Properties

Label 820.2.u.b.221.1
Level $820$
Weight $2$
Character 820.221
Analytic conductor $6.548$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 221.1
Character \(\chi\) \(=\) 820.221
Dual form 820.2.u.b.141.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.40143 q^{3} +(0.809017 + 0.587785i) q^{5} +(-1.56474 - 4.81578i) q^{7} +8.56970 q^{9} +(-0.551520 + 0.400703i) q^{11} +(-1.03830 + 3.19557i) q^{13} +(-2.75181 - 1.99931i) q^{15} +(4.60122 - 3.34298i) q^{17} +(0.481775 + 1.48275i) q^{19} +(5.32235 + 16.3805i) q^{21} +(-0.583664 + 1.79633i) q^{23} +(0.309017 + 0.951057i) q^{25} -18.9449 q^{27} +(-4.99301 - 3.62763i) q^{29} +(4.82048 - 3.50229i) q^{31} +(1.87595 - 1.36296i) q^{33} +(1.56474 - 4.81578i) q^{35} +(-8.81426 - 6.40393i) q^{37} +(3.53171 - 10.8695i) q^{39} +(-3.81306 - 5.14399i) q^{41} +(-1.81560 + 5.58784i) q^{43} +(6.93303 + 5.03714i) q^{45} +(-0.116620 + 0.358921i) q^{47} +(-15.0802 + 10.9564i) q^{49} +(-15.6507 + 11.3709i) q^{51} +(-7.32537 - 5.32219i) q^{53} -0.681716 q^{55} +(-1.63872 - 5.04347i) q^{57} +(-0.172613 + 0.531249i) q^{59} +(1.48400 + 4.56729i) q^{61} +(-13.4094 - 41.2698i) q^{63} +(-2.71832 + 1.97497i) q^{65} +(-0.0569224 - 0.0413565i) q^{67} +(1.98529 - 6.11009i) q^{69} +(-7.59300 + 5.51664i) q^{71} -8.44935 q^{73} +(-1.05110 - 3.23495i) q^{75} +(2.79268 + 2.02900i) q^{77} -9.24771 q^{79} +38.7306 q^{81} +5.97459 q^{83} +5.68742 q^{85} +(16.9833 + 12.3391i) q^{87} +(1.33243 + 4.10080i) q^{89} +17.0138 q^{91} +(-16.3965 + 11.9128i) q^{93} +(-0.481775 + 1.48275i) q^{95} +(3.81249 + 2.76994i) q^{97} +(-4.72636 + 3.43390i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{3} + 8 q^{5} - 5 q^{7} + 46 q^{9} + q^{11} + q^{13} - 2 q^{15} + 7 q^{17} - 13 q^{19} - 6 q^{21} + 4 q^{23} - 8 q^{25} - 28 q^{27} + 3 q^{29} - q^{31} + 14 q^{33} + 5 q^{35} - 25 q^{37} + 26 q^{41}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.40143 −1.96381 −0.981907 0.189364i \(-0.939357\pi\)
−0.981907 + 0.189364i \(0.939357\pi\)
\(4\) 0 0
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) 0 0
\(7\) −1.56474 4.81578i −0.591417 1.82019i −0.571810 0.820386i \(-0.693759\pi\)
−0.0196067 0.999808i \(-0.506241\pi\)
\(8\) 0 0
\(9\) 8.56970 2.85657
\(10\) 0 0
\(11\) −0.551520 + 0.400703i −0.166290 + 0.120816i −0.667818 0.744325i \(-0.732771\pi\)
0.501528 + 0.865141i \(0.332771\pi\)
\(12\) 0 0
\(13\) −1.03830 + 3.19557i −0.287974 + 0.886292i 0.697518 + 0.716567i \(0.254288\pi\)
−0.985492 + 0.169725i \(0.945712\pi\)
\(14\) 0 0
\(15\) −2.75181 1.99931i −0.710515 0.516219i
\(16\) 0 0
\(17\) 4.60122 3.34298i 1.11596 0.810791i 0.132367 0.991201i \(-0.457742\pi\)
0.983592 + 0.180409i \(0.0577422\pi\)
\(18\) 0 0
\(19\) 0.481775 + 1.48275i 0.110527 + 0.340166i 0.990988 0.133952i \(-0.0427668\pi\)
−0.880461 + 0.474119i \(0.842767\pi\)
\(20\) 0 0
\(21\) 5.32235 + 16.3805i 1.16143 + 3.57452i
\(22\) 0 0
\(23\) −0.583664 + 1.79633i −0.121702 + 0.374561i −0.993286 0.115686i \(-0.963093\pi\)
