Properties

Label 820.2.x.a.817.20
Level $820$
Weight $2$
Character 820.817
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 817.20
Character \(\chi\) \(=\) 820.817
Dual form 820.2.x.a.273.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.52347 - 1.04526i) q^{3} +(1.32280 - 1.80283i) q^{5} +(-0.949785 - 2.29298i) q^{7} +(3.15402 - 3.15402i) q^{9} +(-0.869165 + 2.09835i) q^{11} +(0.524650 - 0.217317i) q^{13} +(1.45364 - 5.93205i) q^{15} +(1.82492 + 0.755905i) q^{17} +(2.21662 + 5.35139i) q^{19} +(-4.79351 - 4.79351i) q^{21} +(-3.20260 - 3.20260i) q^{23} +(-1.50038 - 4.76958i) q^{25} +(1.52656 - 3.68544i) q^{27} +(1.60007 - 3.86291i) q^{29} +3.18030i q^{31} +6.20363i q^{33} +(-5.39024 - 1.32087i) q^{35} +(-4.58425 - 4.58425i) q^{37} +(1.09679 - 1.09679i) q^{39} +(-0.371118 + 6.39236i) q^{41} +0.295330i q^{43} +(-1.51401 - 9.85832i) q^{45} +(1.25279 + 0.518923i) q^{47} +(0.594062 - 0.594062i) q^{49} +5.39524 q^{51} +(1.44291 + 3.48350i) q^{53} +(2.63323 + 4.34266i) q^{55} +(11.1871 + 11.1871i) q^{57} +0.558558i q^{59} +(-9.30634 + 9.30634i) q^{61} +(-10.2278 - 4.23648i) q^{63} +(0.302223 - 1.23332i) q^{65} +(-1.56543 - 0.648422i) q^{67} +(-11.4292 - 4.73413i) q^{69} +(7.96495 + 3.29919i) q^{71} -6.60714i q^{73} +(-8.77160 - 10.4676i) q^{75} +5.63701 q^{77} +(15.2985 + 6.33686i) q^{79} +2.48565i q^{81} +(-4.88232 + 4.88232i) q^{83} +(3.77677 - 2.29010i) q^{85} -11.4204i q^{87} +(1.63251 - 3.94123i) q^{89} +(-0.996609 - 0.996609i) q^{91} +(3.32422 + 8.02539i) q^{93} +(12.5798 + 3.08265i) q^{95} +(-5.18619 + 12.5206i) q^{97} +(3.87688 + 9.35962i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.52347 1.04526i 1.45693 0.603479i 0.493091 0.869978i \(-0.335867\pi\)
0.963835 + 0.266499i \(0.0858668\pi\)
\(4\) 0 0
\(5\) 1.32280 1.80283i 0.591576 0.806250i
\(6\) 0 0
\(7\) −0.949785 2.29298i −0.358985 0.866667i −0.995443 0.0953554i \(-0.969601\pi\)
0.636458 0.771311i \(-0.280399\pi\)
\(8\) 0 0
\(9\) 3.15402 3.15402i 1.05134 1.05134i
\(10\) 0 0
\(11\) −0.869165 + 2.09835i −0.262063 + 0.632677i −0.999066 0.0432133i \(-0.986241\pi\)
0.737003 + 0.675890i \(0.236241\pi\)
\(12\) 0 0
\(13\) 0.524650 0.217317i 0.145512 0.0602729i −0.308739 0.951147i \(-0.599907\pi\)
0.454251 + 0.890874i \(0.349907\pi\)
\(14\) 0 0
\(15\) 1.45364 5.93205i 0.375328 1.53165i
\(16\) 0 0
\(17\) 1.82492 + 0.755905i 0.442607 + 0.183334i 0.592846 0.805316i \(-0.298004\pi\)
−0.150239 + 0.988650i \(0.548004\pi\)
\(18\) 0 0
\(19\) 2.21662 + 5.35139i 0.508527 + 1.22769i 0.944731 + 0.327846i \(0.106323\pi\)
−0.436204 + 0.899848i \(0.643677\pi\)
\(20\) 0 0
\(21\) −4.79351 4.79351i −1.04603 1.04603i
\(22\) 0 0
\(23\) −3.20260 3.20260i −0.667788 0.667788i 0.289415 0.957204i \(-0.406539\pi\)
−0.957204 + 0.289415i \(0.906539\pi\)
\(24\) 0 0
\(25\) −1.50038 4.76958i −0.300077 0.953915i
\(26\) 0 0
\(27\) 1.52656 3.68544i 0.293787 0.709263i
\(28\) 0 0
\(29\) 1.60007 3.86291i 0.297125 0.717324i −0.702857 0.711331i \(-0.748093\pi\)
0.999982 0.00599253i \(-0.00190749\pi\)
\(30\) 0 0
\(31\) 3.18030i 0.571198i 0.958349 + 0.285599i \(0.0921926\pi\)
−0.958349 + 0.285599i \(0.907807\pi\)
\(32\) 0 0
\(33\) 6.20363i 1.07991i
\(34\) 0 0
\(35\) −5.39024 1.32087i −0.911116 0.223267i
\(36\) 0 0
\(37\) −4.58425 4.58425i −0.753646 0.753646i 0.221512 0.975158i \(-0.428901\pi\)
−0.975158 + 0.221512i \(0.928901\pi\)
\(38\) 0 0
\(39\) 1.09679 1.09679i 0.175626 0.175626i
\(40\) 0 0
\(41\) −0.371118 + 6.39236i −0.0579590 + 0.998319i
\(42\) 0 0
\(43\) 0.295330i 0.0450374i 0.999746 + 0.0225187i \(0.00716854\pi\)
−0.999746 + 0.0225187i \(0.992831\pi\)
\(44\) 0 0
\(45\) −1.51401 9.85832i −0.225696 1.46959i
\(46\) 0 0
\(47\) 1.25279 + 0.518923i 0.182738 + 0.0756928i 0.472177 0.881504i \(-0.343468\pi\)
−0.289438 + 0.957197i \(0.593468\pi\)
\(48\) 0 0
\(49\) 0.594062 0.594062i 0.0848661 0.0848661i
\(50\) 0 0
\(51\) 5.39524 0.755485
\(52\) 0 0
\(53\) 1.44291 + 3.48350i 0.198199 + 0.478496i 0.991464 0.130382i \(-0.0416202\pi\)
−0.793265 + 0.608877i \(0.791620\pi\)
\(54\) 0 0
\(55\) 2.63323 + 4.34266i 0.355065 + 0.585564i
\(56\) 0 0
\(57\) 11.1871 + 11.1871i 1.48177 + 1.48177i
\(58\) 0 0
\(59\) 0.558558i 0.0727181i 0.999339 + 0.0363590i \(0.0115760\pi\)
−0.999339 + 0.0363590i \(0.988424\pi\)
\(60\) 0 0
\(61\) −9.30634 + 9.30634i −1.19156 + 1.19156i −0.214924 + 0.976631i \(0.568950\pi\)
−0.976631 + 0.214924i \(0.931050\pi\)
\(62\) 0 0
\(63\) −10.2278 4.23648i −1.28858 0.533747i
\(64\) 0 0
\(65\) 0.302223 1.23332i 0.0374861 0.152975i
\(66\) 0 0
\(67\) −1.56543 0.648422i −0.191247 0.0792173i 0.285004 0.958526i \(-0.408005\pi\)
−0.476252 + 0.879309i \(0.658005\pi\)
\(68\) 0 0
\(69\) −11.4292 4.73413i −1.37591 0.569922i
\(70\) 0 0
\(71\) 7.96495 + 3.29919i 0.945266 + 0.391542i 0.801450 0.598062i \(-0.204063\pi\)
0.143816 + 0.989604i \(0.454063\pi\)
\(72\) 0 0
\(73\) 6.60714i 0.773308i −0.922225 0.386654i \(-0.873631\pi\)
0.922225 0.386654i \(-0.126369\pi\)
\(74\) 0 0
\(75\) −8.77160 10.4676i −1.01286 1.20869i
\(76\) 0 0
\(77\) 5.63701 0.642396
\(78\) 0 0
\(79\) 15.2985 + 6.33686i 1.72122 + 0.712953i 0.999791 + 0.0204657i \(0.00651488\pi\)
0.721430 + 0.692487i \(0.243485\pi\)
\(80\) 0 0
\(81\) 2.48565i 0.276183i
\(82\) 0 0
\(83\) −4.88232 + 4.88232i −0.535905 + 0.535905i −0.922323 0.386419i \(-0.873712\pi\)
