)
\(978\) 0 0
\(979\) −6.85117 6.85117i −0.218964 0.218964i
\(980\) 0 0
\(981\) 31.2394 75.4185i 0.997396 2.40793i
\(982\) 0 0
\(983\) 8.40861 8.40861i 0.268193 0.268193i −0.560179 0.828372i \(-0.689268\pi\)
0.828372 + 0.560179i \(0.189268\pi\)
\(984\) 0 0
\(985\) −9.80960 13.3694i −0.312560 0.425983i
\(986\) 0 0
\(987\) −8.49274 + 3.51781i −0.270327 + 0.111973i
\(988\) 0 0
\(989\) −0.945824 + 0.945824i −0.0300755 + 0.0300755i
\(990\) 0 0
\(991\) −30.8151 12.7640i −0.978874 0.405463i −0.164866 0.986316i \(-0.552719\pi\)
−0.814008 + 0.580853i \(0.802719\pi\)
\(992\) 0 0
\(993\) 44.3990i 1.40896i
\(994\) 0 0
\(995\) −16.8491 + 27.7871i −0.534152 + 0.880910i
\(996\) 0 0
\(997\) −5.15183 + 2.13396i −0.163160 + 0.0675832i −0.462769 0.886479i \(-0.653144\pi\)
0.299608 + 0.954062i \(0.403144\pi\)
\(998\) 0 0
\(999\) 23.8931 9.89685i 0.755945 0.313123i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.653.20 yes 84
5.2 odd 4 820.2.x.a.817.20 yes 84
41.27 odd 8 820.2.x.a.273.20 84
205.27 even 8 inner 820.2.y.a.437.20 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.273.20 84 41.27 odd 8
820.2.x.a.817.20 yes 84 5.2 odd 4
820.2.y.a.437.20 yes 84 205.27 even 8 inner
820.2.y.a.653.20 yes 84 1.1 even 1 trivial