0.871584 + 0.490247i \(0.163093\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) −18.9449 −3.64595
\(28\) 0 0
\(29\) −4.99301 3.62763i −0.927178 0.673634i 0.0181222 0.999836i \(-0.494231\pi\)
−0.945300 + 0.326201i \(0.894231\pi\)
\(30\) 0 0
\(31\) 4.82048 3.50229i 0.865784 0.629029i −0.0636681 0.997971i \(-0.520280\pi\)
0.929452 + 0.368942i \(0.120280\pi\)
\(32\) 0 0
\(33\) 1.87595 1.36296i 0.326562 0.237261i
\(34\) 0 0
\(35\) 1.56474 4.81578i 0.264490 0.814015i
\(36\) 0 0
\(37\) −8.81426 6.40393i −1.44906 1.05280i −0.986051 0.166444i \(-0.946772\pi\)
−0.463004 0.886356i \(-0.653228\pi\)
\(38\) 0 0
\(39\) 3.53171 10.8695i 0.565527 1.74051i
\(40\) 0 0
\(41\) −3.81306 5.14399i −0.595499 0.803356i
\(42\) 0 0
\(43\) −1.81560 + 5.58784i −0.276876 + 0.852138i 0.711841 + 0.702341i \(0.247862\pi\)
−0.988717 + 0.149796i \(0.952138\pi\)
\(44\) 0 0
\(45\) 6.93303 + 5.03714i 1.03352 + 0.750893i
\(46\) 0 0
\(47\) −0.116620 + 0.358921i −0.0170108 + 0.0523540i −0.959202 0.282723i \(-0.908762\pi\)
0.942191 + 0.335077i \(0.108762\pi\)
\(48\) 0 0
\(49\) −15.0802 + 10.9564i −2.15431 + 1.56520i
\(50\) 0 0
\(51\) −15.6507 + 11.3709i −2.19154 + 1.59224i
\(52\) 0 0
\(53\) −7.32537 5.32219i −1.00622 0.731059i −0.0428044 0.999083i \(-0.513629\pi\)
−0.963412 + 0.268024i \(0.913629\pi\)
\(54\) 0 0
\(55\) −0.681716 −0.0919226
\(56\) 0 0
\(57\) −1.63872 5.04347i −0.217054 0.668024i
\(58\) 0 0
\(59\) −0.172613 + 0.531249i −0.0224723 + 0.0691628i −0.961664 0.274231i \(-0.911577\pi\)
0.939191 + 0.343394i \(0.111577\pi\)
\(60\) 0 0
\(61\) 1.48400 + 4.56729i 0.190007 + 0.584782i 0.999999 0.00165969i \(-0.000528297\pi\)
−0.809991 + 0.586442i \(0.800528\pi\)
\(62\) 0 0
\(63\) −13.4094 41.2698i −1.68942 5.19950i
\(64\) 0 0
\(65\) −2.71832 + 1.97497i −0.337166 + 0.244965i
\(66\) 0 0
\(67\) −0.0569224 0.0413565i −0.00695417 0.00505250i 0.584303 0.811536i \(-0.301368\pi\)
−0.591257 + 0.806483i \(0.701368\pi\)
\(68\) 0 0
\(69\) 1.98529 6.11009i 0.239001 0.735569i
\(70\) 0 0
\(71\) −7.59300 + 5.51664i −0.901123 + 0.654704i −0.938754 0.344587i \(-0.888019\pi\)
0.0376311 + 0.999292i \(0.488019\pi\)
\(72\) 0 0
\(73\) −8.44935 −0.988922 −0.494461 0.869200i \(-0.664635\pi\)
−0.494461 + 0.869200i \(0.664635\pi\)
\(74\) 0 0
\(75\) −1.05110 3.23495i −0.121370 0.373540i
\(76\) 0 0
\(77\) 2.79268 + 2.02900i 0.318256 + 0.231226i
\(78\) 0 0
\(79\) −9.24771 −1.04045 −0.520225 0.854029i \(-0.674152\pi\)
−0.520225 + 0.854029i \(0.674152\pi\)
\(80\) 0 0
\(81\) 38.7306 4.30340
\(82\) 0 0
\(83\) 5.97459 0.655796 0.327898 0.944713i \(-0.393660\pi\)
0.327898 + 0.944713i \(0.393660\pi\)
\(84\) 0 0
\(85\) 5.68742 0.616887
\(86\) 0 0
\(87\) 16.9833 + 12.3391i 1.82081 + 1.32289i
\(88\) 0 0
\(89\) 1.33243 + 4.10080i 0.141237 + 0.434684i 0.996508 0.0834975i \(-0.0266091\pi\)
−0.855271 + 0.518182i \(0.826609\pi\)
\(90\) 0 0
\(91\) 17.0138 1.78354
\(92\) 0 0
\(93\) −16.3965 + 11.9128i −1.70024 + 1.23530i
\(94\) 0 0
\(95\) −0.481775 + 1.48275i −0.0494291 + 0.152127i