0.386419 + 0.922323i \(0.373712\pi\)
\(84\) 0 0
\(85\) 3.77677 2.29010i 0.409649 0.248396i
\(86\) 0 0
\(87\) 11.4204i 1.22440i
\(88\) 0 0
\(89\) 1.63251 3.94123i 0.173046 0.417770i −0.813433 0.581659i \(-0.802404\pi\)
0.986479 + 0.163889i \(0.0524039\pi\)
\(90\) 0 0
\(91\) −0.996609 0.996609i −0.104473 0.104473i
\(92\) 0 0
\(93\) 3.32422 + 8.02539i 0.344706 + 0.832194i
\(94\) 0 0
\(95\) 12.5798 + 3.08265i 1.29066 + 0.316273i
\(96\) 0 0
\(97\) −5.18619 + 12.5206i −0.526578 + 1.27127i 0.407174 + 0.913351i \(0.366514\pi\)
−0.933752 + 0.357921i \(0.883486\pi\)
\(98\) 0 0
\(99\) 3.87688 + 9.35962i 0.389641 + 0.940677i
\(100\) 0 0
\(101\) −3.39945 + 1.40810i −0.338258 + 0.140111i −0.545345 0.838211i \(-0.683601\pi\)
0.207088 + 0.978322i \(0.433601\pi\)
\(102\) 0 0
\(103\) 1.15561 0.113866 0.0569329 0.998378i \(-0.481868\pi\)
0.0569329 + 0.998378i \(0.481868\pi\)
\(104\) 0 0
\(105\) −14.9827 + 2.30101i −1.46217 + 0.224555i
\(106\) 0 0
\(107\) 1.95897 1.95897i 0.189381 0.189381i −0.606047 0.795428i \(-0.707246\pi\)
0.795428 + 0.606047i \(0.207246\pi\)
\(108\) 0 0
\(109\) 16.9082 7.00361i 1.61951 0.670824i 0.625514 0.780213i \(-0.284889\pi\)
0.993999 + 0.109389i \(0.0348894\pi\)
\(110\) 0 0
\(111\) −16.3599 6.77651i −1.55282 0.643198i
\(112\) 0 0
\(113\) −11.2160 11.2160i −1.05511 1.05511i −0.998390 0.0567209i \(-0.981935\pi\)
−0.0567209 0.998390i \(-0.518065\pi\)
\(114\) 0 0
\(115\) −10.0101 + 1.53733i −0.933451 + 0.143357i
\(116\) 0 0
\(117\) 0.969335 2.34018i 0.0896150 0.216350i
\(118\) 0 0
\(119\) 4.90245i 0.449407i
\(120\) 0 0
\(121\) 4.13055 + 4.13055i 0.375504 + 0.375504i
\(122\) 0 0
\(123\) 5.74515 + 16.5188i 0.518022 + 1.48945i
\(124\) 0 0
\(125\) −10.5834 3.60427i −0.946612 0.322376i
\(126\) 0 0
\(127\) 0.646133 0.646133i 0.0573351 0.0573351i −0.677858 0.735193i \(-0.737092\pi\)
0.735193 + 0.677858i \(0.237092\pi\)
\(128\) 0 0
\(129\) 0.308696 + 0.745257i 0.0271791 + 0.0656162i
\(130\) 0 0
\(131\) 5.41261 + 5.41261i 0.472902 + 0.472902i 0.902852 0.429951i \(-0.141469\pi\)
−0.429951 + 0.902852i \(0.641469\pi\)
\(132\) 0 0
\(133\) 10.1653 10.1653i 0.881447 0.881447i
\(134\) 0 0
\(135\) −4.62488 7.62724i −0.398046 0.656448i
\(136\) 0 0
\(137\) 0.669422 + 0.277283i 0.0571925 + 0.0236899i 0.411096 0.911592i \(-0.365146\pi\)
−0.353904 + 0.935282i \(0.615146\pi\)
\(138\) 0 0
\(139\) 5.04166i 0.427628i −0.976874 0.213814i \(-0.931411\pi\)
0.976874 0.213814i \(-0.0685886\pi\)
\(140\) 0 0
\(141\) 3.70379 0.311916
\(142\) 0 0
\(143\) 1.28978i 0.107857i
\(144\) 0 0
\(145\) −4.84759 7.99452i −0.402570 0.663908i
\(146\) 0 0
\(147\) 0.878152 2.12005i 0.0724288 0.174858i
\(148\) 0 0
\(149\) −8.11373 19.5883i −0.664703 1.60473i −0.790347 0.612659i \(-0.790100\pi\)
0.125645 0.992075i \(-0.459900\pi\)
\(150\) 0 0
\(151\) −5.32915 + 12.8657i −0.433680 + 1.04700i 0.544411 + 0.838819i \(0.316753\pi\)
−0.978091 + 0.208178i \(0.933247\pi\)
\(152\) 0 0
\(153\) 8.13998 3.37169i 0.658078 0.272585i
\(154\) 0 0
\(155\) 5.73353 + 4.20691i 0.460528 + 0.337907i
\(156\) 0 0
\(157\) 22.3089 9.24064i 1.78044 0.737483i 0.787868 0.615845i \(-0.211185\pi\)
0.992574 0.121639i \(-0.0388149\pi\)
\(158\) 0 0
\(159\) 7.28230 + 7.28230i 0.577524 + 0.577524i
\(160\) 0 0
\(161\) −4.30173 + 10.3853i −0.339024 + 0.818476i
\(162\) 0 0
\(163\) 11.6422 + 11.6422i 0.911889 + 0.911889i 0.996421 0.0845316i \(-0.0269394\pi\)
−0.0845316 + 0.996421i \(0.526939\pi\)
\(164\) 0 0
\(165\) 11.1841 + 8.20618i 0.870679 + 0.638850i
\(166\) 0 0
\(167\) 1.52301 + 3.67687i 0.117854 + 0.284525i 0.971788 0.235857i \(-0.0757896\pi\)
−0.853934 + 0.520382i \(0.825790\pi\)
\(168\) 0 0
\(169\) −8.96436 + 8.96436i −0.689566 + 0.689566i
\(170\) 0 0
\(171\) 23.8697 + 9.88715i 1.82536 + 0.756089i
\(172\) 0 0
\(173\) 7.73026 0.587721 0.293860 0.955848i \(-0.405060\pi\)
0.293860 + 0.955848i \(0.405060\pi\)
\(174\) 0 0
\(175\) −9.51152 + 7.97043i −0.719003 + 0.602508i
\(176\) 0 0
\(177\) 0.583836 + 1.40951i 0.0438838 + 0.105945i
\(178\) 0 0
\(179\) −22.3875 + 9.27320i −1.67332 + 0.693111i −0.998973 0.0453042i \(-0.985574\pi\)
−0.674346 + 0.738416i \(0.735574\pi\)
\(180\) 0 0
\(181\) 4.39280 1.81956i 0.326514 0.135247i −0.213404 0.976964i \(-0.568455\pi\)
0.539918 + 0.841717i \(0.318455\pi\)
\(182\) 0 0
\(183\) −13.7568 + 33.2118i −1.01693 + 2.45509i
\(184\) 0 0
\(185\) −14.3287 + 2.20056i −1.05347 + 0.161788i
\(186\) 0 0
\(187\) −3.17231 + 3.17231i −0.231982 + 0.231982i
\(188\) 0 0
\(189\) −9.90056 −0.720160
\(190\) 0 0
\(191\) −4.35565 10.5155i −0.315164 0.760873i −0.999497 0.0317038i \(-0.989907\pi\)
0.684333 0.729169i \(-0.260093\pi\)
\(192\) 0 0
\(193\) 22.0947 9.15193i 1.59041 0.658770i 0.600393 0.799705i \(-0.295011\pi\)
0.990019 + 0.140934i \(0.0450107\pi\)
\(194\) 0 0
\(195\) −0.526486 3.42815i −0.0377024 0.245495i
\(196\) 0 0
\(197\) −7.41577 −0.528351 −0.264176 0.964475i \(-0.585100\pi\)
−0.264176 + 0.964475i \(0.585100\pi\)
\(198\) 0 0
\(199\) −13.4266 + 5.56147i −0.951785 + 0.394242i −0.803901 0.594763i \(-0.797246\pi\)
−0.147883 + 0.989005i \(0.547246\pi\)
\(200\) 0 0
\(201\) −4.62808 −0.326440
\(202\) 0 0
\(203\) −10.3773 −0.728344
\(204\) 0 0
\(205\) 11.0334 + 9.12490i 0.770607 + 0.637310i
\(206\) 0 0
\(207\) −20.2022 −1.40415
\(208\) 0 0
\(209\) −13.1557 −0.909999
