Properties

Label 820.2.x.a.273.20
Level $820$
Weight $2$
Character 820.273
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 273.20
Character \(\chi\) \(=\) 820.273
Dual form 820.2.x.a.817.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.52347 + 1.04526i) q^{3} +(1.32280 + 1.80283i) q^{5} +(-0.949785 + 2.29298i) q^{7} +(3.15402 + 3.15402i) q^{9} +(-0.869165 - 2.09835i) q^{11} +(0.524650 + 0.217317i) q^{13} +(1.45364 + 5.93205i) q^{15} +(1.82492 - 0.755905i) q^{17} +(2.21662 - 5.35139i) q^{19} +(-4.79351 + 4.79351i) q^{21} +(-3.20260 + 3.20260i) q^{23} +(-1.50038 + 4.76958i) q^{25} +(1.52656 + 3.68544i) q^{27} +(1.60007 + 3.86291i) q^{29} -3.18030i q^{31} -6.20363i q^{33} +(-5.39024 + 1.32087i) q^{35} +(-4.58425 + 4.58425i) q^{37} +(1.09679 + 1.09679i) q^{39} +(-0.371118 - 6.39236i) q^{41} -0.295330i q^{43} +(-1.51401 + 9.85832i) q^{45} +(1.25279 - 0.518923i) q^{47} +(0.594062 + 0.594062i) q^{49} +5.39524 q^{51} +(1.44291 - 3.48350i) q^{53} +(2.63323 - 4.34266i) q^{55} +(11.1871 - 11.1871i) q^{57} -0.558558i q^{59} +(-9.30634 - 9.30634i) q^{61} +(-10.2278 + 4.23648i) q^{63} +(0.302223 + 1.23332i) q^{65} +(-1.56543 + 0.648422i) q^{67} +(-11.4292 + 4.73413i) q^{69} +(7.96495 - 3.29919i) q^{71} +6.60714i q^{73} +(-8.77160 + 10.4676i) q^{75} +5.63701 q^{77} +(15.2985 - 6.33686i) q^{79} -2.48565i q^{81} +(-4.88232 - 4.88232i) q^{83} +(3.77677 + 2.29010i) q^{85} +11.4204i q^{87} +(1.63251 + 3.94123i) q^{89} +(-0.996609 + 0.996609i) q^{91} +(3.32422 - 8.02539i) q^{93} +(12.5798 - 3.08265i) q^{95} +(-5.18619 - 12.5206i) q^{97} +(3.87688 - 9.35962i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.52347 + 1.04526i 1.45693 + 0.603479i 0.963835 0.266499i \(-0.0858668\pi\)
0.493091 + 0.869978i \(0.335867\pi\)
\(4\) 0 0
\(5\) 1.32280 + 1.80283i 0.591576 + 0.806250i
\(6\) 0 0
\(7\) −0.949785 + 2.29298i −0.358985 + 0.866667i 0.636458 + 0.771311i \(0.280399\pi\)
−0.995443 + 0.0953554i \(0.969601\pi\)
\(8\) 0 0
\(9\) 3.15402 + 3.15402i 1.05134 + 1.05134i
\(10\) 0 0
\(11\) −0.869165 2.09835i −0.262063 0.632677i 0.737003 0.675890i \(-0.236241\pi\)
−0.999066 + 0.0432133i \(0.986241\pi\)
\(12\) 0 0
\(13\) 0.524650 + 0.217317i 0.145512 + 0.0602729i 0.454251 0.890874i \(-0.349907\pi\)
−0.308739 + 0.951147i \(0.599907\pi\)
\(14\) 0 0
\(15\) 1.45364 + 5.93205i 0.375328 + 1.53165i
\(16\) 0 0
\(17\) 1.82492 0.755905i 0.442607 0.183334i −0.150239 0.988650i \(-0.548004\pi\)
0.592846 + 0.805316i \(0.298004\pi\)
\(18\) 0 0
\(19\) 2.21662 5.35139i 0.508527 1.22769i −0.436204 0.899848i \(-0.643677\pi\)
0.944731 0.327846i \(-0.106323\pi\)
\(20\) 0 0
\(21\) −4.79351 + 4.79351i −1.04603 + 1.04603i
\(22\) 0 0
\(23\) −3.20260 + 3.20260i −0.667788 + 0.667788i −0.957204 0.289415i \(-0.906539\pi\)
0.289415 + 0.957204i \(0.406539\pi\)
\(24\) 0 0
\(25\) −1.50038 + 4.76958i −0.300077 + 0.953915i
\(26\) 0 0
\(27\) 1.52656 + 3.68544i 0.293787 + 0.709263i
\(28\) 0 0
\(29\) 1.60007 + 3.86291i 0.297125 + 0.717324i 0.999982 + 0.00599253i \(0.00190749\pi\)
−0.702857 + 0.711331i \(0.748093\pi\)
\(30\) 0 0
\(31\) 3.18030i 0.571198i −0.958349 0.285599i \(-0.907807\pi\)
0.958349 0.285599i \(-0.0921926\pi\)
\(32\) 0 0
\(33\) 6.20363i 1.07991i
\(34\) 0 0
\(35\) −5.39024 + 1.32087i −0.911116 + 0.223267i
\(36\) 0 0
\(37\) −4.58425 + 4.58425i −0.753646 + 0.753646i −0.975158 0.221512i \(-0.928901\pi\)
0.221512 + 0.975158i \(0.428901\pi\)
\(38\) 0 0
\(39\) 1.09679 + 1.09679i 0.175626 + 0.175626i
\(40\) 0 0
\(41\) −0.371118 6.39236i −0.0579590 0.998319i
\(42\) 0 0
\(43\) 0.295330i 0.0450374i −0.999746 0.0225187i \(-0.992831\pi\)
0.999746 0.0225187i \(-0.00716854\pi\)
\(44\) 0 0
\(45\) −1.51401 + 9.85832i −0.225696 + 1.46959i
\(46\) 0 0
\(47\) 1.25279 0.518923i 0.182738 0.0756928i −0.289438 0.957197i \(-0.593468\pi\)
0.472177 + 0.881504i \(0.343468\pi\)
\(48\) 0 0
\(49\) 0.594062 + 0.594062i 0.0848661 + 0.0848661i
\(50\) 0 0
\(51\) 5.39524 0.755485
\(52\) 0 0
\(53\) 1.44291 3.48350i 0.198199 0.478496i −0.793265 0.608877i \(-0.791620\pi\)
0.991464 + 0.130382i \(0.0416202\pi\)
\(54\) 0 0
\(55\) 2.63323 4.34266i 0.355065 0.585564i
\(56\) 0 0
\(57\) 11.1871 11.1871i 1.48177 1.48177i
\(58\) 0 0
\(59\) 0.558558i 0.0727181i −0.999339 0.0363590i \(-0.988424\pi\)
0.999339 0.0363590i \(-0.0115760\pi\)
\(60\) 0 0
\(61\) −9.30634 9.30634i −1.19156 1.19156i −0.976631 0.214924i \(-0.931050\pi\)
−0.214924 0.976631i \(-0.568950\pi\)
\(62\) 0 0
\(63\) −10.2278 + 4.23648i −1.28858 + 0.533747i
\(64\) 0 0
\(65\) 0.302223 + 1.23332i 0.0374861 + 0.152975i
\(66\) 0 0
\(67\) −1.56543 + 0.648422i −0.191247 + 0.0792173i −0.476252 0.879309i \(-0.658005\pi\)
0.285004 + 0.958526i \(0.408005\pi\)
\(68\) 0 0
\(69\) −11.4292 + 4.73413i −1.37591 + 0.569922i
\(70\) 0 0
\(71\) 7.96495 3.29919i 0.945266 0.391542i 0.143816 0.989604i \(-0.454063\pi\)
0.801450 + 0.598062i \(0.204063\pi\)
\(72\) 0 0
\(73\) 6.60714i 0.773308i 0.922225 + 0.386654i \(0.126369\pi\)
−0.922225 + 0.386654i \(0.873631\pi\)
\(74\) 0 0
\(75\) −8.77160 + 10.4676i −1.01286 + 1.20869i
\(76\) 0 0
\(77\) 5.63701 0.642396
\(78\) 0 0
\(79\) 15.2985 6.33686i 1.72122 0.712953i 0.721430 0.692487i \(-0.243485\pi\)
0.999791 0.0204657i \(-0.00651488\pi\)
\(80\) 0 0
\(81\) 2.48565i 0.276183i
\(82\) 0 0
\(83\) −4.88232 4.88232i −0.535905 0.535905i 0.386419 0.922323i \(-0.373712\pi\)