\(96\) 0 0
\(97\) 3.81249 + 2.76994i 0.387100 + 0.281244i 0.764266 0.644901i \(-0.223101\pi\)
−0.377166 + 0.926146i \(0.623101\pi\)
\(98\) 0 0
\(99\) −4.72636 + 3.43390i −0.475017 + 0.345120i
\(100\) 0 0
\(101\) −5.50319 16.9371i −0.547588 1.68530i −0.714757 0.699373i \(-0.753463\pi\)
0.167169 0.985928i \(-0.446537\pi\)
\(102\) 0 0
\(103\) −1.52018 4.67863i −0.149788 0.460999i 0.847808 0.530304i \(-0.177922\pi\)
−0.997596 + 0.0693044i \(0.977922\pi\)
\(104\) 0 0
\(105\) −5.32235 + 16.3805i −0.519408 + 1.59857i
\(106\) 0 0
\(107\) −1.05889 3.25894i −0.102367 0.315053i 0.886736 0.462275i \(-0.152967\pi\)
−0.989103 + 0.147222i \(0.952967\pi\)
\(108\) 0 0
\(109\) −2.00739 −0.192273 −0.0961365 0.995368i \(-0.530649\pi\)
−0.0961365 + 0.995368i \(0.530649\pi\)
\(110\) 0 0
\(111\) 29.9810 + 21.7825i 2.84567 + 2.06750i
\(112\) 0 0
\(113\) −1.91438 + 1.39088i −0.180090 + 0.130843i −0.674178 0.738569i \(-0.735502\pi\)
0.494088 + 0.869412i \(0.335502\pi\)
\(114\) 0 0
\(115\) −1.52805 + 1.11019i −0.142492 + 0.103526i
\(116\) 0 0
\(117\) −8.89795 + 27.3851i −0.822616 + 2.53175i
\(118\) 0 0
\(119\) −23.2988 16.9275i −2.13579 1.55175i
\(120\) 0 0
\(121\) −3.25558 + 10.0196i −0.295961 + 0.910876i
\(122\) 0 0
\(123\) 12.9698 + 17.4969i 1.16945 + 1.57764i
\(124\) 0 0
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) 3.35956 + 2.44086i 0.298113 + 0.216592i 0.726779 0.686871i \(-0.241016\pi\)
−0.428666 + 0.903463i \(0.641016\pi\)
\(128\) 0 0
\(129\) 6.17563 19.0066i 0.543733 1.67344i
\(130\) 0 0
\(131\) −8.21571 + 5.96906i −0.717810 + 0.521519i −0.885684 0.464289i \(-0.846310\pi\)
0.167874 + 0.985808i \(0.446310\pi\)
\(132\) 0 0
\(133\) 6.38675 4.64025i 0.553801 0.402360i
\(134\) 0 0
\(135\) −15.3268 11.1355i −1.31912 0.958394i
\(136\) 0 0
\(137\) −0.753454 −0.0643719 −0.0321860 0.999482i \(-0.510247\pi\)
−0.0321860 + 0.999482i \(0.510247\pi\)
\(138\) 0 0
\(139\) −2.81141 8.65264i −0.238461 0.733907i −0.996643 0.0818649i \(-0.973912\pi\)
0.758183 0.652042i \(-0.226088\pi\)
\(140\) 0 0
\(141\) 0.396676 1.22084i 0.0334061 0.102814i
\(142\) 0 0
\(143\) −0.707829 2.17847i −0.0591916 0.182173i
\(144\) 0 0
\(145\) −1.90716 5.86963i −0.158381 0.487446i
\(146\) 0 0
\(147\) 51.2942 37.2674i 4.23067 3.07376i
\(148\) 0 0
\(149\) −0.0774407 0.0562640i −0.00634419 0.00460932i 0.584609 0.811315i \(-0.301248\pi\)
−0.590953 + 0.806706i \(0.701248\pi\)
\(150\) 0 0
\(151\) −3.52304 + 10.8428i −0.286701 + 0.882375i 0.699183 + 0.714943i \(0.253547\pi\)
−0.985884 + 0.167432i \(0.946453\pi\)
\(152\) 0 0
\(153\) 39.4310 28.6483i 3.18781 2.31608i
\(154\) 0 0
\(155\) 5.95844 0.478594
\(156\) 0 0
\(157\) 3.87817 + 11.9358i 0.309511 + 0.952578i 0.977955 + 0.208815i \(0.0669607\pi\)
−0.668444 + 0.743763i \(0.733039\pi\)
\(158\) 0 0
\(159\) 24.9167 + 18.1030i 1.97602 + 1.43566i
\(160\) 0 0
\(161\) 9.56403 0.753751
\(162\) 0 0
\(163\) 10.1093 0.791818 0.395909 0.918290i \(-0.370430\pi\)
0.395909 + 0.918290i \(0.370430\pi\)
\(164\) 0 0