\(210\) 0 0
\(211\) −9.64043 + 3.99320i −0.663675 + 0.274903i −0.688984 0.724777i \(-0.741943\pi\)
0.0253091 + 0.999680i \(0.491943\pi\)
\(212\) 0 0
\(213\) 23.5478 1.61347
\(214\) 0 0
\(215\) 0.532430 + 0.390664i 0.0363114 + 0.0266430i
\(216\) 0 0
\(217\) 7.29237 3.02060i 0.495038 0.205052i
\(218\) 0 0
\(219\) −6.90616 16.6729i −0.466675 1.12665i
\(220\) 0 0
\(221\) 1.12171 0.0754546
\(222\) 0 0
\(223\) −19.2171 + 19.2171i −1.28687 + 1.28687i −0.350198 + 0.936676i \(0.613886\pi\)
−0.936676 + 0.350198i \(0.886114\pi\)
\(224\) 0 0
\(225\) −19.7756 10.3111i −1.31837 0.687407i
\(226\) 0 0
\(227\) −5.04356 + 12.1762i −0.334753 + 0.808165i 0.663449 + 0.748222i \(0.269092\pi\)
−0.998202 + 0.0599435i \(0.980908\pi\)
\(228\) 0 0
\(229\) −20.4572 + 8.47367i −1.35185 + 0.559956i −0.936808 0.349845i \(-0.886234\pi\)
−0.415045 + 0.909801i \(0.636234\pi\)
\(230\) 0 0
\(231\) 14.2248 5.89211i 0.935924 0.387673i
\(232\) 0 0
\(233\) −1.83642 4.43350i −0.120308 0.290448i 0.852241 0.523150i \(-0.175243\pi\)
−0.972548 + 0.232702i \(0.925243\pi\)
\(234\) 0 0
\(235\) 2.59273 1.57214i 0.169131 0.102555i
\(236\) 0 0
\(237\) 45.2291 2.93794
\(238\) 0 0
\(239\) −10.1625 4.20944i −0.657356 0.272286i 0.0289695 0.999580i \(-0.490777\pi\)
−0.686326 + 0.727295i \(0.740777\pi\)
\(240\) 0 0
\(241\) −6.66917 + 6.66917i −0.429599 + 0.429599i −0.888492 0.458893i \(-0.848246\pi\)
0.458893 + 0.888492i \(0.348246\pi\)
\(242\) 0 0
\(243\) 7.17782 + 17.3288i 0.460457 + 1.11164i
\(244\) 0 0
\(245\) −0.285165 1.85682i −0.0182185 0.118628i
\(246\) 0 0
\(247\) 2.32590 + 2.32590i 0.147993 + 0.147993i
\(248\) 0 0
\(249\) −7.21712 + 17.4237i −0.457367 + 1.10418i
\(250\) 0 0
\(251\) 6.83535 + 6.83535i 0.431443 + 0.431443i 0.889119 0.457676i \(-0.151318\pi\)
−0.457676 + 0.889119i \(0.651318\pi\)
\(252\) 0 0
\(253\) 9.50377 3.93659i 0.597497 0.247491i
\(254\) 0 0
\(255\) 7.13684 9.72669i 0.446926 0.609109i
\(256\) 0 0
\(257\) 4.32787 1.79266i 0.269965 0.111823i −0.243594 0.969877i \(-0.578327\pi\)
0.513559 + 0.858054i \(0.328327\pi\)
\(258\) 0 0
\(259\) −6.15756 + 14.8657i −0.382612 + 0.923708i
\(260\) 0 0
\(261\) −7.13705 17.2304i −0.441772 1.06653i
\(262\) 0 0
\(263\) 5.82029 14.0514i 0.358895 0.866448i −0.636561 0.771226i \(-0.719644\pi\)
0.995456 0.0952222i \(-0.0303562\pi\)
\(264\) 0 0
\(265\) 8.18885 + 2.00666i 0.503037 + 0.123268i
\(266\) 0 0
\(267\) 11.6520i 0.713090i
\(268\) 0 0
\(269\) −21.7159 −1.32404 −0.662021 0.749485i \(-0.730301\pi\)
−0.662021 + 0.749485i \(0.730301\pi\)
\(270\) 0 0
\(271\) 20.1022i 1.22112i 0.791969 + 0.610561i \(0.209056\pi\)
−0.791969 + 0.610561i \(0.790944\pi\)
\(272\) 0 0
\(273\) −3.55662 1.47320i −0.215257 0.0891622i
\(274\) 0 0
\(275\) 11.3123 + 0.997218i 0.682159 + 0.0601345i
\(276\) 0 0
\(277\) −14.8375 + 14.8375i −0.891496 + 0.891496i −0.994664 0.103168i \(-0.967102\pi\)
0.103168 + 0.994664i \(0.467102\pi\)
\(278\) 0 0
\(279\) 10.0307 + 10.0307i 0.600524 + 0.600524i
\(280\) 0 0
\(281\) −11.6260 28.0677i −0.693550 1.67438i −0.737503 0.675344i \(-0.763995\pi\)
0.0439533 0.999034i \(-0.486005\pi\)
\(282\) 0 0
\(283\) −0.609443 + 0.609443i −0.0362276 + 0.0362276i −0.724989 0.688761i \(-0.758155\pi\)
0.688761 + 0.724989i \(0.258155\pi\)
\(284\) 0 0
\(285\) 34.9669 5.37012i 2.07126 0.318098i
\(286\) 0 0
\(287\) 15.0101 5.22040i 0.886016 0.308150i
\(288\) 0 0
\(289\) −9.26189 9.26189i −0.544817 0.544817i
\(290\) 0 0
\(291\) 37.0162i 2.16993i
\(292\) 0 0
\(293\) 10.2201 24.6734i 0.597063 1.44144i −0.279498 0.960146i \(-0.590168\pi\)
0.876561 0.481291i \(-0.159832\pi\)
\(294\) 0 0
\(295\) 1.00698 + 0.738862i 0.0586289 + 0.0430182i
\(296\) 0 0
\(297\) 6.40652 + 6.40652i 0.371744 + 0.371744i
\(298\) 0 0
\(299\) −2.37622 0.984263i −0.137420 0.0569214i
\(300\) 0 0
\(301\) 0.677188 0.280500i 0.0390324 0.0161678i
\(302\) 0 0
\(303\) −7.10658 + 7.10658i −0.408263 + 0.408263i
\(304\) 0 0
\(305\) 4.46728 + 29.0882i 0.255796 + 1.66559i
\(306\) 0 0
\(307\) 10.4642 0.597222 0.298611 0.954375i \(-0.403477\pi\)
0.298611 + 0.954375i \(0.403477\pi\)
\(308\) 0 0
\(309\) 2.91615 1.20791i 0.165894 0.0687156i
\(310\) 0 0
\(311\) −10.1272 24.4492i −0.574261 1.38639i −0.897897 0.440206i \(-0.854905\pi\)
0.323636 0.946182i \(-0.395095\pi\)
\(312\) 0 0
\(313\) −1.45605 + 3.51522i −0.0823008 + 0.198692i −0.959673 0.281119i \(-0.909295\pi\)
0.877372 + 0.479810i \(0.159295\pi\)
\(314\) 0 0
\(315\) −21.1670 + 12.8349i −1.19262 + 0.723164i
\(316\) 0 0
\(317\) −7.57000 18.2756i −0.425174 1.02646i −0.980798 0.195027i \(-0.937521\pi\)
0.555624 0.831434i \(-0.312479\pi\)
\(318\) 0 0
\(319\) 6.71501 + 6.71501i 0.375968 + 0.375968i
\(320\) 0 0
\(321\) 2.89578 6.99104i 0.161627 0.390202i
\(322\) 0 0
\(323\) 11.4414i 0.636617i
\(324\) 0 0
\(325\) −1.82369 2.17630i −0.101160 0.120719i
\(326\) 0 0
\(327\) 35.3468 35.3468i 1.95468 1.95468i
\(328\) 0 0
\(329\) 3.36550i 0.185546i
\(330\) 0 0
\(331\) −15.0178 6.22056i −0.825451 0.341913i −0.0703507 0.997522i \(-0.522412\pi\)
−0.755100 + 0.655609i \(0.772412\pi\)
\(332\) 0 0
\(333\) −28.9177 −1.58468
\(334\) 0 0
\(335\) −3.23975 + 1.96446i −0.177006 + 0.107330i
\(336\) 0 0
\(337\) 13.2195i 0.720110i 0.932931 + 0.360055i \(0.117242\pi\)
−0.932931 + 0.360055i \(0.882758\pi\)
\(338\) 0 0