−0.922323 + 0.386419i \(0.873712\pi\)
\(84\) 0 0
\(85\) 3.77677 + 2.29010i 0.409649 + 0.248396i
\(86\) 0 0
\(87\) 11.4204i 1.22440i
\(88\) 0 0
\(89\) 1.63251 + 3.94123i 0.173046 + 0.417770i 0.986479 0.163889i \(-0.0524039\pi\)
−0.813433 + 0.581659i \(0.802404\pi\)
\(90\) 0 0
\(91\) −0.996609 + 0.996609i −0.104473 + 0.104473i
\(92\) 0 0
\(93\) 3.32422 8.02539i 0.344706 0.832194i
\(94\) 0 0
\(95\) 12.5798 3.08265i 1.29066 0.316273i
\(96\) 0 0
\(97\) −5.18619 12.5206i −0.526578 1.27127i −0.933752 0.357921i \(-0.883486\pi\)
0.407174 0.913351i \(-0.366514\pi\)
\(98\) 0 0
\(99\) 3.87688 9.35962i 0.389641 0.940677i
\(100\) 0 0
\(101\) −3.39945 1.40810i −0.338258 0.140111i 0.207088 0.978322i \(-0.433601\pi\)
−0.545345 + 0.838211i \(0.683601\pi\)
\(102\) 0 0
\(103\) 1.15561 0.113866 0.0569329 0.998378i \(-0.481868\pi\)
0.0569329 + 0.998378i \(0.481868\pi\)
\(104\) 0 0
\(105\) −14.9827 2.30101i −1.46217 0.224555i
\(106\) 0 0
\(107\) 1.95897 + 1.95897i 0.189381 + 0.189381i 0.795428 0.606047i \(-0.207246\pi\)
−0.606047 + 0.795428i \(0.707246\pi\)
\(108\) 0 0
\(109\) 16.9082 + 7.00361i 1.61951 + 0.670824i 0.993999 0.109389i \(-0.0348894\pi\)
0.625514 + 0.780213i \(0.284889\pi\)
\(110\) 0 0
\(111\) −16.3599 + 6.77651i −1.55282 + 0.643198i
\(112\) 0 0
\(113\) −11.2160 + 11.2160i −1.05511 + 1.05511i −0.0567209 + 0.998390i \(0.518065\pi\)
−0.998390 + 0.0567209i \(0.981935\pi\)
\(114\) 0 0
\(115\) −10.0101 1.53733i −0.933451 0.143357i
\(116\) 0 0
\(117\) 0.969335 + 2.34018i 0.0896150 + 0.216350i
\(118\) 0 0
\(119\) 4.90245i 0.449407i
\(120\) 0 0
\(121\) 4.13055 4.13055i 0.375504 0.375504i
\(122\) 0 0
\(123\) 5.74515 16.5188i 0.518022 1.48945i
\(124\) 0 0
\(125\) −10.5834 + 3.60427i −0.946612 + 0.322376i
\(126\) 0 0
\(127\) 0.646133 + 0.646133i 0.0573351 + 0.0573351i 0.735193 0.677858i \(-0.237092\pi\)
−0.677858 + 0.735193i \(0.737092\pi\)
\(128\) 0 0
\(129\) 0.308696 0.745257i 0.0271791 0.0656162i
\(130\) 0 0
\(131\) 5.41261 5.41261i 0.472902 0.472902i −0.429951 0.902852i \(-0.641469\pi\)
0.902852 + 0.429951i \(0.141469\pi\)
\(132\) 0 0
\(133\) 10.1653 + 10.1653i 0.881447 + 0.881447i
\(134\) 0 0
\(135\) −4.62488 + 7.62724i −0.398046 + 0.656448i
\(136\) 0 0
\(137\) 0.669422 0.277283i 0.0571925 0.0236899i −0.353904 0.935282i \(-0.615146\pi\)
0.411096 + 0.911592i \(0.365146\pi\)
\(138\) 0 0
\(139\) 5.04166i 0.427628i 0.976874 + 0.213814i \(0.0685886\pi\)
−0.976874 + 0.213814i \(0.931411\pi\)
\(140\) 0 0
\(141\) 3.70379 0.311916
\(142\) 0 0
\(143\) 1.28978i 0.107857i
\(144\) 0 0
\(145\) −4.84759 + 7.99452i −0.402570 + 0.663908i
\(146\) 0 0
\(147\) 0.878152 + 2.12005i 0.0724288 + 0.174858i
\(148\) 0 0
\(149\) −8.11373 + 19.5883i −0.664703 + 1.60473i 0.125645 + 0.992075i \(0.459900\pi\)
−0.790347 + 0.612659i \(0.790100\pi\)
\(150\) 0 0
\(151\) −5.32915 12.8657i −0.433680 1.04700i −0.978091 0.208178i \(-0.933247\pi\)
0.544411 0.838819i \(-0.316753\pi\)
\(152\) 0 0
\(153\) 8.13998 + 3.37169i 0.658078 + 0.272585i
\(154\) 0 0
\(155\) 5.73353 4.20691i 0.460528 0.337907i
\(156\) 0 0
\(157\) 22.3089 + 9.24064i 1.78044 + 0.737483i 0.992574 + 0.121639i \(0.0388149\pi\)
0.787868 + 0.615845i \(0.211185\pi\)
\(158\) 0 0
\(159\) 7.28230 7.28230i 0.577524 0.577524i
\(160\) 0 0
\(161\) −4.30173 10.3853i −0.339024 0.818476i
\(162\) 0 0
\(163\) 11.6422 11.6422i 0.911889 0.911889i −0.0845316 0.996421i \(-0.526939\pi\)
0.996421 + 0.0845316i \(0.0269394\pi\)
\(164\) 0 0
\(165\) 11.1841 8.20618i 0.870679 0.638850i
\(166\) 0 0
\(167\) 1.52301 3.67687i 0.117854 0.284525i −0.853934 0.520382i \(-0.825790\pi\)
0.971788 + 0.235857i \(0.0757896\pi\)
\(168\) 0 0
\(169\) −8.96436 8.96436i −0.689566 0.689566i
\(170\) 0 0
\(171\) 23.8697 9.88715i 1.82536 0.756089i
\(172\) 0 0
\(173\) 7.73026 0.587721 0.293860 0.955848i \(-0.405060\pi\)
0.293860 + 0.955848i \(0.405060\pi\)
\(174\) 0 0
\(175\) −9.51152 7.97043i −0.719003 0.602508i
\(176\) 0 0
\(177\) 0.583836 1.40951i 0.0438838 0.105945i
\(178\) 0 0
\(179\) −22.3875 9.27320i −1.67332 0.693111i −0.674346 0.738416i \(-0.735574\pi\)
−0.998973 + 0.0453042i \(0.985574\pi\)
\(180\) 0 0
\(181\) 4.39280 + 1.81956i 0.326514 + 0.135247i 0.539918 0.841717i \(-0.318455\pi\)
−0.213404 + 0.976964i \(0.568455\pi\)
\(182\) 0 0
\(183\) −13.7568 33.2118i −1.01693 2.45509i
\(184\) 0 0
\(185\) −14.3287 2.20056i −1.05347 0.161788i
\(186\) 0 0
\(187\) −3.17231 3.17231i −0.231982 0.231982i
\(188\) 0 0
\(189\) −9.90056 −0.720160
\(190\) 0 0
\(191\) −4.35565 + 10.5155i −0.315164 + 0.760873i 0.684333 + 0.729169i \(0.260093\pi\)
−0.999497 + 0.0317038i \(0.989907\pi\)
\(192\) 0 0
\(193\) 22.0947 + 9.15193i 1.59041 + 0.658770i 0.990019 0.140934i \(-0.0450107\pi\)
0.600393 + 0.799705i \(0.295011\pi\)
\(194\) 0 0
\(195\) −0.526486 + 3.42815i −0.0377024 + 0.245495i
\(196\) 0 0
\(197\) −7.41577 −0.528351 −0.264176 0.964475i \(-0.585100\pi\)
−0.264176 + 0.964475i \(0.585100\pi\)
\(198\) 0 0
\(199\) −13.4266 5.56147i −0.951785 0.394242i −0.147883 0.989005i \(-0.547246\pi\)
−0.803901 + 0.594763i \(0.797246\pi\)
\(200\) 0 0
\(201\) −4.62808 −0.326440
\(202\) 0 0
\(203\) −10.3773 −0.728344
\(204\) 0 0
\(205\) 11.0334 9.12490i 0.770607 0.637310i
\(206\) 0 0
\(207\) −20.2022 −1.40415
\(208\) 0 0
\(209\) −13.1557 −0.909999