\(165\) 2.31881 0.180519
\(166\) 0 0
\(167\) −0.741092 −0.0573474 −0.0286737 0.999589i \(-0.509128\pi\)
−0.0286737 + 0.999589i \(0.509128\pi\)
\(168\) 0 0
\(169\) 1.38362 + 1.00526i 0.106432 + 0.0773276i
\(170\) 0 0
\(171\) 4.12867 + 12.7067i 0.315727 + 0.971708i
\(172\) 0 0
\(173\) −2.36462 −0.179779 −0.0898895 0.995952i \(-0.528651\pi\)
−0.0898895 + 0.995952i \(0.528651\pi\)
\(174\) 0 0
\(175\) 4.09655 2.97632i 0.309670 0.224988i
\(176\) 0 0
\(177\) 0.587131 1.80700i 0.0441315 0.135823i
\(178\) 0 0
\(179\) −14.6613 10.6521i −1.09584 0.796173i −0.115462 0.993312i \(-0.536835\pi\)
−0.980375 + 0.197139i \(0.936835\pi\)
\(180\) 0 0
\(181\) 17.7833 12.9203i 1.32182 0.960360i 0.321915 0.946769i \(-0.395674\pi\)
0.999908 0.0135913i \(-0.00432639\pi\)
\(182\) 0 0
\(183\) −5.04773 15.5353i −0.373139 1.14840i
\(184\) 0 0
\(185\) −3.36675 10.3618i −0.247528 0.761813i
\(186\) 0 0
\(187\) −1.19812 + 3.68744i −0.0876153 + 0.269652i
\(188\) 0 0
\(189\) 29.6439 + 91.2345i 2.15628 + 6.63633i
\(190\) 0 0
\(191\) −23.1249 −1.67326 −0.836629 0.547769i \(-0.815477\pi\)
−0.836629 + 0.547769i \(0.815477\pi\)
\(192\) 0 0
\(193\) −3.52024 2.55760i −0.253392 0.184100i 0.453837 0.891085i \(-0.350055\pi\)
−0.707229 + 0.706985i \(0.750055\pi\)
\(194\) 0 0
\(195\) 9.24615 6.71772i 0.662130 0.481066i
\(196\) 0 0
\(197\) −12.4215 + 9.02471i −0.884992 + 0.642984i −0.934567 0.355786i \(-0.884213\pi\)
0.0495756 + 0.998770i \(0.484213\pi\)
\(198\) 0 0
\(199\) 5.77884 17.7854i 0.409651 1.26078i −0.507297 0.861771i \(-0.669355\pi\)
0.916949 0.399005i \(-0.130645\pi\)
\(200\) 0 0
\(201\) 0.193617 + 0.140671i 0.0136567 + 0.00992217i
\(202\) 0 0
\(203\) −9.65711 + 29.7215i −0.677796 + 2.08604i
\(204\) 0 0
\(205\) −0.0612688 6.40283i −0.00427920 0.447193i
\(206\) 0 0
\(207\) −5.00182 + 15.3940i −0.347651 + 1.06996i
\(208\) 0 0
\(209\) −0.859851 0.624718i −0.0594771 0.0432127i
\(210\) 0 0
\(211\) 5.04434 15.5249i 0.347267 1.06878i −0.613092 0.790012i \(-0.710074\pi\)
0.960359 0.278766i \(-0.0899255\pi\)
\(212\) 0 0
\(213\) 25.8270 18.7644i 1.76964 1.28572i
\(214\) 0 0
\(215\) −4.75330 + 3.45347i −0.324172 + 0.235525i
\(216\) 0 0
\(217\) −24.4091 17.7342i −1.65699 1.20388i
\(218\) 0 0
\(219\) 28.7398 1.94206
\(220\) 0 0
\(221\) 5.90527 + 18.1745i 0.397231 + 1.22255i
\(222\) 0 0
\(223\) 3.12195 9.60836i 0.209061 0.643423i −0.790461 0.612512i \(-0.790159\pi\)
0.999522 0.0309112i \(-0.00984092\pi\)
\(224\) 0 0
\(225\) 2.64818 + 8.15027i 0.176545 + 0.543351i
\(226\) 0 0
\(227\) 4.05368 + 12.4759i 0.269052 + 0.828057i 0.990732 + 0.135830i \(0.0433702\pi\)
−0.721680 + 0.692227i \(0.756630\pi\)
\(228\) 0 0
\(229\) 15.4217 11.2045i 1.01909 0.740415i 0.0529973 0.998595i \(-0.483123\pi\)
0.966097 + 0.258179i \(0.0831225\pi\)
\(230\) 0 0
\(231\) −9.49910 6.90150i −0.624995 0.454085i
\(232\) 0 0
\(233\) 6.58614 20.2700i 0.431472 1.32793i −0.465187 0.885213i \(-0.654013\pi\)
0.896659 0.442722i \(-0.145987\pi\)
\(234\) 0 0
\(235\) −0.305316 + 0.221825i −0.0199166 + 0.0144703i