\(339\) −40.0268 16.5796i −2.17396 0.900482i
\(340\) 0 0
\(341\) −6.67338 2.76420i −0.361384 0.149690i
\(342\) 0 0
\(343\) −17.9773 7.44644i −0.970683 0.402070i
\(344\) 0 0
\(345\) −23.6534 + 14.3426i −1.27346 + 0.772178i
\(346\) 0 0
\(347\) 3.09060 + 1.28017i 0.165912 + 0.0687231i 0.464094 0.885786i \(-0.346380\pi\)
−0.298181 + 0.954509i \(0.596380\pi\)
\(348\) 0 0
\(349\) 14.0112 14.0112i 0.750002 0.750002i −0.224477 0.974479i \(-0.572067\pi\)
0.974479 + 0.224477i \(0.0720675\pi\)
\(350\) 0 0
\(351\) 2.26531i 0.120913i
\(352\) 0 0
\(353\) −1.30579 1.30579i −0.0695003 0.0695003i 0.671502 0.741003i \(-0.265649\pi\)
−0.741003 + 0.671502i \(0.765649\pi\)
\(354\) 0 0
\(355\) 16.4839 9.99527i 0.874877 0.530494i
\(356\) 0 0
\(357\) −5.12432 12.3712i −0.271208 0.654753i
\(358\) 0 0
\(359\) 20.1309 1.06247 0.531233 0.847226i \(-0.321729\pi\)
0.531233 + 0.847226i \(0.321729\pi\)
\(360\) 0 0
\(361\) −10.2890 + 10.2890i −0.541524 + 0.541524i
\(362\) 0 0
\(363\) 14.7408 + 6.10584i 0.773691 + 0.320473i
\(364\) 0 0
\(365\) −11.9115 8.73995i −0.623479 0.457470i
\(366\) 0 0
\(367\) 19.8546i 1.03640i −0.855260 0.518200i \(-0.826602\pi\)
0.855260 0.518200i \(-0.173398\pi\)
\(368\) 0 0
\(369\) 18.9911 + 21.3322i 0.988640 + 1.11051i
\(370\) 0 0
\(371\) 6.61716 6.61716i 0.343546 0.343546i
\(372\) 0 0
\(373\) 8.58554 + 8.58554i 0.444543 + 0.444543i 0.893535 0.448993i \(-0.148217\pi\)
−0.448993 + 0.893535i \(0.648217\pi\)
\(374\) 0 0
\(375\) −30.4744 + 1.96712i −1.57369 + 0.101582i
\(376\) 0 0
\(377\) 2.37439i 0.122288i
\(378\) 0 0
\(379\) 7.66393i 0.393669i 0.980437 + 0.196835i \(0.0630662\pi\)
−0.980437 + 0.196835i \(0.936934\pi\)
\(380\) 0 0
\(381\) 0.955124 2.30587i 0.0489325 0.118133i
\(382\) 0 0
\(383\) −6.93476 + 16.7420i −0.354350 + 0.855476i 0.641723 + 0.766937i \(0.278220\pi\)
−0.996073 + 0.0885396i \(0.971780\pi\)
\(384\) 0 0
\(385\) 7.45665 10.1626i 0.380026 0.517932i
\(386\) 0 0
\(387\) 0.931479 + 0.931479i 0.0473497 + 0.0473497i
\(388\) 0 0
\(389\) −17.2766 17.2766i −0.875961 0.875961i 0.117153 0.993114i \(-0.462623\pi\)
−0.993114 + 0.117153i \(0.962623\pi\)
\(390\) 0 0
\(391\) −3.42362 8.26534i −0.173140 0.417996i
\(392\) 0 0
\(393\) 19.3161 + 8.00099i 0.974369 + 0.403597i
\(394\) 0 0
\(395\) 31.6612 19.1982i 1.59305 0.965968i
\(396\) 0 0
\(397\) 26.1315 10.8240i 1.31150 0.543242i 0.386180 0.922423i \(-0.373794\pi\)
0.925322 + 0.379181i \(0.123794\pi\)
\(398\) 0 0
\(399\) 15.0266 36.2773i 0.752269 1.81614i
\(400\) 0 0
\(401\) 21.5874 21.5874i 1.07803 1.07803i 0.0813390 0.996686i \(-0.474080\pi\)
0.996686 0.0813390i \(-0.0259196\pi\)
\(402\) 0 0
\(403\) 0.691132 + 1.66854i 0.0344278 + 0.0831160i
\(404\) 0 0
\(405\) 4.48120 + 3.28802i 0.222672 + 0.163383i
\(406\) 0 0
\(407\) 13.6038 5.63490i 0.674317 0.279311i
\(408\) 0 0
\(409\) 20.0737 0.992581 0.496291 0.868156i \(-0.334695\pi\)
0.496291 + 0.868156i \(0.334695\pi\)
\(410\) 0 0
\(411\) 1.97910 0.0976217
\(412\) 0 0
\(413\) 1.28076 0.530510i 0.0630223 0.0261047i
\(414\) 0 0
\(415\) 2.34364 + 15.2603i 0.115045 + 0.749101i
\(416\) 0 0
\(417\) −5.26982 12.7225i −0.258064 0.623022i
\(418\) 0 0
\(419\) −1.64729 + 1.64729i −0.0804754 + 0.0804754i −0.746199 0.665723i \(-0.768123\pi\)
0.665723 + 0.746199i \(0.268123\pi\)
\(420\) 0 0
\(421\) −9.57202 + 23.1089i −0.466512 + 1.12626i 0.499164 + 0.866508i \(0.333641\pi\)
−0.965675 + 0.259752i \(0.916359\pi\)
\(422\) 0 0
\(423\) 5.58803 2.31464i 0.271700 0.112542i
\(424\) 0 0
\(425\) 0.867272 9.83823i 0.0420689 0.477224i
\(426\) 0 0
\(427\) 30.1783 + 12.5003i 1.46043 + 0.604930i
\(428\) 0 0
\(429\) 1.34815 + 3.25473i 0.0650895 + 0.157140i
\(430\) 0 0
\(431\) 19.9917 + 19.9917i 0.962969 + 0.962969i 0.999338 0.0363698i \(-0.0115794\pi\)
−0.0363698 + 0.999338i \(0.511579\pi\)
\(432\) 0 0
\(433\) −5.40420 5.40420i −0.259709 0.259709i 0.565226 0.824936i \(-0.308789\pi\)
−0.824936 + 0.565226i \(0.808789\pi\)
\(434\) 0 0
\(435\) −20.5891 15.1070i −0.987170 0.724323i
\(436\) 0 0
\(437\) 10.0394 24.2373i 0.480251 1.15943i
\(438\) 0 0
\(439\) 11.1265 26.8618i 0.531040 1.28204i −0.399795 0.916605i \(-0.630919\pi\)
0.930835 0.365440i \(-0.119081\pi\)
\(440\) 0 0
\(441\) 3.74738i 0.178446i
\(442\) 0 0
\(443\) 40.0241i 1.90160i −0.309800 0.950802i \(-0.600262\pi\)
0.309800 0.950802i \(-0.399738\pi\)
\(444\) 0 0
\(445\) −4.94588 8.15662i −0.234457 0.386661i
\(446\) 0 0
\(447\) −40.9495 40.9495i −1.93685 1.93685i
\(448\) 0 0
\(449\) 25.9798 25.9798i 1.22606 1.22606i 0.260623 0.965441i \(-0.416072\pi\)
0.965441 0.260623i \(-0.0839279\pi\)
\(450\) 0 0
\(451\) −13.0909 6.33476i −0.616424 0.298292i
\(452\) 0 0
\(453\) 38.0366i 1.78711i
\(454\) 0 0
\(455\) −3.11503 + 0.478398i −0.146035 + 0.0224276i
\(456\) 0 0
\(457\) −21.7273 8.99976i −1.01636 0.420991i −0.188590 0.982056i \(-0.560392\pi\)
−0.827772 + 0.561065i \(0.810392\pi\)
\(458\) 0 0
\(459\) 5.57169 5.57169i 0.260064 0.260064i
\(460\) 0 0
\(461\) −26.3042 −1.22511 −0.612555 0.790428i \(-0.709858\pi\)
−0.612555 + 0.790428i \(0.709858\pi\)
\(462\) 0 0
\(463\) −9.19993 22.2106i −0.427557 1.03221i −0.980060 0.198703i \(-0.936327\pi\)
0.552503 0.833511i \(-0.313673\pi\)
\(464\) 0 0
\(465\) 18.8657 + 4.62300i 0.874876 + 0.214386i
\(466\) 0 0
\(467\) −26.8274 26.8274i −1.24142 1.24142i −0.959411 0.282013i \(-0.908998\pi\)