\(210\) 0 0
\(211\) −9.64043 3.99320i −0.663675 0.274903i 0.0253091 0.999680i \(-0.491943\pi\)
−0.688984 + 0.724777i \(0.741943\pi\)
\(212\) 0 0
\(213\) 23.5478 1.61347
\(214\) 0 0
\(215\) 0.532430 0.390664i 0.0363114 0.0266430i
\(216\) 0 0
\(217\) 7.29237 + 3.02060i 0.495038 + 0.205052i
\(218\) 0 0
\(219\) −6.90616 + 16.6729i −0.466675 + 1.12665i
\(220\) 0 0
\(221\) 1.12171 0.0754546
\(222\) 0 0
\(223\) −19.2171 19.2171i −1.28687 1.28687i −0.936676 0.350198i \(-0.886114\pi\)
−0.350198 0.936676i \(-0.613886\pi\)
\(224\) 0 0
\(225\) −19.7756 + 10.3111i −1.31837 + 0.687407i
\(226\) 0 0
\(227\) −5.04356 12.1762i −0.334753 0.808165i −0.998202 0.0599435i \(-0.980908\pi\)
0.663449 0.748222i \(-0.269092\pi\)
\(228\) 0 0
\(229\) −20.4572 8.47367i −1.35185 0.559956i −0.415045 0.909801i \(-0.636234\pi\)
−0.936808 + 0.349845i \(0.886234\pi\)
\(230\) 0 0
\(231\) 14.2248 + 5.89211i 0.935924 + 0.387673i
\(232\) 0 0
\(233\) −1.83642 + 4.43350i −0.120308 + 0.290448i −0.972548 0.232702i \(-0.925243\pi\)
0.852241 + 0.523150i \(0.175243\pi\)
\(234\) 0 0
\(235\) 2.59273 + 1.57214i 0.169131 + 0.102555i
\(236\) 0 0
\(237\) 45.2291 2.93794
\(238\) 0 0
\(239\) −10.1625 + 4.20944i −0.657356 + 0.272286i −0.686326 0.727295i \(-0.740777\pi\)
0.0289695 + 0.999580i \(0.490777\pi\)
\(240\) 0 0
\(241\) −6.66917 6.66917i −0.429599 0.429599i 0.458893 0.888492i \(-0.348246\pi\)
−0.888492 + 0.458893i \(0.848246\pi\)
\(242\) 0 0
\(243\) 7.17782 17.3288i 0.460457 1.11164i
\(244\) 0 0
\(245\) −0.285165 + 1.85682i −0.0182185 + 0.118628i
\(246\) 0 0
\(247\) 2.32590 2.32590i 0.147993 0.147993i
\(248\) 0 0
\(249\) −7.21712 17.4237i −0.457367 1.10418i
\(250\) 0 0
\(251\) 6.83535 6.83535i 0.431443 0.431443i −0.457676 0.889119i \(-0.651318\pi\)
0.889119 + 0.457676i \(0.151318\pi\)
\(252\) 0 0
\(253\) 9.50377 + 3.93659i 0.597497 + 0.247491i
\(254\) 0 0
\(255\) 7.13684 + 9.72669i 0.446926 + 0.609109i
\(256\) 0 0
\(257\) 4.32787 + 1.79266i 0.269965 + 0.111823i 0.513559 0.858054i \(-0.328327\pi\)
−0.243594 + 0.969877i \(0.578327\pi\)
\(258\) 0 0
\(259\) −6.15756 14.8657i −0.382612 0.923708i
\(260\) 0 0
\(261\) −7.13705 + 17.2304i −0.441772 + 1.06653i
\(262\) 0 0
\(263\) 5.82029 + 14.0514i 0.358895 + 0.866448i 0.995456 + 0.0952222i \(0.0303562\pi\)
−0.636561 + 0.771226i \(0.719644\pi\)
\(264\) 0 0
\(265\) 8.18885 2.00666i 0.503037 0.123268i
\(266\) 0 0
\(267\) 11.6520i 0.713090i
\(268\) 0 0
\(269\) −21.7159 −1.32404 −0.662021 0.749485i \(-0.730301\pi\)
−0.662021 + 0.749485i \(0.730301\pi\)
\(270\) 0 0
\(271\) 20.1022i 1.22112i −0.791969 0.610561i \(-0.790944\pi\)
0.791969 0.610561i \(-0.209056\pi\)
\(272\) 0 0
\(273\) −3.55662 + 1.47320i −0.215257 + 0.0891622i
\(274\) 0 0
\(275\) 11.3123 0.997218i 0.682159 0.0601345i
\(276\) 0 0
\(277\) −14.8375 14.8375i −0.891496 0.891496i 0.103168 0.994664i \(-0.467102\pi\)
−0.994664 + 0.103168i \(0.967102\pi\)
\(278\) 0 0
\(279\) 10.0307 10.0307i 0.600524 0.600524i
\(280\) 0 0
\(281\) −11.6260 + 28.0677i −0.693550 + 1.67438i 0.0439533 + 0.999034i \(0.486005\pi\)
−0.737503 + 0.675344i \(0.763995\pi\)
\(282\) 0 0
\(283\) −0.609443 0.609443i −0.0362276 0.0362276i 0.688761 0.724989i \(-0.258155\pi\)
−0.724989 + 0.688761i \(0.758155\pi\)
\(284\) 0 0
\(285\) 34.9669 + 5.37012i 2.07126 + 0.318098i
\(286\) 0 0
\(287\) 15.0101 + 5.22040i 0.886016 + 0.308150i
\(288\) 0 0
\(289\) −9.26189 + 9.26189i −0.544817 + 0.544817i
\(290\) 0 0
\(291\) 37.0162i 2.16993i
\(292\) 0 0
\(293\) 10.2201 + 24.6734i 0.597063 + 1.44144i 0.876561 + 0.481291i \(0.159832\pi\)
−0.279498 + 0.960146i \(0.590168\pi\)
\(294\) 0 0
\(295\) 1.00698 0.738862i 0.0586289 0.0430182i
\(296\) 0 0
\(297\) 6.40652 6.40652i 0.371744 0.371744i
\(298\) 0 0
\(299\) −2.37622 + 0.984263i −0.137420 + 0.0569214i
\(300\) 0 0
\(301\) 0.677188 + 0.280500i 0.0390324 + 0.0161678i
\(302\) 0 0
\(303\) −7.10658 7.10658i −0.408263 0.408263i
\(304\) 0 0
\(305\) 4.46728 29.0882i 0.255796 1.66559i
\(306\) 0 0
\(307\) 10.4642 0.597222 0.298611 0.954375i \(-0.403477\pi\)
0.298611 + 0.954375i \(0.403477\pi\)
\(308\) 0 0
\(309\) 2.91615 + 1.20791i 0.165894 + 0.0687156i
\(310\) 0 0
\(311\) −10.1272 + 24.4492i −0.574261 + 1.38639i 0.323636 + 0.946182i \(0.395095\pi\)
−0.897897 + 0.440206i \(0.854905\pi\)
\(312\) 0 0
\(313\) −1.45605 3.51522i −0.0823008 0.198692i 0.877372 0.479810i \(-0.159295\pi\)
−0.959673 + 0.281119i \(0.909295\pi\)
\(314\) 0 0
\(315\) −21.1670 12.8349i −1.19262 0.723164i
\(316\) 0 0
\(317\) −7.57000 + 18.2756i −0.425174 + 1.02646i 0.555624 + 0.831434i \(0.312479\pi\)
−0.980798 + 0.195027i \(0.937521\pi\)
\(318\) 0 0
\(319\) 6.71501 6.71501i 0.375968 0.375968i
\(320\) 0 0
\(321\) 2.89578 + 6.99104i 0.161627 + 0.390202i
\(322\) 0 0
\(323\) 11.4414i 0.636617i
\(324\) 0 0
\(325\) −1.82369 + 2.17630i −0.101160 + 0.120719i
\(326\) 0 0
\(327\) 35.3468 + 35.3468i 1.95468 + 1.95468i
\(328\) 0 0
\(329\) 3.36550i 0.185546i
\(330\) 0 0
\(331\) −15.0178 + 6.22056i −0.825451 + 0.341913i −0.755100 0.655609i \(-0.772412\pi\)
−0.0703507 + 0.997522i \(0.522412\pi\)
\(332\) 0 0
\(333\) −28.9177 −1.58468
\(334\) 0 0
\(335\) −3.23975 1.96446i −0.177006 0.107330i
\(336\) 0 0
\(337\) 13.2195i 0.720110i −0.932931 0.360055i \(-0.882758\pi\)
0.932931 0.360055i \(-0.117242\pi\)
\(338\) 0 0
\(339\) −40.0268 + 16.5796i −2.17396 + 0.900482i