\(236\) 0 0
\(237\) 31.4554 2.04325
\(238\) 0 0
\(239\) 1.94197 + 5.97678i 0.125616 + 0.386606i 0.994013 0.109264i \(-0.0348494\pi\)
−0.868397 + 0.495870i \(0.834849\pi\)
\(240\) 0 0
\(241\) −17.0871 12.4145i −1.10068 0.799689i −0.119507 0.992833i \(-0.538131\pi\)
−0.981170 + 0.193144i \(0.938131\pi\)
\(242\) 0 0
\(243\) −74.9045 −4.80513
\(244\) 0 0
\(245\) −18.6402 −1.19088
\(246\) 0 0
\(247\) −5.23847 −0.333316
\(248\) 0 0
\(249\) −20.3221 −1.28786
\(250\) 0 0
\(251\) −1.32577 0.963227i −0.0836818 0.0607984i 0.545158 0.838333i \(-0.316470\pi\)
−0.628840 + 0.777535i \(0.716470\pi\)
\(252\) 0 0
\(253\) −0.397893 1.22459i −0.0250153 0.0769893i
\(254\) 0 0
\(255\) −19.3453 −1.21145
\(256\) 0 0
\(257\) 6.49328 4.71764i 0.405040 0.294279i −0.366551 0.930398i \(-0.619461\pi\)
0.771591 + 0.636119i \(0.219461\pi\)
\(258\) 0 0
\(259\) −17.0479 + 52.4680i −1.05930 + 3.26020i
\(260\) 0 0
\(261\) −42.7886 31.0877i −2.64854 1.92428i
\(262\) 0 0
\(263\) −15.9529 + 11.5905i −0.983700 + 0.714700i −0.958533 0.284983i \(-0.908012\pi\)
−0.0251677 + 0.999683i \(0.508012\pi\)
\(264\) 0 0
\(265\) −2.79804 8.61149i −0.171882 0.528999i
\(266\) 0 0
\(267\) −4.53217 13.9486i −0.277364 0.853639i
\(268\) 0 0
\(269\) 0.0102026 0.0314003i 0.000622063 0.00191451i −0.950745 0.309974i \(-0.899680\pi\)
0.951367 + 0.308060i \(0.0996796\pi\)
\(270\) 0 0
\(271\) 0.473384 + 1.45693i 0.0287560 + 0.0885020i 0.964405 0.264431i \(-0.0851843\pi\)
−0.935648 + 0.352933i \(0.885184\pi\)
\(272\) 0 0
\(273\) −57.8713 −3.50253
\(274\) 0 0
\(275\) −0.551520 0.400703i −0.0332579 0.0241633i
\(276\) 0 0
\(277\) −18.4898 + 13.4336i −1.11094 + 0.807148i −0.982812 0.184609i \(-0.940898\pi\)
−0.128132 + 0.991757i \(0.540898\pi\)
\(278\) 0 0
\(279\) 41.3101 30.0135i 2.47317 1.79686i
\(280\) 0 0
\(281\) −4.00747 + 12.3337i −0.239066 + 0.735768i 0.757490 + 0.652846i \(0.226425\pi\)
−0.996556 + 0.0829219i \(0.973575\pi\)
\(282\) 0 0
\(283\) 16.9881 + 12.3426i 1.00984 + 0.733690i 0.964175 0.265267i \(-0.0854600\pi\)
0.0456628 + 0.998957i \(0.485460\pi\)
\(284\) 0 0
\(285\) 1.63872 5.04347i 0.0970695 0.298749i
\(286\) 0 0
\(287\) −18.8059 + 26.4119i −1.11007 + 1.55904i
\(288\) 0 0
\(289\) 4.74239 14.5956i 0.278964 0.858563i
\(290\) 0 0
\(291\) −12.9679 9.42173i −0.760192 0.552312i
\(292\) 0 0
\(293\) −2.31388 + 7.12140i −0.135178 + 0.416037i −0.995618 0.0935164i \(-0.970189\pi\)
0.860439 + 0.509553i \(0.170189\pi\)
\(294\) 0 0
\(295\) −0.451908 + 0.328330i −0.0263111 + 0.0191161i
\(296\) 0 0
\(297\) 10.4485 7.59128i 0.606283 0.440490i
\(298\) 0 0
\(299\) −5.13429 3.73028i −0.296924 0.215728i
\(300\) 0 0
\(301\) 29.7507 1.71480
\(302\) 0 0
\(303\) 18.7187 + 57.6102i 1.07536 + 3.30962i
\(304\) 0 0
\(305\) −1.48400 + 4.56729i −0.0849738 + 0.261522i
\(306\) 0 0
\(307\) −4.33613 13.3452i −0.247476 0.761652i −0.995219 0.0976646i \(-0.968863\pi\)
0.747744 0.663988i \(-0.231137\pi\)
\(308\) 0 0
\(309\) 5.17078 + 15.9140i 0.294155 + 0.905317i