−0.282013 0.959411i \(-0.591002\pi\)
\(468\) 0 0
\(469\) 4.20536i 0.194186i
\(470\) 0 0
\(471\) 46.6370 46.6370i 2.14892 2.14892i
\(472\) 0 0
\(473\) −0.619707 0.256691i −0.0284941 0.0118027i
\(474\) 0 0
\(475\) 22.1981 18.6015i 1.01852 0.853494i
\(476\) 0 0
\(477\) 15.5380 + 6.43606i 0.711438 + 0.294687i
\(478\) 0 0
\(479\) −31.8708 13.2013i −1.45621 0.603183i −0.492545 0.870287i \(-0.663933\pi\)
−0.963668 + 0.267104i \(0.913933\pi\)
\(480\) 0 0
\(481\) −3.40136 1.40889i −0.155089 0.0642398i
\(482\) 0 0
\(483\) 30.7034i 1.39705i
\(484\) 0 0
\(485\) 15.7121 + 25.9121i 0.713452 + 1.17661i
\(486\) 0 0
\(487\) −7.09877 −0.321676 −0.160838 0.986981i \(-0.551420\pi\)
−0.160838 + 0.986981i \(0.551420\pi\)
\(488\) 0 0
\(489\) 41.5479 + 17.2097i 1.87886 + 0.778250i
\(490\) 0 0
\(491\) 8.49502i 0.383375i −0.981456 0.191687i \(-0.938604\pi\)
0.981456 0.191687i \(-0.0613960\pi\)
\(492\) 0 0
\(493\) 5.83999 5.83999i 0.263020 0.263020i
\(494\) 0 0
\(495\) 22.0021 + 5.39158i 0.988923 + 0.242334i
\(496\) 0 0
\(497\) 21.3970i 0.959788i
\(498\) 0 0
\(499\) −14.1912 + 34.2605i −0.635284 + 1.53371i 0.197610 + 0.980281i \(0.436682\pi\)
−0.832895 + 0.553432i \(0.813318\pi\)
\(500\) 0 0
\(501\) 7.68654 + 7.68654i 0.343409 + 0.343409i
\(502\) 0 0
\(503\) −8.52633 20.5844i −0.380170 0.917813i −0.991932 0.126771i \(-0.959539\pi\)
0.611762 0.791042i \(-0.290461\pi\)
\(504\) 0 0
\(505\) −1.95824 + 7.99126i −0.0871406 + 0.355606i
\(506\) 0 0
\(507\) −13.2512 + 31.9913i −0.588509 + 1.42079i
\(508\) 0 0
\(509\) 5.09125 + 12.2914i 0.225666 + 0.544805i 0.995641 0.0932686i \(-0.0297315\pi\)
−0.769975 + 0.638074i \(0.779732\pi\)
\(510\) 0 0
\(511\) −15.1501 + 6.27537i −0.670200 + 0.277606i
\(512\) 0 0
\(513\) 23.1060 1.02016
\(514\) 0 0
\(515\) 1.52865 2.08337i 0.0673602 0.0918042i
\(516\) 0 0
\(517\) −2.17777 + 2.17777i −0.0957781 + 0.0957781i
\(518\) 0 0
\(519\) 19.5071 8.08010i 0.856266 0.354677i
\(520\) 0 0
\(521\) −16.4966 6.83314i −0.722731 0.299365i −0.00917005 0.999958i \(-0.502919\pi\)
−0.713561 + 0.700593i \(0.752919\pi\)
\(522\) 0 0
\(523\) −9.16926 9.16926i −0.400944 0.400944i 0.477622 0.878566i \(-0.341499\pi\)
−0.878566 + 0.477622i \(0.841499\pi\)
\(524\) 0 0
\(525\) −15.6709 + 30.0551i −0.683934 + 1.31171i
\(526\) 0 0
\(527\) −2.40400 + 5.80378i −0.104720 + 0.252817i
\(528\) 0 0
\(529\) 2.48672i 0.108118i
\(530\) 0 0
\(531\) 1.76171 + 1.76171i 0.0764515 + 0.0764515i
\(532\) 0 0
\(533\) 1.19446 + 3.43440i 0.0517379 + 0.148760i
\(534\) 0 0
\(535\) −0.940357 6.12303i −0.0406552 0.264721i
\(536\) 0 0
\(537\) −46.8013 + 46.8013i −2.01963 + 2.01963i
\(538\) 0 0
\(539\) 0.730213 + 1.76289i 0.0314525 + 0.0759330i
\(540\) 0 0
\(541\) −12.0018 12.0018i −0.515998 0.515998i 0.400360 0.916358i \(-0.368885\pi\)
−0.916358 + 0.400360i \(0.868885\pi\)
\(542\) 0 0
\(543\) 9.18320 9.18320i 0.394089 0.394089i
\(544\) 0 0
\(545\) 9.73992 39.7470i 0.417212 1.70257i
\(546\) 0 0
\(547\) 12.4768 + 5.16807i 0.533470 + 0.220971i 0.633122 0.774052i \(-0.281773\pi\)
−0.0996520 + 0.995022i \(0.531773\pi\)
\(548\) 0 0
\(549\) 58.7049i 2.50546i
\(550\) 0 0
\(551\) 24.2187 1.03175
\(552\) 0 0
\(553\) 41.0980i 1.74766i
\(554\) 0 0
\(555\) −33.8579 + 20.5302i −1.43719 + 0.871458i
\(556\) 0 0
\(557\) −8.75761 + 21.1427i −0.371072 + 0.895847i 0.622498 + 0.782622i \(0.286118\pi\)
−0.993569 + 0.113225i \(0.963882\pi\)
\(558\) 0 0
\(559\) 0.0641803 + 0.154945i 0.00271454 + 0.00655347i
\(560\) 0 0
\(561\) −4.68936 + 11.3211i −0.197985 + 0.477978i
\(562\) 0 0
\(563\) −22.0541 + 9.13510i −0.929468 + 0.384998i −0.795477 0.605984i \(-0.792780\pi\)
−0.133992 + 0.990982i \(0.542780\pi\)
\(564\) 0 0
\(565\) −35.0570 + 5.38396i −1.47486 + 0.226505i
\(566\) 0 0
\(567\) 5.69955 2.36083i 0.239359 0.0991456i
\(568\) 0 0
\(569\) 12.5492 + 12.5492i 0.526091 + 0.526091i 0.919405 0.393313i \(-0.128671\pi\)
−0.393313 + 0.919405i \(0.628671\pi\)
\(570\) 0 0
\(571\) 4.25403 10.2701i 0.178025 0.429792i −0.809527 0.587083i \(-0.800276\pi\)
0.987552 + 0.157291i \(0.0502762\pi\)
\(572\) 0 0
\(573\) −21.9827 21.9827i −0.918341 0.918341i
\(574\) 0 0
\(575\) −10.4699 + 20.0802i −0.436625 + 0.837401i
\(576\) 0 0
\(577\) 13.2091 + 31.8895i 0.549901 + 1.32758i 0.917553 + 0.397615i \(0.130162\pi\)
−0.367652 + 0.929964i \(0.619838\pi\)
\(578\) 0 0
\(579\) 46.1893 46.1893i 1.91956 1.91956i
\(580\) 0 0
\(581\) 15.8322 + 6.55793i 0.656832 + 0.272069i
\(582\) 0 0
\(583\) −8.56374 −0.354674
\(584\) 0 0
\(585\) −2.93671 4.84314i −0.121418 0.200239i
\(586\) 0 0
\(587\) 16.3285 + 39.4204i 0.673948 + 1.62705i 0.774840 + 0.632157i \(0.217830\pi\)
−0.100892 + 0.994897i \(0.532170\pi\)
\(588\) 0 0
\(589\) −17.0190 + 7.04951i −0.701256 + 0.290470i
\(590\) 0 0
\(591\) −18.7135 + 7.75137i −0.769769 + 0.318849i
\(592\) 0 0
\(593\) −15.4839 + 37.3814i −0.635847 + 1.53507i 0.196317 + 0.980541i \(0.437102\pi\)
−0.832164 + 0.554530i \(0.812898\pi\)
\(594\) 0 0
\(595\) −8.83829 6.48498i −0.362334 0.265858i
\(596\) 0 0
\(597\) −28.0684 + 28.0684i −1.14876 + 1.14876i
\(598\) 0 0
\(599\) −17.5398 −0.716655 −0.358328 0.933596i \(-0.616653\pi\)
−0.358328 + 0.933596i \(0.616653\pi\)
\(600\) 0 0
\(601\) −3.91884 9.46091i −0.159853 0.385918i 0.823578 0.567203i \(-0.191974\pi\)
−0.983431 + 0.181285i \(0.941974\pi\)
\(602\) 0 0