\(340\) 0 0
\(341\) −6.67338 + 2.76420i −0.361384 + 0.149690i
\(342\) 0 0
\(343\) −17.9773 + 7.44644i −0.970683 + 0.402070i
\(344\) 0 0
\(345\) −23.6534 14.3426i −1.27346 0.772178i
\(346\) 0 0
\(347\) 3.09060 1.28017i 0.165912 0.0687231i −0.298181 0.954509i \(-0.596380\pi\)
0.464094 + 0.885786i \(0.346380\pi\)
\(348\) 0 0
\(349\) 14.0112 + 14.0112i 0.750002 + 0.750002i 0.974479 0.224477i \(-0.0720675\pi\)
−0.224477 + 0.974479i \(0.572067\pi\)
\(350\) 0 0
\(351\) 2.26531i 0.120913i
\(352\) 0 0
\(353\) −1.30579 + 1.30579i −0.0695003 + 0.0695003i −0.741003 0.671502i \(-0.765649\pi\)
0.671502 + 0.741003i \(0.265649\pi\)
\(354\) 0 0
\(355\) 16.4839 + 9.99527i 0.874877 + 0.530494i
\(356\) 0 0
\(357\) −5.12432 + 12.3712i −0.271208 + 0.654753i
\(358\) 0 0
\(359\) 20.1309 1.06247 0.531233 0.847226i \(-0.321729\pi\)
0.531233 + 0.847226i \(0.321729\pi\)
\(360\) 0 0
\(361\) −10.2890 10.2890i −0.541524 0.541524i
\(362\) 0 0
\(363\) 14.7408 6.10584i 0.773691 0.320473i
\(364\) 0 0
\(365\) −11.9115 + 8.73995i −0.623479 + 0.457470i
\(366\) 0 0
\(367\) 19.8546i 1.03640i 0.855260 + 0.518200i \(0.173398\pi\)
−0.855260 + 0.518200i \(0.826602\pi\)
\(368\) 0 0
\(369\) 18.9911 21.3322i 0.988640 1.11051i
\(370\) 0 0
\(371\) 6.61716 + 6.61716i 0.343546 + 0.343546i
\(372\) 0 0
\(373\) 8.58554 8.58554i 0.444543 0.444543i −0.448993 0.893535i \(-0.648217\pi\)
0.893535 + 0.448993i \(0.148217\pi\)
\(374\) 0 0
\(375\) −30.4744 1.96712i −1.57369 0.101582i
\(376\) 0 0
\(377\) 2.37439i 0.122288i
\(378\) 0 0
\(379\) 7.66393i 0.393669i −0.980437 0.196835i \(-0.936934\pi\)
0.980437 0.196835i \(-0.0630662\pi\)
\(380\) 0 0
\(381\) 0.955124 + 2.30587i 0.0489325 + 0.118133i
\(382\) 0 0
\(383\) −6.93476 16.7420i −0.354350 0.855476i −0.996073 0.0885396i \(-0.971780\pi\)
0.641723 0.766937i \(-0.278220\pi\)
\(384\) 0 0
\(385\) 7.45665 + 10.1626i 0.380026 + 0.517932i
\(386\) 0 0
\(387\) 0.931479 0.931479i 0.0473497 0.0473497i
\(388\) 0 0
\(389\) −17.2766 + 17.2766i −0.875961 + 0.875961i −0.993114 0.117153i \(-0.962623\pi\)
0.117153 + 0.993114i \(0.462623\pi\)
\(390\) 0 0
\(391\) −3.42362 + 8.26534i −0.173140 + 0.417996i
\(392\) 0 0
\(393\) 19.3161 8.00099i 0.974369 0.403597i
\(394\) 0 0
\(395\) 31.6612 + 19.1982i 1.59305 + 0.965968i
\(396\) 0 0
\(397\) 26.1315 + 10.8240i 1.31150 + 0.543242i 0.925322 0.379181i \(-0.123794\pi\)
0.386180 + 0.922423i \(0.373794\pi\)
\(398\) 0 0
\(399\) 15.0266 + 36.2773i 0.752269 + 1.81614i
\(400\) 0 0
\(401\) 21.5874 + 21.5874i 1.07803 + 1.07803i 0.996686 + 0.0813390i \(0.0259196\pi\)
0.0813390 + 0.996686i \(0.474080\pi\)
\(402\) 0 0
\(403\) 0.691132 1.66854i 0.0344278 0.0831160i
\(404\) 0 0
\(405\) 4.48120 3.28802i 0.222672 0.163383i
\(406\) 0 0
\(407\) 13.6038 + 5.63490i 0.674317 + 0.279311i
\(408\) 0 0
\(409\) 20.0737 0.992581 0.496291 0.868156i \(-0.334695\pi\)
0.496291 + 0.868156i \(0.334695\pi\)
\(410\) 0 0
\(411\) 1.97910 0.0976217
\(412\) 0 0
\(413\) 1.28076 + 0.530510i 0.0630223 + 0.0261047i
\(414\) 0 0
\(415\) 2.34364 15.2603i 0.115045 0.749101i
\(416\) 0 0
\(417\) −5.26982 + 12.7225i −0.258064 + 0.623022i
\(418\) 0 0
\(419\) −1.64729 1.64729i −0.0804754 0.0804754i 0.665723 0.746199i \(-0.268123\pi\)
−0.746199 + 0.665723i \(0.768123\pi\)
\(420\) 0 0
\(421\) −9.57202 23.1089i −0.466512 1.12626i −0.965675 0.259752i \(-0.916359\pi\)
0.499164 0.866508i \(-0.333641\pi\)
\(422\) 0 0
\(423\) 5.58803 + 2.31464i 0.271700 + 0.112542i
\(424\) 0 0
\(425\) 0.867272 + 9.83823i 0.0420689 + 0.477224i
\(426\) 0 0
\(427\) 30.1783 12.5003i 1.46043 0.604930i
\(428\) 0 0
\(429\) 1.34815 3.25473i 0.0650895 0.157140i
\(430\) 0 0
\(431\) 19.9917 19.9917i 0.962969 0.962969i −0.0363698 0.999338i \(-0.511579\pi\)
0.999338 + 0.0363698i \(0.0115794\pi\)
\(432\) 0 0
\(433\) −5.40420 + 5.40420i −0.259709 + 0.259709i −0.824936 0.565226i \(-0.808789\pi\)
0.565226 + 0.824936i \(0.308789\pi\)
\(434\) 0 0
\(435\) −20.5891 + 15.1070i −0.987170 + 0.724323i
\(436\) 0 0
\(437\) 10.0394 + 24.2373i 0.480251 + 1.15943i
\(438\) 0 0
\(439\) 11.1265 + 26.8618i 0.531040 + 1.28204i 0.930835 + 0.365440i \(0.119081\pi\)
−0.399795 + 0.916605i \(0.630919\pi\)
\(440\) 0 0
\(441\) 3.74738i 0.178446i
\(442\) 0 0
\(443\) 40.0241i 1.90160i 0.309800 + 0.950802i \(0.399738\pi\)
−0.309800 + 0.950802i \(0.600262\pi\)
\(444\) 0 0
\(445\) −4.94588 + 8.15662i −0.234457 + 0.386661i
\(446\) 0 0
\(447\) −40.9495 + 40.9495i −1.93685 + 1.93685i
\(448\) 0 0
\(449\) 25.9798 + 25.9798i 1.22606 + 1.22606i 0.965441 + 0.260623i \(0.0839279\pi\)
0.260623 + 0.965441i \(0.416072\pi\)
\(450\) 0 0
\(451\) −13.0909 + 6.33476i −0.616424 + 0.298292i
\(452\) 0 0
\(453\) 38.0366i 1.78711i
\(454\) 0 0
\(455\) −3.11503 0.478398i −0.146035 0.0224276i
\(456\) 0 0
\(457\) −21.7273 + 8.99976i −1.01636 + 0.420991i −0.827772 0.561065i \(-0.810392\pi\)
−0.188590 + 0.982056i \(0.560392\pi\)
\(458\) 0 0
\(459\) 5.57169 + 5.57169i 0.260064 + 0.260064i
\(460\) 0 0
\(461\) −26.3042 −1.22511 −0.612555 0.790428i \(-0.709858\pi\)
−0.612555 + 0.790428i \(0.709858\pi\)
\(462\) 0 0
\(463\) −9.19993 + 22.2106i −0.427557 + 1.03221i 0.552503 + 0.833511i \(0.313673\pi\)
−0.980060 + 0.198703i \(0.936327\pi\)
\(464\) 0 0
\(465\) 18.8657 4.62300i 0.874876 0.214386i
\(466\) 0 0