\(310\) 0 0
\(311\) 8.82037 6.40837i 0.500157 0.363385i −0.308920 0.951088i \(-0.599967\pi\)
0.809077 + 0.587703i \(0.199967\pi\)
\(312\) 0 0
\(313\) 8.27962 + 6.01550i 0.467992 + 0.340016i 0.796658 0.604430i \(-0.206599\pi\)
−0.328666 + 0.944446i \(0.606599\pi\)
\(314\) 0 0
\(315\) 13.4094 41.2698i 0.755532 2.32529i
\(316\) 0 0
\(317\) −7.39692 + 5.37418i −0.415453 + 0.301844i −0.775806 0.630972i \(-0.782656\pi\)
0.360353 + 0.932816i \(0.382656\pi\)
\(318\) 0 0
\(319\) 4.20734 0.235566
\(320\) 0 0
\(321\) 3.60175 + 11.0850i 0.201030 + 0.618706i
\(322\) 0 0
\(323\) 7.17356 + 5.21189i 0.399147 + 0.289998i
\(324\) 0 0
\(325\) −3.36002 −0.186381
\(326\) 0 0
\(327\) 6.82799 0.377589
\(328\) 0 0
\(329\) 1.91096 0.105355
\(330\) 0 0
\(331\) −8.34301 −0.458573 −0.229287 0.973359i \(-0.573639\pi\)
−0.229287 + 0.973359i \(0.573639\pi\)
\(332\) 0 0
\(333\) −75.5355 54.8798i −4.13932 3.00739i
\(334\) 0 0
\(335\) −0.0217424 0.0669162i −0.00118791 0.00365602i
\(336\) 0 0
\(337\) 14.6485 0.797954 0.398977 0.916961i \(-0.369365\pi\)
0.398977 + 0.916961i \(0.369365\pi\)
\(338\) 0 0
\(339\) 6.51161 4.73096i 0.353662 0.256951i
\(340\) 0 0
\(341\) −1.25522 + 3.86316i −0.0679738 + 0.209202i
\(342\) 0 0
\(343\) 47.6844 + 34.6448i 2.57472 + 1.87064i
\(344\) 0 0
\(345\) 5.19756 3.77625i 0.279827 0.203306i
\(346\) 0 0
\(347\) −9.38445 28.8824i −0.503784 1.55049i −0.802806 0.596240i \(-0.796661\pi\)
0.299022 0.954246i \(-0.403339\pi\)
\(348\) 0 0
\(349\) 0.0661982 + 0.203737i 0.00354351 + 0.0109058i 0.952813 0.303559i \(-0.0981750\pi\)
−0.949269 + 0.314465i \(0.898175\pi\)
\(350\) 0 0
\(351\) 19.6706 60.5398i 1.04994 3.23138i
\(352\) 0 0
\(353\) −2.70957 8.33921i −0.144216 0.443851i 0.852693 0.522412i \(-0.174968\pi\)
−0.996909 + 0.0785606i \(0.974968\pi\)
\(354\) 0 0
\(355\) −9.38546 −0.498129
\(356\) 0 0
\(357\) 79.2490 + 57.5778i 4.19430 + 3.04734i
\(358\) 0 0
\(359\) 20.4942 14.8899i 1.08164 0.785861i 0.103676 0.994611i \(-0.466940\pi\)
0.977969 + 0.208750i \(0.0669396\pi\)
\(360\) 0 0
\(361\) 13.4049 9.73921i 0.705520 0.512590i
\(362\) 0 0
\(363\) 11.0736 34.0810i 0.581213 1.78879i
\(364\) 0 0
\(365\) −6.83567 4.96641i −0.357795 0.259954i
\(366\) 0 0
\(367\) −8.66710 + 26.6746i −0.452419 + 1.39240i 0.421720 + 0.906726i \(0.361427\pi\)
−0.874139 + 0.485676i \(0.838573\pi\)
\(368\) 0 0
\(369\) −32.6767 44.0824i −1.70108 2.29484i
\(370\) 0 0
\(371\) −14.1682 + 43.6052i −0.735576 + 2.26387i
\(372\) 0 0
\(373\) −1.08119 0.785531i −0.0559820 0.0406733i 0.559442 0.828869i \(-0.311015\pi\)
−0.615424 + 0.788196i \(0.711015\pi\)
\(374\) 0 0
\(375\) 1.05110 3.23495i 0.0542785 0.167052i
\(376\) 0 0
\(377\) 16.7766 12.1889i 0.864040 0.627762i
\(378\) 0 0
\(379\) 26.1290 18.9838i 1.34216 0.975133i 0.342794 0.939411i \(-0.388627\pi\)
0.999362 0.0357224i \(-0.0113732\pi\)
\(380\) 0 0
\(381\) −11.4273 8.30242i −0.585438 0.425346i
\(382\) 0 0
\(383\) −20.7122 −1.05834 −0.529172 0.848515i \(-0.677497\pi\)
−0.529172 + 0.848515i \(0.677497\pi\)