\(603\) −6.98254 + 2.89226i −0.284351 + 0.117782i
\(604\) 0 0
\(605\) 12.9106 1.98277i 0.524889 0.0806110i
\(606\) 0 0
\(607\) 32.2107 1.30739 0.653696 0.756757i \(-0.273218\pi\)
0.653696 + 0.756757i \(0.273218\pi\)
\(608\) 0 0
\(609\) −26.1868 + 10.8469i −1.06114 + 0.439540i
\(610\) 0 0
\(611\) 0.770048 0.0311528
\(612\) 0 0
\(613\) 21.5184 0.869120 0.434560 0.900643i \(-0.356904\pi\)
0.434560 + 0.900643i \(0.356904\pi\)
\(614\) 0 0
\(615\) 37.3804 + 11.4937i 1.50732 + 0.463470i
\(616\) 0 0
\(617\) −34.8623 −1.40350 −0.701752 0.712421i \(-0.747599\pi\)
−0.701752 + 0.712421i \(0.747599\pi\)
\(618\) 0 0
\(619\) 3.84142 0.154400 0.0771999 0.997016i \(-0.475402\pi\)
0.0771999 + 0.997016i \(0.475402\pi\)
\(620\) 0 0
\(621\) −16.6919 + 6.91403i −0.669825 + 0.277451i
\(622\) 0 0
\(623\) −10.5877 −0.424188
\(624\) 0 0
\(625\) −20.4977 + 14.3124i −0.819908 + 0.572495i
\(626\) 0 0
\(627\) −33.1980 + 13.7511i −1.32580 + 0.549165i
\(628\) 0 0
\(629\) −4.90062 11.8311i −0.195400 0.471738i
\(630\) 0 0
\(631\) 33.6465 1.33945 0.669724 0.742610i \(-0.266413\pi\)
0.669724 + 0.742610i \(0.266413\pi\)
\(632\) 0 0
\(633\) −20.1534 + 20.1534i −0.801027 + 0.801027i
\(634\) 0 0
\(635\) −0.310161 2.01958i −0.0123084 0.0801444i
\(636\) 0 0
\(637\) 0.182575 0.440774i 0.00723387 0.0174641i
\(638\) 0 0
\(639\) 35.5274 14.7159i 1.40544 0.582153i
\(640\) 0 0
\(641\) −26.7063 + 11.0621i −1.05484 + 0.436927i −0.841616 0.540077i \(-0.818395\pi\)
−0.213220 + 0.977004i \(0.568395\pi\)
\(642\) 0 0
\(643\) 0.217989 + 0.526272i 0.00859664 + 0.0207541i 0.928120 0.372282i \(-0.121425\pi\)
−0.919523 + 0.393036i \(0.871425\pi\)
\(644\) 0 0
\(645\) 1.75192 + 0.429303i 0.0689816 + 0.0169038i
\(646\) 0 0
\(647\) 20.0557 0.788469 0.394235 0.919010i \(-0.371010\pi\)
0.394235 + 0.919010i \(0.371010\pi\)
\(648\) 0 0
\(649\) −1.17205 0.485479i −0.0460070 0.0190567i
\(650\) 0 0
\(651\) 15.2448 15.2448i 0.597490 0.597490i
\(652\) 0 0
\(653\) −9.87402 23.8380i −0.386400 0.932853i −0.990696 0.136093i \(-0.956545\pi\)
0.604296 0.796760i \(-0.293455\pi\)
\(654\) 0 0
\(655\) 16.9178 2.59819i 0.661034 0.101520i
\(656\) 0 0
\(657\) −20.8391 20.8391i −0.813011 0.813011i
\(658\) 0 0
\(659\) −6.23462 + 15.0517i −0.242866 + 0.586331i −0.997565 0.0697400i \(-0.977783\pi\)
0.754699 + 0.656071i \(0.227783\pi\)
\(660\) 0 0
\(661\) −6.55557 6.55557i −0.254982 0.254982i 0.568027 0.823010i \(-0.307707\pi\)
−0.823010 + 0.568027i \(0.807707\pi\)
\(662\) 0 0
\(663\) 2.83061 1.17248i 0.109932 0.0455352i
\(664\) 0 0
\(665\) −4.87963 31.7731i −0.189224 1.23211i
\(666\) 0 0
\(667\) −17.4957 + 7.24697i −0.677437 + 0.280604i
\(668\) 0 0
\(669\) −28.4070 + 68.5807i −1.09828 + 2.65148i
\(670\) 0 0
\(671\) −11.4392 27.6167i −0.441606 1.06613i
\(672\) 0 0
\(673\) 10.1729 24.5595i 0.392135 0.946698i −0.597339 0.801989i \(-0.703775\pi\)
0.989474 0.144709i \(-0.0462248\pi\)
\(674\) 0 0
\(675\) −19.8684 1.75146i −0.764736 0.0674139i
\(676\) 0 0
\(677\) 33.3330i 1.28109i 0.767921 + 0.640545i \(0.221291\pi\)
−0.767921 + 0.640545i \(0.778709\pi\)
\(678\) 0 0
\(679\) 33.6353 1.29080
\(680\) 0 0
\(681\) 35.9982i 1.37945i
\(682\) 0 0
\(683\) 14.6727 + 6.07764i 0.561436 + 0.232554i 0.645309 0.763922i \(-0.276729\pi\)
−0.0838724 + 0.996477i \(0.526729\pi\)
\(684\) 0 0
\(685\) 1.38541 0.840061i 0.0529337 0.0320971i
\(686\) 0 0
\(687\) −42.7661 + 42.7661i −1.63163 + 1.63163i
\(688\) 0 0
\(689\) 1.51405 + 1.51405i 0.0576806 + 0.0576806i
\(690\) 0 0
\(691\) 7.83159 + 18.9071i 0.297928 + 0.719261i 0.999975 + 0.00713041i \(0.00226970\pi\)
−0.702047 + 0.712131i \(0.747730\pi\)
\(692\) 0 0
\(693\) 17.7793 17.7793i 0.675378 0.675378i
\(694\) 0 0
\(695\) −9.08924 6.66912i −0.344775 0.252974i
\(696\) 0 0
\(697\) −5.50928 + 11.3850i −0.208679 + 0.431238i
\(698\) 0 0
\(699\) −9.26828 9.26828i −0.350559 0.350559i
\(700\) 0 0
\(701\) 1.26900i 0.0479295i 0.999713 + 0.0239647i \(0.00762894\pi\)
−0.999713 + 0.0239647i \(0.992371\pi\)
\(702\) 0 0
\(703\) 14.3706 34.6937i 0.541997 1.30850i
\(704\) 0 0
\(705\) 4.89939 6.67730i 0.184522 0.251482i
\(706\) 0 0
\(707\) 6.45749 + 6.45749i 0.242859 + 0.242859i
\(708\) 0 0
\(709\) 17.7782 + 7.36397i 0.667674 + 0.276560i 0.690664 0.723176i \(-0.257318\pi\)
−0.0229895 + 0.999736i \(0.507318\pi\)
\(710\) 0 0
\(711\) 68.2386 28.2654i 2.55915 1.06003i
\(712\) 0 0
\(713\) 10.1852 10.1852i 0.381439 0.381439i
\(714\) 0 0
\(715\) 2.32526 + 1.70613i 0.0869597 + 0.0638056i
\(716\) 0 0
\(717\) −30.0447 −1.12204
\(718\) 0 0
\(719\) 8.58842 3.55744i 0.320294 0.132670i −0.216743 0.976229i \(-0.569543\pi\)
0.537037 + 0.843558i \(0.319543\pi\)
\(720\) 0 0
\(721\) −1.09758 2.64980i −0.0408761 0.0986837i
\(722\) 0 0
\(723\) −9.85846 + 23.8004i −0.366640 + 0.885147i
\(724\) 0 0
\(725\) −20.8251 1.83580i −0.773427 0.0681801i
\(726\) 0 0
\(727\) −9.98604 24.1084i −0.370362 0.894132i −0.993689 0.112171i \(-0.964219\pi\)
0.623327 0.781961i \(-0.285781\pi\)
\(728\) 0 0
\(729\) 30.9532 + 30.9532i 1.14641 + 1.14641i
\(730\) 0 0
\(731\) −0.223242 + 0.538953i −0.00825689 + 0.0199339i
\(732\) 0 0
\(733\) 27.0851i 1.00041i 0.865906 + 0.500206i \(0.166743\pi\)
−0.865906 + 0.500206i \(0.833257\pi\)
\(734\) 0 0
\(735\) −2.66046 4.38756i −0.0981325 0.161838i
\(736\) 0 0
\(737\) 2.72123 2.72123i 0.100238 0.100238i