\(467\) −26.8274 + 26.8274i −1.24142 + 1.24142i −0.282013 + 0.959411i \(0.591002\pi\)
−0.959411 + 0.282013i \(0.908998\pi\)
\(468\) 0 0
\(469\) 4.20536i 0.194186i
\(470\) 0 0
\(471\) 46.6370 + 46.6370i 2.14892 + 2.14892i
\(472\) 0 0
\(473\) −0.619707 + 0.256691i −0.0284941 + 0.0118027i
\(474\) 0 0
\(475\) 22.1981 + 18.6015i 1.01852 + 0.853494i
\(476\) 0 0
\(477\) 15.5380 6.43606i 0.711438 0.294687i
\(478\) 0 0
\(479\) −31.8708 + 13.2013i −1.45621 + 0.603183i −0.963668 0.267104i \(-0.913933\pi\)
−0.492545 + 0.870287i \(0.663933\pi\)
\(480\) 0 0
\(481\) −3.40136 + 1.40889i −0.155089 + 0.0642398i
\(482\) 0 0
\(483\) 30.7034i 1.39705i
\(484\) 0 0
\(485\) 15.7121 25.9121i 0.713452 1.17661i
\(486\) 0 0
\(487\) −7.09877 −0.321676 −0.160838 0.986981i \(-0.551420\pi\)
−0.160838 + 0.986981i \(0.551420\pi\)
\(488\) 0 0
\(489\) 41.5479 17.2097i 1.87886 0.778250i
\(490\) 0 0
\(491\) 8.49502i 0.383375i 0.981456 + 0.191687i \(0.0613960\pi\)
−0.981456 + 0.191687i \(0.938604\pi\)
\(492\) 0 0
\(493\) 5.83999 + 5.83999i 0.263020 + 0.263020i
\(494\) 0 0
\(495\) 22.0021 5.39158i 0.988923 0.242334i
\(496\) 0 0
\(497\) 21.3970i 0.959788i
\(498\) 0 0
\(499\) −14.1912 34.2605i −0.635284 1.53371i −0.832895 0.553432i \(-0.813318\pi\)
0.197610 0.980281i \(-0.436682\pi\)
\(500\) 0 0
\(501\) 7.68654 7.68654i 0.343409 0.343409i
\(502\) 0 0
\(503\) −8.52633 + 20.5844i −0.380170 + 0.917813i 0.611762 + 0.791042i \(0.290461\pi\)
−0.991932 + 0.126771i \(0.959539\pi\)
\(504\) 0 0
\(505\) −1.95824 7.99126i −0.0871406 0.355606i
\(506\) 0 0
\(507\) −13.2512 31.9913i −0.588509 1.42079i
\(508\) 0 0
\(509\) 5.09125 12.2914i 0.225666 0.544805i −0.769975 0.638074i \(-0.779732\pi\)
0.995641 + 0.0932686i \(0.0297315\pi\)
\(510\) 0 0
\(511\) −15.1501 6.27537i −0.670200 0.277606i
\(512\) 0 0
\(513\) 23.1060 1.02016
\(514\) 0 0
\(515\) 1.52865 + 2.08337i 0.0673602 + 0.0918042i
\(516\) 0 0
\(517\) −2.17777 2.17777i −0.0957781 0.0957781i
\(518\) 0 0
\(519\) 19.5071 + 8.08010i 0.856266 + 0.354677i
\(520\) 0 0
\(521\) −16.4966 + 6.83314i −0.722731 + 0.299365i −0.713561 0.700593i \(-0.752919\pi\)
−0.00917005 + 0.999958i \(0.502919\pi\)
\(522\) 0 0
\(523\) −9.16926 + 9.16926i −0.400944 + 0.400944i −0.878566 0.477622i \(-0.841499\pi\)
0.477622 + 0.878566i \(0.341499\pi\)
\(524\) 0 0
\(525\) −15.6709 30.0551i −0.683934 1.31171i
\(526\) 0 0
\(527\) −2.40400 5.80378i −0.104720 0.252817i
\(528\) 0 0
\(529\) 2.48672i 0.108118i
\(530\) 0 0
\(531\) 1.76171 1.76171i 0.0764515 0.0764515i
\(532\) 0 0
\(533\) 1.19446 3.43440i 0.0517379 0.148760i
\(534\) 0 0
\(535\) −0.940357 + 6.12303i −0.0406552 + 0.264721i
\(536\) 0 0
\(537\) −46.8013 46.8013i −2.01963 2.01963i
\(538\) 0 0
\(539\) 0.730213 1.76289i 0.0314525 0.0759330i
\(540\) 0 0
\(541\) −12.0018 + 12.0018i −0.515998 + 0.515998i −0.916358 0.400360i \(-0.868885\pi\)
0.400360 + 0.916358i \(0.368885\pi\)
\(542\) 0 0
\(543\) 9.18320 + 9.18320i 0.394089 + 0.394089i
\(544\) 0 0
\(545\) 9.73992 + 39.7470i 0.417212 + 1.70257i
\(546\) 0 0
\(547\) 12.4768 5.16807i 0.533470 0.220971i −0.0996520 0.995022i \(-0.531773\pi\)
0.633122 + 0.774052i \(0.281773\pi\)
\(548\) 0 0
\(549\) 58.7049i 2.50546i
\(550\) 0 0
\(551\) 24.2187 1.03175
\(552\) 0 0
\(553\) 41.0980i 1.74766i
\(554\) 0 0
\(555\) −33.8579 20.5302i −1.43719 0.871458i
\(556\) 0 0
\(557\) −8.75761 21.1427i −0.371072 0.895847i −0.993569 0.113225i \(-0.963882\pi\)
0.622498 0.782622i \(-0.286118\pi\)
\(558\) 0 0
\(559\) 0.0641803 0.154945i 0.00271454 0.00655347i
\(560\) 0 0
\(561\) −4.68936 11.3211i −0.197985 0.477978i
\(562\) 0 0
\(563\) −22.0541 9.13510i −0.929468 0.384998i −0.133992 0.990982i \(-0.542780\pi\)
−0.795477 + 0.605984i \(0.792780\pi\)
\(564\) 0 0
\(565\) −35.0570 5.38396i −1.47486 0.226505i
\(566\) 0 0
\(567\) 5.69955 + 2.36083i 0.239359 + 0.0991456i
\(568\) 0 0
\(569\) 12.5492 12.5492i 0.526091 0.526091i −0.393313 0.919405i \(-0.628671\pi\)
0.919405 + 0.393313i \(0.128671\pi\)
\(570\) 0 0
\(571\) 4.25403 + 10.2701i 0.178025 + 0.429792i 0.987552 0.157291i \(-0.0502762\pi\)
−0.809527 + 0.587083i \(0.800276\pi\)
\(572\) 0 0
\(573\) −21.9827 + 21.9827i −0.918341 + 0.918341i
\(574\) 0 0
\(575\) −10.4699 20.0802i −0.436625 0.837401i
\(576\) 0 0
\(577\) 13.2091 31.8895i 0.549901 1.32758i −0.367652 0.929964i \(-0.619838\pi\)
0.917553 0.397615i \(-0.130162\pi\)
\(578\) 0 0
\(579\) 46.1893 + 46.1893i 1.91956 + 1.91956i
\(580\) 0 0
\(581\) 15.8322 6.55793i 0.656832 0.272069i
\(582\) 0 0
\(583\) −8.56374 −0.354674
\(584\) 0 0
\(585\) −2.93671 + 4.84314i −0.121418 + 0.200239i
\(586\) 0 0
\(587\) 16.3285 39.4204i 0.673948 1.62705i −0.100892 0.994897i \(-0.532170\pi\)
0.774840 0.632157i \(-0.217830\pi\)
\(588\) 0 0
\(589\) −17.0190 7.04951i −0.701256 0.290470i
\(590\) 0 0
\(591\) −18.7135 7.75137i −0.769769 0.318849i
\(592\) 0 0
\(593\) −15.4839 37.3814i −0.635847 1.53507i −0.832164 0.554530i \(-0.812898\pi\)
0.196317 0.980541i \(-0.437102\pi\)
\(594\) 0 0
\(595\) −8.83829 + 6.48498i −0.362334 + 0.265858i
\(596\) 0 0
\(597\) −28.0684 28.0684i −1.14876 1.14876i
\(598\) 0 0
\(599\) −17.5398 −0.716655 −0.358328 0.933596i \(-0.616653\pi\)
−0.358328 + 0.933596i \(0.616653\pi\)
\(600\) 0 0
\(601\) −3.91884 + 9.46091i −0.159853 + 0.385918i −0.983431 0.181285i \(-0.941974\pi\)
0.823578 + 0.567203i \(0.191974\pi\)
\(602\) 0 0