\(384\) 0 0
\(385\) 1.06671 + 3.28299i 0.0543646 + 0.167317i
\(386\) 0 0
\(387\) −15.5591 + 47.8861i −0.790915 + 2.43419i
\(388\) 0 0
\(389\) −6.70017 20.6210i −0.339712 1.04553i −0.964354 0.264616i \(-0.914755\pi\)
0.624642 0.780912i \(-0.285245\pi\)
\(390\) 0 0
\(391\) 3.31954 + 10.2165i 0.167876 + 0.516670i
\(392\) 0 0
\(393\) 27.9451 20.3033i 1.40964 1.02417i
\(394\) 0 0
\(395\) −7.48156 5.43567i −0.376438 0.273498i
\(396\) 0 0
\(397\) −3.39867 + 10.4600i −0.170574 + 0.524973i −0.999404 0.0345279i \(-0.989007\pi\)
0.828830 + 0.559501i \(0.189007\pi\)
\(398\) 0 0
\(399\) −21.7241 + 15.7834i −1.08756 + 0.790161i
\(400\) 0 0
\(401\) −36.6833 −1.83187 −0.915937 0.401321i \(-0.868551\pi\)
−0.915937 + 0.401321i \(0.868551\pi\)
\(402\) 0 0
\(403\) 6.18668 + 19.0406i 0.308180 + 0.948482i
\(404\) 0 0
\(405\) 31.3337 + 22.7653i 1.55698 + 1.13122i
\(406\) 0 0
\(407\) 7.42731 0.368158
\(408\) 0 0
\(409\) 8.15985 0.403479 0.201739 0.979439i \(-0.435341\pi\)
0.201739 + 0.979439i \(0.435341\pi\)
\(410\) 0 0
\(411\) 2.56282 0.126414
\(412\) 0 0
\(413\) 2.82847 0.139180
\(414\) 0 0
\(415\) 4.83354 + 3.51178i 0.237269 + 0.172386i
\(416\) 0 0
\(417\) 9.56281 + 29.4313i 0.468293 + 1.44126i
\(418\) 0 0
\(419\) −0.432828 −0.0211450 −0.0105725 0.999944i \(-0.503365\pi\)
−0.0105725 + 0.999944i \(0.503365\pi\)
\(420\) 0 0
\(421\) 19.1610 13.9213i 0.933848 0.678481i −0.0130837 0.999914i \(-0.504165\pi\)
0.946932 + 0.321434i \(0.104165\pi\)
\(422\) 0 0
\(423\) −0.999402 + 3.07584i −0.0485926 + 0.149553i
\(424\) 0 0
\(425\) 4.60122 + 3.34298i 0.223192 + 0.162158i
\(426\) 0 0
\(427\) 19.6730 14.2933i 0.952043 0.691700i
\(428\) 0 0
\(429\) 2.40763 + 7.40991i 0.116241 + 0.357754i
\(430\) 0 0
\(431\) −9.63577 29.6558i −0.464139 1.42847i −0.860063 0.510189i \(-0.829576\pi\)
0.395924 0.918283i \(-0.370424\pi\)
\(432\) 0 0
\(433\) 1.65512 5.09393i 0.0795400 0.244799i −0.903377 0.428847i \(-0.858920\pi\)
0.982917 + 0.184048i \(0.0589201\pi\)
\(434\) 0 0
\(435\) 6.48706 + 19.9651i 0.311031 + 0.957254i
\(436\) 0 0
\(437\) −2.94471 −0.140865
\(438\) 0 0
\(439\) −16.5339 12.0126i −0.789118 0.573328i 0.118584 0.992944i \(-0.462165\pi\)
−0.907702 + 0.419616i \(0.862165\pi\)
\(440\) 0 0
\(441\) −129.233 + 93.8931i −6.15394 + 4.47110i
\(442\) 0 0
\(443\) 23.1533 16.8219i 1.10005 0.799231i 0.118980 0.992897i \(-0.462038\pi\)
0.981068 + 0.193665i \(0.0620376\pi\)
\(444\) 0 0
\(445\) −1.33243 + 4.10080i −0.0631633 + 0.194397i
\(446\) 0 0
\(447\) 0.263409 + 0.191378i 0.0124588 + 0.00905185i
\(448\) 0 0
\(449\) −2.58642 + 7.96018i −0.122061 + 0.375664i −0.993354 0.115098i \(-0.963282\pi\)
0.871293 + 0.490762i \(0.163282\pi\)
\(450\) 0 0
\(451\) 4.16419 + 1.30911i 0.196084 + 0.0616435i
\(452\) 0 0
\(453\) 11.9834 36.8810i 0.563028 1.73282i
\(454\) 0 0
\(455\) 13.7645 + 10.0005i 0.645289 + 0.468830i
\(456\) 0 0
\(457\) −4.64563 + 14.2978i −0.217313 + 0.668822i 0.781668 + 0.623695i \(0.214369\pi\)
−0.998981 + 0.0451270i \(0.985631\pi\)