\(738\) 0 0
\(739\) 19.9991i 0.735680i −0.929889 0.367840i \(-0.880097\pi\)
0.929889 0.367840i \(-0.119903\pi\)
\(740\) 0 0
\(741\) 8.30049 + 3.43817i 0.304926 + 0.126304i
\(742\) 0 0
\(743\) 24.9057 0.913702 0.456851 0.889543i \(-0.348977\pi\)
0.456851 + 0.889543i \(0.348977\pi\)
\(744\) 0 0
\(745\) −46.0472 11.2838i −1.68704 0.413405i
\(746\) 0 0
\(747\) 30.7979i 1.12684i
\(748\) 0 0
\(749\) −6.35250 2.63129i −0.232115 0.0961452i
\(750\) 0 0
\(751\) 0.790995 + 0.327641i 0.0288638 + 0.0119558i 0.397069 0.917789i \(-0.370027\pi\)
−0.368205 + 0.929745i \(0.620027\pi\)
\(752\) 0 0
\(753\) 24.3935 + 10.1041i 0.888948 + 0.368214i
\(754\) 0 0
\(755\) 16.1453 + 26.6264i 0.587586 + 0.969032i
\(756\) 0 0
\(757\) −18.3811 7.61370i −0.668073 0.276725i 0.0227584 0.999741i \(-0.492755\pi\)
−0.690831 + 0.723016i \(0.742755\pi\)
\(758\) 0 0
\(759\) 19.8677 19.8677i 0.721153 0.721153i
\(760\) 0 0
\(761\) 33.5780i 1.21720i 0.793476 + 0.608601i \(0.208269\pi\)
−0.793476 + 0.608601i \(0.791731\pi\)
\(762\) 0 0
\(763\) −32.1183 32.1183i −1.16276 1.16276i
\(764\) 0 0
\(765\) 4.68901 19.1351i 0.169532 0.691830i
\(766\) 0 0
\(767\) 0.121384 + 0.293047i 0.00438293 + 0.0105813i
\(768\) 0 0
\(769\) 6.48872 0.233989 0.116995 0.993133i \(-0.462674\pi\)
0.116995 + 0.993133i \(0.462674\pi\)
\(770\) 0 0
\(771\) 9.04746 9.04746i 0.325836 0.325836i
\(772\) 0 0
\(773\) −19.7552 8.18288i −0.710546 0.294318i −0.00201531 0.999998i \(-0.500641\pi\)
−0.708530 + 0.705680i \(0.750641\pi\)
\(774\) 0 0
\(775\) 15.1687 4.77167i 0.544875 0.171403i
\(776\) 0 0
\(777\) 43.9493i 1.57667i
\(778\) 0 0
\(779\) −35.0306 + 12.1834i −1.25510 + 0.436517i
\(780\) 0 0
\(781\) −13.8457 + 13.8457i −0.495439 + 0.495439i
\(782\) 0 0
\(783\) −11.7939 11.7939i −0.421480 0.421480i
\(784\) 0 0
\(785\) 12.8510 52.4426i 0.458670 1.87176i
\(786\) 0 0
\(787\) 48.8135i 1.74001i −0.493040 0.870007i \(-0.664114\pi\)
0.493040 0.870007i \(-0.335886\pi\)
\(788\) 0 0
\(789\) 41.5421i 1.47894i
\(790\) 0 0
\(791\) −15.0653 + 36.3708i −0.535660 + 1.29320i
\(792\) 0 0
\(793\) −2.86014 + 6.90499i −0.101567 + 0.245204i
\(794\) 0 0
\(795\) 22.7618 3.49569i 0.807277 0.123979i
\(796\) 0 0
\(797\) 1.84186 + 1.84186i 0.0652419 + 0.0652419i 0.738975 0.673733i \(-0.235310\pi\)
−0.673733 + 0.738975i \(0.735310\pi\)
\(798\) 0 0
\(799\) 1.89398 + 1.89398i 0.0670044 + 0.0670044i
\(800\) 0 0
\(801\) −7.28177 17.5797i −0.257289 0.621150i
\(802\) 0 0
\(803\) 13.8641 + 5.74270i 0.489254 + 0.202656i
\(804\) 0 0
\(805\) 13.0326 + 21.4930i 0.459337 + 0.757528i
\(806\) 0 0
\(807\) −54.7995 + 22.6987i −1.92903 + 0.799032i
\(808\) 0 0
\(809\) 12.7020 30.6653i 0.446578 1.07813i −0.527018 0.849854i \(-0.676690\pi\)
0.973596 0.228280i \(-0.0733100\pi\)
\(810\) 0 0
\(811\) −8.24669 + 8.24669i −0.289581 + 0.289581i −0.836914 0.547334i \(-0.815643\pi\)
0.547334 + 0.836914i \(0.315643\pi\)
\(812\) 0 0
\(813\) 21.0120 + 50.7273i 0.736921 + 1.77909i
\(814\) 0 0
\(815\) 36.3893 5.58857i 1.27466 0.195759i
\(816\) 0 0
\(817\) −1.58043 + 0.654635i −0.0552922 + 0.0229028i
\(818\) 0 0
\(819\) −6.28666 −0.219674
\(820\) 0 0
\(821\) 25.6132 0.893906 0.446953 0.894557i \(-0.352509\pi\)
0.446953 + 0.894557i \(0.352509\pi\)
\(822\) 0 0
\(823\) −8.95330 + 3.70858i −0.312092 + 0.129273i −0.533232 0.845969i \(-0.679023\pi\)
0.221139 + 0.975242i \(0.429023\pi\)
\(824\) 0 0
\(825\) 29.5887 9.30782i 1.03015 0.324057i
\(826\) 0 0
\(827\) −0.670040 1.61762i −0.0232996 0.0562501i 0.911802 0.410631i \(-0.134692\pi\)
−0.935101 + 0.354381i \(0.884692\pi\)
\(828\) 0 0
\(829\) 2.91568 2.91568i 0.101266 0.101266i −0.654659 0.755924i \(-0.727188\pi\)
0.755924 + 0.654659i \(0.227188\pi\)
\(830\) 0 0
\(831\) −21.9329 + 52.9508i −0.760845 + 1.83684i
\(832\) 0 0
\(833\) 1.53317 0.635060i 0.0531212 0.0220035i
\(834\) 0 0
\(835\) 8.64341 + 2.11805i 0.299118 + 0.0732982i
\(836\) 0 0
\(837\) 11.7208 + 4.85491i 0.405130 + 0.167810i
\(838\) 0 0
\(839\) 11.3314 + 27.3564i 0.391203 + 0.944448i 0.989678 + 0.143307i \(0.0457735\pi\)
−0.598475 + 0.801141i \(0.704226\pi\)
\(840\) 0 0
\(841\) 8.14426 + 8.14426i 0.280837 + 0.280837i
\(842\) 0 0
\(843\) −58.6758 58.6758i −2.02090 2.02090i
\(844\) 0 0
\(845\) 4.30312 + 28.0193i 0.148032 + 0.963893i
\(846\) 0 0
\(847\) 5.54815 13.3944i 0.190637 0.460237i
\(848\) 0 0
\(849\) −0.900888 + 2.17494i −0.0309184 + 0.0746436i
\(850\) 0 0
\(851\) 29.3630i 1.00655i
\(852\) 0 0
\(853\) 23.1225i 0.791701i −0.918315 0.395850i \(-0.870450\pi\)
0.918315 0.395850i \(-0.129550\pi\)
\(854\) 0 0
\(855\) 49.3997 29.9542i 1.68944 1.02441i
\(856\) 0 0
\(857\) 21.5664 + 21.5664i 0.736695 + 0.736695i 0.971937 0.235242i \(-0.0755883\pi\)
−0.235242 + 0.971937i \(0.575588\pi\)
\(858\) 0 0
\(859\) 17.0661 17.0661i 0.582286 0.582286i −0.353245 0.935531i \(-0.614922\pi\)
0.935531 + 0.353245i \(0.114922\pi\)
\(860\) 0 0
\(861\) 32.4208 28.8629i 1.10490 0.983645i
\(862\) 0 0
\(863\) 42.3869i 1.44287i −0.692484 0.721433i \(-0.743484\pi\)
0.692484 0.721433i \(-0.256516\pi\)
\(864\) 0 0
\(865\) 10.2256 13.9363i 0.347681 0.473850i
\(866\) 0 0
\(867\) −33.0531 13.6911i −1.12254 0.464973i
\(868\) 0 0
\(869\) −26.5939 + 26.5939i −0.902137 + 0.902137i
\(870\) 0 0
\(871\) −0.962214 −0.0326034
\(872\) 0 0
\(873\) 23.1328 + 55.8476i 0.782928 + 1.89016i