\(603\) −6.98254 2.89226i −0.284351 0.117782i
\(604\) 0 0
\(605\) 12.9106 + 1.98277i 0.524889 + 0.0806110i
\(606\) 0 0
\(607\) 32.2107 1.30739 0.653696 0.756757i \(-0.273218\pi\)
0.653696 + 0.756757i \(0.273218\pi\)
\(608\) 0 0
\(609\) −26.1868 10.8469i −1.06114 0.439540i
\(610\) 0 0
\(611\) 0.770048 0.0311528
\(612\) 0 0
\(613\) 21.5184 0.869120 0.434560 0.900643i \(-0.356904\pi\)
0.434560 + 0.900643i \(0.356904\pi\)
\(614\) 0 0
\(615\) 37.3804 11.4937i 1.50732 0.463470i
\(616\) 0 0
\(617\) −34.8623 −1.40350 −0.701752 0.712421i \(-0.747599\pi\)
−0.701752 + 0.712421i \(0.747599\pi\)
\(618\) 0 0
\(619\) 3.84142 0.154400 0.0771999 0.997016i \(-0.475402\pi\)
0.0771999 + 0.997016i \(0.475402\pi\)
\(620\) 0 0
\(621\) −16.6919 6.91403i −0.669825 0.277451i
\(622\) 0 0
\(623\) −10.5877 −0.424188
\(624\) 0 0
\(625\) −20.4977 14.3124i −0.819908 0.572495i
\(626\) 0 0
\(627\) −33.1980 13.7511i −1.32580 0.549165i
\(628\) 0 0
\(629\) −4.90062 + 11.8311i −0.195400 + 0.471738i
\(630\) 0 0
\(631\) 33.6465 1.33945 0.669724 0.742610i \(-0.266413\pi\)
0.669724 + 0.742610i \(0.266413\pi\)
\(632\) 0 0
\(633\) −20.1534 20.1534i −0.801027 0.801027i
\(634\) 0 0
\(635\) −0.310161 + 2.01958i −0.0123084 + 0.0801444i
\(636\) 0 0
\(637\) 0.182575 + 0.440774i 0.00723387 + 0.0174641i
\(638\) 0 0
\(639\) 35.5274 + 14.7159i 1.40544 + 0.582153i
\(640\) 0 0
\(641\) −26.7063 11.0621i −1.05484 0.436927i −0.213220 0.977004i \(-0.568395\pi\)
−0.841616 + 0.540077i \(0.818395\pi\)
\(642\) 0 0
\(643\) 0.217989 0.526272i 0.00859664 0.0207541i −0.919523 0.393036i \(-0.871425\pi\)
0.928120 + 0.372282i \(0.121425\pi\)
\(644\) 0 0
\(645\) 1.75192 0.429303i 0.0689816 0.0169038i
\(646\) 0 0
\(647\) 20.0557 0.788469 0.394235 0.919010i \(-0.371010\pi\)
0.394235 + 0.919010i \(0.371010\pi\)
\(648\) 0 0
\(649\) −1.17205 + 0.485479i −0.0460070 + 0.0190567i
\(650\) 0 0
\(651\) 15.2448 + 15.2448i 0.597490 + 0.597490i
\(652\) 0 0
\(653\) −9.87402 + 23.8380i −0.386400 + 0.932853i 0.604296 + 0.796760i \(0.293455\pi\)
−0.990696 + 0.136093i \(0.956545\pi\)
\(654\) 0 0
\(655\) 16.9178 + 2.59819i 0.661034 + 0.101520i
\(656\) 0 0
\(657\) −20.8391 + 20.8391i −0.813011 + 0.813011i
\(658\) 0 0
\(659\) −6.23462 15.0517i −0.242866 0.586331i 0.754699 0.656071i \(-0.227783\pi\)
−0.997565 + 0.0697400i \(0.977783\pi\)
\(660\) 0 0
\(661\) −6.55557 + 6.55557i −0.254982 + 0.254982i −0.823010 0.568027i \(-0.807707\pi\)
0.568027 + 0.823010i \(0.307707\pi\)
\(662\) 0 0
\(663\) 2.83061 + 1.17248i 0.109932 + 0.0455352i
\(664\) 0 0
\(665\) −4.87963 + 31.7731i −0.189224 + 1.23211i
\(666\) 0 0
\(667\) −17.4957 7.24697i −0.677437 0.280604i
\(668\) 0 0
\(669\) −28.4070 68.5807i −1.09828 2.65148i
\(670\) 0 0
\(671\) −11.4392 + 27.6167i −0.441606 + 1.06613i
\(672\) 0 0
\(673\) 10.1729 + 24.5595i 0.392135 + 0.946698i 0.989474 + 0.144709i \(0.0462248\pi\)
−0.597339 + 0.801989i \(0.703775\pi\)
\(674\) 0 0
\(675\) −19.8684 + 1.75146i −0.764736 + 0.0674139i
\(676\) 0 0
\(677\) 33.3330i 1.28109i −0.767921 0.640545i \(-0.778709\pi\)
0.767921 0.640545i \(-0.221291\pi\)
\(678\) 0 0
\(679\) 33.6353 1.29080
\(680\) 0 0
\(681\) 35.9982i 1.37945i
\(682\) 0 0
\(683\) 14.6727 6.07764i 0.561436 0.232554i −0.0838724 0.996477i \(-0.526729\pi\)
0.645309 + 0.763922i \(0.276729\pi\)
\(684\) 0 0
\(685\) 1.38541 + 0.840061i 0.0529337 + 0.0320971i
\(686\) 0 0
\(687\) −42.7661 42.7661i −1.63163 1.63163i
\(688\) 0 0
\(689\) 1.51405 1.51405i 0.0576806 0.0576806i
\(690\) 0 0
\(691\) 7.83159 18.9071i 0.297928 0.719261i −0.702047 0.712131i \(-0.747730\pi\)
0.999975 0.00713041i \(-0.00226970\pi\)
\(692\) 0 0
\(693\) 17.7793 + 17.7793i 0.675378 + 0.675378i
\(694\) 0 0
\(695\) −9.08924 + 6.66912i −0.344775 + 0.252974i
\(696\) 0 0
\(697\) −5.50928 11.3850i −0.208679 0.431238i
\(698\) 0 0
\(699\) −9.26828 + 9.26828i −0.350559 + 0.350559i
\(700\) 0 0
\(701\) 1.26900i 0.0479295i −0.999713 0.0239647i \(-0.992371\pi\)
0.999713 0.0239647i \(-0.00762894\pi\)
\(702\) 0 0
\(703\) 14.3706 + 34.6937i 0.541997 + 1.30850i
\(704\) 0 0
\(705\) 4.89939 + 6.67730i 0.184522 + 0.251482i
\(706\) 0 0
\(707\) 6.45749 6.45749i 0.242859 0.242859i
\(708\) 0 0
\(709\) 17.7782 7.36397i 0.667674 0.276560i −0.0229895 0.999736i \(-0.507318\pi\)
0.690664 + 0.723176i \(0.257318\pi\)
\(710\) 0 0
\(711\) 68.2386 + 28.2654i 2.55915 + 1.06003i
\(712\) 0 0
\(713\) 10.1852 + 10.1852i 0.381439 + 0.381439i
\(714\) 0 0
\(715\) 2.32526 1.70613i 0.0869597 0.0638056i
\(716\) 0 0
\(717\) −30.0447 −1.12204
\(718\) 0 0
\(719\) 8.58842 + 3.55744i 0.320294 + 0.132670i 0.537037 0.843558i \(-0.319543\pi\)
−0.216743 + 0.976229i \(0.569543\pi\)
\(720\) 0 0
\(721\) −1.09758 + 2.64980i −0.0408761 + 0.0986837i
\(722\) 0 0
\(723\) −9.85846 23.8004i −0.366640 0.885147i
\(724\) 0 0
\(725\) −20.8251 + 1.83580i −0.773427 + 0.0681801i
\(726\) 0 0
\(727\) −9.98604 + 24.1084i −0.370362 + 0.894132i 0.623327 + 0.781961i \(0.285781\pi\)
−0.993689 + 0.112171i \(0.964219\pi\)
\(728\) 0 0
\(729\) 30.9532 30.9532i 1.14641 1.14641i
\(730\) 0 0
\(731\) −0.223242 0.538953i −0.00825689 0.0199339i
\(732\) 0 0
\(733\) 27.0851i 1.00041i −0.865906 0.500206i \(-0.833257\pi\)
0.865906 0.500206i \(-0.166743\pi\)
\(734\) 0 0
\(735\) −2.66046 + 4.38756i −0.0981325 + 0.161838i
\(736\) 0 0
\(737\) 2.72123 + 2.72123i 0.100238 + 0.100238i