\(874\) 0 0
\(875\) 1.78745 + 27.6909i 0.0604269 + 0.936125i
\(876\) 0 0
\(877\) 37.2642 + 37.2642i 1.25832 + 1.25832i 0.951893 + 0.306432i \(0.0991351\pi\)
0.306432 + 0.951893i \(0.400865\pi\)
\(878\) 0 0
\(879\) 72.9453i 2.46038i
\(880\) 0 0
\(881\) −5.85422 + 5.85422i −0.197234 + 0.197234i −0.798813 0.601579i \(-0.794538\pi\)
0.601579 + 0.798813i \(0.294538\pi\)
\(882\) 0 0
\(883\) −2.27217 0.941166i −0.0764648 0.0316727i 0.344123 0.938924i \(-0.388176\pi\)
−0.420588 + 0.907252i \(0.638176\pi\)
\(884\) 0 0
\(885\) 3.31340 + 0.811941i 0.111379 + 0.0272931i
\(886\) 0 0
\(887\) −38.8628 16.0975i −1.30488 0.540501i −0.381497 0.924370i \(-0.624591\pi\)
−0.923387 + 0.383870i \(0.874591\pi\)
\(888\) 0 0
\(889\) −2.09526 0.867886i −0.0702728 0.0291080i
\(890\) 0 0
\(891\) −5.21576 2.16044i −0.174735 0.0723774i
\(892\) 0 0
\(893\) 7.85443i 0.262839i
\(894\) 0 0
\(895\) −12.8962 + 52.6274i −0.431074 + 1.75914i
\(896\) 0 0
\(897\) −7.02513 −0.234562
\(898\) 0 0
\(899\) 12.2852 + 5.08869i 0.409734 + 0.169717i
\(900\) 0 0
\(901\) 7.44781i 0.248122i
\(902\) 0 0
\(903\) 1.41567 1.41567i 0.0471105 0.0471105i
\(904\) 0 0
\(905\) 2.53046 10.3264i 0.0841153 0.343261i
\(906\) 0 0
\(907\) 11.6665i 0.387381i 0.981063 + 0.193691i \(0.0620458\pi\)
−0.981063 + 0.193691i \(0.937954\pi\)
\(908\) 0 0
\(909\) −6.28077 + 15.1631i −0.208320 + 0.502929i
\(910\) 0 0
\(911\) −14.7560 14.7560i −0.488889 0.488889i 0.419067 0.907956i \(-0.362357\pi\)
−0.907956 + 0.419067i \(0.862357\pi\)
\(912\) 0 0
\(913\) −6.00128 14.4884i −0.198613 0.479495i
\(914\) 0 0
\(915\) 41.6777 + 68.7338i 1.37782 + 2.27227i
\(916\) 0 0
\(917\) 7.27021 17.5518i 0.240083 0.579613i
\(918\) 0 0
\(919\) 8.87243 + 21.4199i 0.292675 + 0.706579i 1.00000 0.000309256i \(-9.84392e-5\pi\)
−0.707325 + 0.706888i \(0.750098\pi\)
\(920\) 0 0
\(921\) 26.4060 10.9377i 0.870108 0.360410i
\(922\) 0 0
\(923\) 4.89578 0.161147
\(924\) 0 0
\(925\) −14.9868 + 28.7431i −0.492763 + 0.945066i
\(926\) 0 0
\(927\) 3.64483 3.64483i 0.119712 0.119712i
\(928\) 0 0
\(929\) 46.8801 19.4184i 1.53809 0.637097i 0.556974 0.830530i \(-0.311962\pi\)
0.981113 + 0.193434i \(0.0619624\pi\)
\(930\) 0 0
\(931\) 4.49587 + 1.86225i 0.147346 + 0.0610328i
\(932\) 0 0
\(933\) −51.1114 51.1114i −1.67331 1.67331i
\(934\) 0 0
\(935\) 1.52279 + 9.91547i 0.0498006 + 0.324271i
\(936\) 0 0
\(937\) 17.4772 42.1938i 0.570957 1.37841i −0.329785 0.944056i \(-0.606976\pi\)
0.900742 0.434355i \(-0.143024\pi\)
\(938\) 0 0
\(939\) 10.3925i 0.339146i
\(940\) 0 0
\(941\) 5.12402 + 5.12402i 0.167038 + 0.167038i 0.785676 0.618638i \(-0.212315\pi\)
−0.618638 + 0.785676i \(0.712315\pi\)
\(942\) 0 0
\(943\) 21.6607 19.2836i 0.705370 0.627961i
\(944\) 0 0
\(945\) −13.0965 + 17.8490i −0.426029 + 0.580629i
\(946\) 0 0
\(947\) −42.0766 + 42.0766i −1.36731 + 1.36731i −0.503047 + 0.864259i \(0.667788\pi\)
−0.864259 + 0.503047i \(0.832212\pi\)
\(948\) 0 0
\(949\) −1.43584 3.46644i −0.0466095 0.112525i
\(950\) 0 0
\(951\) −38.2054 38.2054i −1.23889 1.23889i
\(952\) 0 0
\(953\) 22.4782 22.4782i 0.728141 0.728141i −0.242108 0.970249i \(-0.577839\pi\)
0.970249 + 0.242108i \(0.0778389\pi\)
\(954\) 0 0
\(955\) −24.7193 6.05741i −0.799897 0.196013i
\(956\) 0 0
\(957\) 23.9640 + 9.92623i 0.774647 + 0.320869i
\(958\) 0 0
\(959\) 1.79833i 0.0580712i
\(960\) 0 0
\(961\) 20.8857 0.673733
\(962\) 0 0
\(963\) 12.3573i 0.398208i
\(964\) 0 0
\(965\) 12.7276 51.9392i 0.409716 1.67198i
\(966\) 0 0
\(967\) −17.7311 + 42.8066i −0.570192 + 1.37657i 0.331199 + 0.943561i \(0.392547\pi\)
−0.901391 + 0.433005i \(0.857453\pi\)
\(968\) 0 0
\(969\) 11.9592 + 28.8720i 0.384185 + 0.927504i
\(970\) 0 0
\(971\) 3.93390 9.49727i 0.126245 0.304782i −0.848102 0.529833i \(-0.822255\pi\)
0.974347 + 0.225051i \(0.0722548\pi\)
\(972\) 0 0
\(973\) −11.5604 + 4.78849i −0.370611 + 0.153512i
\(974\) 0 0
\(975\) −6.87680 3.58560i −0.220234 0.114831i
\(976\) 0 0
\(977\) 4.48618 1.85824i 0.143526 0.0594502i −0.309764 0.950813i \(-0.600250\pi\)
0.453290 + 0.891363i \(0.350250\pi\)
\(978\) 0 0
\(979\) 6.85117 + 6.85117i 0.218964 + 0.218964i
\(980\) 0 0
\(981\) 31.2394 75.4185i 0.997396 2.40793i
\(982\) 0 0
\(983\) −8.40861 8.40861i −0.268193 0.268193i 0.560179 0.828372i \(-0.310732\pi\)
−0.828372 + 0.560179i \(0.810732\pi\)
\(984\) 0 0
\(985\) −9.80960 + 13.3694i −0.312560 + 0.425983i
\(986\) 0 0
\(987\) −3.51781 8.49274i −0.111973 0.270327i
\(988\) 0 0
\(989\) 0.945824 0.945824i 0.0300755 0.0300755i
\(990\) 0 0
\(991\) −30.8151 12.7640i −0.978874 0.405463i −0.164866 0.986316i \(-0.552719\pi\)
−0.814008 + 0.580853i \(0.802719\pi\)
\(992\) 0 0
\(993\) −44.3990 −1.40896
\(994\) 0 0
\(995\) −7.73434 + 31.5625i −0.245195 + 1.00060i
\(996\) 0 0
\(997\) −2.13396 5.15183i −0.0675832 0.163160i 0.886479 0.462769i \(-0.153144\pi\)
−0.954062 + 0.299608i \(0.903144\pi\)
\(998\) 0 0
\(999\) −23.8931 + 9.89685i −0.755945 + 0.313123i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.817.20 yes 84
5.3 odd 4 820.2.y.a.653.20 yes 84
41.27 odd 8 820.2.y.a.437.20 yes 84
205.68 even 8 inner 820.2.x.a.273.20 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.273.20 84 205.68 even 8 inner
820.2.x.a.817.20 yes 84 1.1 even 1 trivial
820.2.y.a.437.20 yes 84 41.27 odd 8
820.2.y.a.653.20 yes 84 5.3 odd 4