\(738\) 0 0
\(739\) 19.9991i 0.735680i 0.929889 + 0.367840i \(0.119903\pi\)
−0.929889 + 0.367840i \(0.880097\pi\)
\(740\) 0 0
\(741\) 8.30049 3.43817i 0.304926 0.126304i
\(742\) 0 0
\(743\) 24.9057 0.913702 0.456851 0.889543i \(-0.348977\pi\)
0.456851 + 0.889543i \(0.348977\pi\)
\(744\) 0 0
\(745\) −46.0472 + 11.2838i −1.68704 + 0.413405i
\(746\) 0 0
\(747\) 30.7979i 1.12684i
\(748\) 0 0
\(749\) −6.35250 + 2.63129i −0.232115 + 0.0961452i
\(750\) 0 0
\(751\) 0.790995 0.327641i 0.0288638 0.0119558i −0.368205 0.929745i \(-0.620027\pi\)
0.397069 + 0.917789i \(0.370027\pi\)
\(752\) 0 0
\(753\) 24.3935 10.1041i 0.888948 0.368214i
\(754\) 0 0
\(755\) 16.1453 26.6264i 0.587586 0.969032i
\(756\) 0 0
\(757\) −18.3811 + 7.61370i −0.668073 + 0.276725i −0.690831 0.723016i \(-0.742755\pi\)
0.0227584 + 0.999741i \(0.492755\pi\)
\(758\) 0 0
\(759\) 19.8677 + 19.8677i 0.721153 + 0.721153i
\(760\) 0 0
\(761\) 33.5780i 1.21720i −0.793476 0.608601i \(-0.791731\pi\)
0.793476 0.608601i \(-0.208269\pi\)
\(762\) 0 0
\(763\) −32.1183 + 32.1183i −1.16276 + 1.16276i
\(764\) 0 0
\(765\) 4.68901 + 19.1351i 0.169532 + 0.691830i
\(766\) 0 0
\(767\) 0.121384 0.293047i 0.00438293 0.0105813i
\(768\) 0 0
\(769\) 6.48872 0.233989 0.116995 0.993133i \(-0.462674\pi\)
0.116995 + 0.993133i \(0.462674\pi\)
\(770\) 0 0
\(771\) 9.04746 + 9.04746i 0.325836 + 0.325836i
\(772\) 0 0
\(773\) −19.7552 + 8.18288i −0.710546 + 0.294318i −0.708530 0.705680i \(-0.750641\pi\)
−0.00201531 + 0.999998i \(0.500641\pi\)
\(774\) 0 0
\(775\) 15.1687 + 4.77167i 0.544875 + 0.171403i
\(776\) 0 0
\(777\) 43.9493i 1.57667i
\(778\) 0 0
\(779\) −35.0306 12.1834i −1.25510 0.436517i
\(780\) 0 0
\(781\) −13.8457 13.8457i −0.495439 0.495439i
\(782\) 0 0
\(783\) −11.7939 + 11.7939i −0.421480 + 0.421480i
\(784\) 0 0
\(785\) 12.8510 + 52.4426i 0.458670 + 1.87176i
\(786\) 0 0
\(787\) 48.8135i 1.74001i 0.493040 + 0.870007i \(0.335886\pi\)
−0.493040 + 0.870007i \(0.664114\pi\)
\(788\) 0 0
\(789\) 41.5421i 1.47894i
\(790\) 0 0
\(791\) −15.0653 36.3708i −0.535660 1.29320i
\(792\) 0 0
\(793\) −2.86014 6.90499i −0.101567 0.245204i
\(794\) 0 0
\(795\) 22.7618 + 3.49569i 0.807277 + 0.123979i
\(796\) 0 0
\(797\) 1.84186 1.84186i 0.0652419 0.0652419i −0.673733 0.738975i \(-0.735310\pi\)
0.738975 + 0.673733i \(0.235310\pi\)
\(798\) 0 0
\(799\) 1.89398 1.89398i 0.0670044 0.0670044i
\(800\) 0 0
\(801\) −7.28177 + 17.5797i −0.257289 + 0.621150i
\(802\) 0 0
\(803\) 13.8641 5.74270i 0.489254 0.202656i
\(804\) 0 0
\(805\) 13.0326 21.4930i 0.459337 0.757528i
\(806\) 0 0
\(807\) −54.7995 22.6987i −1.92903 0.799032i
\(808\) 0 0
\(809\) 12.7020 + 30.6653i 0.446578 + 1.07813i 0.973596 + 0.228280i \(0.0733100\pi\)
−0.527018 + 0.849854i \(0.676690\pi\)
\(810\) 0 0
\(811\) −8.24669 8.24669i −0.289581 0.289581i 0.547334 0.836914i \(-0.315643\pi\)
−0.836914 + 0.547334i \(0.815643\pi\)
\(812\) 0 0
\(813\) 21.0120 50.7273i 0.736921 1.77909i
\(814\) 0 0
\(815\) 36.3893 + 5.58857i 1.27466 + 0.195759i
\(816\) 0 0
\(817\) −1.58043 0.654635i −0.0552922 0.0229028i
\(818\) 0 0
\(819\) −6.28666 −0.219674
\(820\) 0 0
\(821\) 25.6132 0.893906 0.446953 0.894557i \(-0.352509\pi\)
0.446953 + 0.894557i \(0.352509\pi\)
\(822\) 0 0
\(823\) −8.95330 3.70858i −0.312092 0.129273i 0.221139 0.975242i \(-0.429023\pi\)
−0.533232 + 0.845969i \(0.679023\pi\)
\(824\) 0 0
\(825\) 29.5887 + 9.30782i 1.03015 + 0.324057i
\(826\) 0 0
\(827\) −0.670040 + 1.61762i −0.0232996 + 0.0562501i −0.935101 0.354381i \(-0.884692\pi\)
0.911802 + 0.410631i \(0.134692\pi\)
\(828\) 0 0
\(829\) 2.91568 + 2.91568i 0.101266 + 0.101266i 0.755924 0.654659i \(-0.227188\pi\)
−0.654659 + 0.755924i \(0.727188\pi\)
\(830\) 0 0
\(831\) −21.9329 52.9508i −0.760845 1.83684i
\(832\) 0 0
\(833\) 1.53317 + 0.635060i 0.0531212 + 0.0220035i
\(834\) 0 0
\(835\) 8.64341 2.11805i 0.299118 0.0732982i
\(836\) 0 0
\(837\) 11.7208 4.85491i 0.405130 0.167810i
\(838\) 0 0
\(839\) 11.3314 27.3564i 0.391203 0.944448i −0.598475 0.801141i \(-0.704226\pi\)
0.989678 0.143307i \(-0.0457735\pi\)
\(840\) 0 0
\(841\) 8.14426 8.14426i 0.280837 0.280837i
\(842\) 0 0
\(843\) −58.6758 + 58.6758i −2.02090 + 2.02090i
\(844\) 0 0
\(845\) 4.30312 28.0193i 0.148032 0.963893i
\(846\) 0 0
\(847\) 5.54815 + 13.3944i 0.190637 + 0.460237i
\(848\) 0 0
\(849\) −0.900888 2.17494i −0.0309184 0.0746436i
\(850\) 0 0
\(851\) 29.3630i 1.00655i
\(852\) 0 0
\(853\) 23.1225i 0.791701i 0.918315 + 0.395850i \(0.129550\pi\)
−0.918315 + 0.395850i \(0.870450\pi\)
\(854\) 0 0
\(855\) 49.3997 + 29.9542i 1.68944 + 1.02441i
\(856\) 0 0
\(857\) 21.5664 21.5664i 0.736695 0.736695i −0.235242 0.971937i \(-0.575588\pi\)
0.971937 + 0.235242i \(0.0755883\pi\)
\(858\) 0 0
\(859\) 17.0661 + 17.0661i 0.582286 + 0.582286i 0.935531 0.353245i \(-0.114922\pi\)
−0.353245 + 0.935531i \(0.614922\pi\)
\(860\) 0 0
\(861\) 32.4208 + 28.8629i 1.10490 + 0.983645i
\(862\) 0 0
\(863\) 42.3869i 1.44287i 0.692484 + 0.721433i \(0.256516\pi\)
−0.692484 + 0.721433i \(0.743484\pi\)
\(864\) 0 0
\(865\) 10.2256 + 13.9363i 0.347681 + 0.473850i
\(866\) 0 0
\(867\) −33.0531 + 13.6911i −1.12254 + 0.464973i
\(868\) 0 0
\(869\) −26.5939 26.5939i −0.902137 0.902137i
\(870\) 0 0
\(871\) −0.962214 −0.0326034
\(872\) 0 0
\(873\) 23.1328 55.8476i 0.782928 1.89016i
\(874\) 0 0
\(875\) 1.78745 27.6909i 0.0604269 0.936125i
\(876\) 0 0
\(877\) 37.2642 37.2642i 1.25832 1.25832i 0.306432 0.951893i \(-0.400865\pi\)
0.951893 0.306432i \(-0.0991351\pi\)
\(878\) 0 0
\(879\) 72.9453i 2.46038i
\(880\) 0 0
\(881\) −5.85422 5.85422i −0.197234 0.197234i 0.601579 0.798813i \(-0.294538\pi\)
−0.798813 + 0.601579i \(0.794538\pi\)
\(882\) 0 0
\(883\) −2.27217 + 0.941166i −0.0764648 + 0.0316727i −0.420588 0.907252i \(-0.638176\pi\)
0.344123 + 0.938924i \(0.388176\pi\)
\(884\) 0 0
\(885\) 3.31340 0.811941i 0.111379 0.0272931i
\(886\) 0 0
\(887\) −38.8628 + 16.0975i −1.30488 + 0.540501i −0.923387 0.383870i \(-0.874591\pi\)
−0.381497 + 0.924370i \(0.624591\pi\)
\(888\) 0 0
\(889\) −2.09526 + 0.867886i −0.0702728 + 0.0291080i
\(890\) 0 0
\(891\) −5.21576 + 2.16044i −0.174735 + 0.0723774i
\(892\) 0 0
\(893\) 7.85443i 0.262839i
\(894\) 0 0
\(895\) −12.8962 52.6274i −0.431074 1.75914i
\(896\) 0 0
\(897\) −7.02513 −0.234562
\(898\) 0 0
\(899\) 12.2852 5.08869i 0.409734 0.169717i
\(900\) 0 0
\(901\) 7.44781i 0.248122i
\(902\) 0 0
\(903\) 1.41567 + 1.41567i 0.0471105 + 0.0471105i
\(904\) 0 0
\(905\) 2.53046 + 10.3264i 0.0841153 + 0.343261i
\(906\) 0 0
\(907\) 11.6665i 0.387381i −0.981063 0.193691i \(-0.937954\pi\)
0.981063 0.193691i \(-0.0620458\pi\)
\(908\) 0 0
\(909\) −6.28077 15.1631i −0.208320 0.502929i
\(910\) 0 0
\(911\) −14.7560 + 14.7560i −0.488889 + 0.488889i −0.907956 0.419067i \(-0.862357\pi\)
0.419067 + 0.907956i \(0.362357\pi\)
\(912\) 0 0
\(913\) −6.00128 + 14.4884i −0.198613 + 0.479495i
\(914\) 0 0
\(915\) 41.6777 68.7338i 1.37782 2.27227i
\(916\) 0 0
\(917\) 7.27021 + 17.5518i 0.240083 + 0.579613i
\(918\) 0 0
\(919\) 8.87243 21.4199i 0.292675 0.706579i −0.707325 0.706888i \(-0.750098\pi\)
1.00000 0.000309256i \(9.84392e-5\pi\)
\(920\) 0 0
\(921\) 26.4060 + 10.9377i 0.870108 + 0.360410i
\(922\) 0 0
\(923\) 4.89578 0.161147
\(924\) 0 0
\(925\) −14.9868 28.7431i −0.492763 0.945066i
\(926\) 0 0
\(927\) 3.64483 + 3.64483i 0.119712 + 0.119712i
\(928\) 0 0
\(929\) 46.8801 + 19.4184i 1.53809 + 0.637097i 0.981113 0.193434i \(-0.0619624\pi\)
0.556974 + 0.830530i \(0.311962\pi\)
\(930\) 0 0
\(931\) 4.49587 1.86225i 0.147346 0.0610328i
\(932\) 0 0
\(933\) −51.1114 + 51.1114i −1.67331 + 1.67331i
\(934\) 0 0
\(935\) 1.52279 9.91547i 0.0498006 0.324271i
\(936\) 0 0
\(937\) 17.4772 + 42.1938i 0.570957 + 1.37841i 0.900742 + 0.434355i \(0.143024\pi\)
−0.329785 + 0.944056i \(0.606976\pi\)
\(938\) 0 0
\(939\) 10.3925i 0.339146i
\(940\) 0 0
\(941\) 5.12402 5.12402i 0.167038 0.167038i −0.618638 0.785676i \(-0.712315\pi\)
0.785676 + 0.618638i \(0.212315\pi\)
\(942\) 0 0
\(943\) 21.6607 + 19.2836i 0.705370 + 0.627961i
\(944\) 0 0
\(945\) −13.0965 17.8490i −0.426029 0.580629i
\(946\) 0 0
\(947\) −42.0766 42.0766i −1.36731 1.36731i −0.864259 0.503047i \(-0.832212\pi\)
−0.503047 0.864259i \(-0.667788\pi\)
\(948\) 0 0
\(949\) −1.43584 + 3.46644i −0.0466095 + 0.112525i
\(950\) 0 0
\(951\) −38.2054 + 38.2054i −1.23889 + 1.23889i
\(952\) 0 0
\(953\) 22.4782 + 22.4782i 0.728141 + 0.728141i 0.970249 0.242108i \(-0.0778389\pi\)
−0.242108 + 0.970249i \(0.577839\pi\)
\(954\) 0 0
\(955\) −24.7193 + 6.05741i −0.799897 + 0.196013i
\(956\) 0 0
\(957\) 23.9640 9.92623i 0.774647 0.320869i
\(958\) 0 0
\(959\) 1.79833i 0.0580712i
\(960\) 0 0
\(961\) 20.8857 0.673733
\(962\) 0 0
\(963\) 12.3573i 0.398208i
\(964\) 0 0
\(965\) 12.7276 + 51.9392i 0.409716 + 1.67198i
\(966\) 0 0
\(967\) −17.7311 42.8066i −0.570192 1.37657i −0.901391 0.433005i \(-0.857453\pi\)
0.331199 0.943561i \(-0.392547\pi\)
\(968\) 0 0
\(969\) 11.9592 28.8720i 0.384185 0.927504i
\(970\) 0 0
\(971\) 3.93390 + 9.49727i 0.126245 + 0.304782i 0.974347 0.225051i \(-0.0722548\pi\)
−0.848102 + 0.529833i \(0.822255\pi\)
\(972\) 0 0
\(973\) −11.5604 4.78849i −0.370611 0.153512i
\(974\) 0 0
\(975\) −6.87680 + 3.58560i −0.220234 + 0.114831i
\(976\) 0 0
\(977\) 4.48618 + 1.85824i 0.143526 + 0.0594502i 0.453290 0.891363i \(-0.350250\pi\)
−0.309764 + 0.950813i \(0.600250\pi\)
\(978\) 0 0
\(979\) 6.85117 6.85117i 0.218964 0.218964i
\(980\) 0 0
\(981\) 31.2394 + 75.4185i 0.997396 + 2.40793i
\(982\) 0 0
\(983\) −8.40861 + 8.40861i −0.268193 + 0.268193i −0.828372 0.560179i \(-0.810732\pi\)
0.560179 + 0.828372i \(0.310732\pi\)
\(984\) 0 0
\(985\) −9.80960 13.3694i −0.312560 0.425983i
\(986\) 0 0
\(987\) −3.51781 + 8.49274i −0.111973 + 0.270327i
\(988\) 0 0
\(989\) 0.945824 + 0.945824i 0.0300755 + 0.0300755i
\(990\) 0 0
\(991\) −30.8151 + 12.7640i −0.978874 + 0.405463i −0.814008 0.580853i \(-0.802719\pi\)
−0.164866 + 0.986316i \(0.552719\pi\)
\(992\) 0 0
\(993\) −44.3990 −1.40896
\(994\) 0 0
\(995\) −7.73434 31.5625i −0.245195 1.00060i
\(996\) 0 0
\(997\) −2.13396 + 5.15183i −0.0675832 + 0.163160i −0.954062 0.299608i \(-0.903144\pi\)
0.886479 + 0.462769i \(0.153144\pi\)
\(998\) 0 0
\(999\) −23.8931 9.89685i −0.755945 0.313123i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.273.20 84
5.2 odd 4 820.2.y.a.437.20 yes 84
41.38 odd 8 820.2.y.a.653.20 yes 84
205.202 even 8 inner 820.2.x.a.817.20 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.273.20 84 1.1 even 1 trivial
820.2.x.a.817.20 yes 84 205.202 even 8 inner
820.2.y.a.437.20 yes 84 5.2 odd 4
820.2.y.a.653.20 yes 84 41.38 odd 8