\(458\) 0 0
\(459\) −87.1696 + 63.3324i −4.06873 + 2.95610i
\(460\) 0 0
\(461\) 23.2716 16.9078i 1.08387 0.787475i 0.105513 0.994418i \(-0.466351\pi\)
0.978353 + 0.206943i \(0.0663515\pi\)
\(462\) 0 0
\(463\) 9.84017 + 7.14930i 0.457312 + 0.332256i 0.792476 0.609903i \(-0.208792\pi\)
−0.335164 + 0.942160i \(0.608792\pi\)
\(464\) 0 0
\(465\) −20.2672 −0.939869
\(466\) 0 0
\(467\) −3.42605 10.5443i −0.158539 0.487931i 0.839964 0.542643i \(-0.182576\pi\)
−0.998502 + 0.0547112i \(0.982576\pi\)
\(468\) 0 0
\(469\) −0.110095 + 0.338838i −0.00508372 + 0.0156461i
\(470\) 0 0
\(471\) −13.1913 40.5986i −0.607823 1.87069i
\(472\) 0 0
\(473\) −1.23772 3.80932i −0.0569106 0.175153i
\(474\) 0 0
\(475\) −1.26130 + 0.916391i −0.0578726 + 0.0420469i
\(476\) 0 0
\(477\) −62.7762 45.6096i −2.87432 2.08832i
\(478\) 0 0
\(479\) 9.87878 30.4038i 0.451373 1.38918i −0.423968 0.905677i \(-0.639363\pi\)
0.875341 0.483506i \(-0.160637\pi\)
\(480\) 0 0
\(481\) 29.6161 21.5174i 1.35038 0.981107i
\(482\) 0 0
\(483\) −32.5313 −1.48023
\(484\) 0 0
\(485\) 1.45624 + 4.48185i 0.0661245 + 0.203510i
\(486\) 0 0
\(487\) −21.4975 15.6188i −0.974145 0.707758i −0.0177524 0.999842i \(-0.505651\pi\)
−0.956392 + 0.292085i \(0.905651\pi\)
\(488\) 0 0
\(489\) −34.3859 −1.55498
\(490\) 0 0
\(491\) 13.2757 0.599123 0.299561 0.954077i \(-0.403160\pi\)
0.299561 + 0.954077i \(0.403160\pi\)
\(492\) 0 0
\(493\) −35.1010 −1.58087
\(494\) 0 0
\(495\) −5.84210 −0.262583
\(496\) 0 0
\(497\) 38.4480 + 27.9341i 1.72463 + 1.25302i
\(498\) 0 0
\(499\) 5.55295 + 17.0902i 0.248584 + 0.765064i 0.995026 + 0.0996134i \(0.0317606\pi\)
−0.746442 + 0.665451i \(0.768239\pi\)
\(500\) 0 0
\(501\) 2.52077 0.112620
\(502\) 0 0
\(503\) 1.62935 1.18379i 0.0726489 0.0527825i −0.550868 0.834592i \(-0.685703\pi\)
0.623517 + 0.781810i \(0.285703\pi\)
\(504\) 0 0
\(505\) 5.50319 16.9371i 0.244889 0.753690i
\(506\) 0 0
\(507\) −4.70628 3.41931i −0.209013 0.151857i
\(508\) 0 0
\(509\) −12.5096 + 9.08873i −0.554477 + 0.402851i −0.829433 0.558606i \(-0.811337\pi\)
0.274956 + 0.961457i \(0.411337\pi\)
\(510\) 0 0
\(511\) 13.2211 + 40.6902i 0.584865 + 1.80003i
\(512\) 0 0
\(513\) −9.12718 28.0906i −0.402975 1.24023i
\(514\) 0 0
\(515\) 1.52018 4.67863i 0.0669871 0.206165i
\(516\) 0 0
\(517\) −0.0795021 0.244682i −0.00349650 0.0107611i
\(518\) 0 0
\(519\) 8.04309 0.353052
\(520\) 0 0
\(521\) 25.0467 + 18.1975i 1.09732 + 0.797246i 0.980620 0.195921i \(-0.0627697\pi\)
0.116696 + 0.993168i \(0.462770\pi\)
\(522\) 0 0
\(523\) 13.6981 9.95222i 0.598974 0.435180i −0.246540 0.969133i \(-0.579294\pi\)
0.845515 + 0.533952i \(0.179294\pi\)
\(524\) 0 0
\(525\) −13.9341 + 10.1237i −0.608134 + 0.441835i
\(526\) 0 0
\(527\) 10.4720 32.2295i 0.456168 1.40394i
\(528\) 0 0
\(529\) 15.7212 + 11.4222i 0.683532 + 0.496615i
\(530\) 0 0
\(531\) −1.47924 + 4.55264i −0.0641937 + 0.197568i
\(532\) 0 0
\(533\) 20.3971 6.84387i 0.883496 0.296441i
\(534\) 0 0
\(535\) 1.05889 3.25894i 0.0457799 0.140896i
\(536\) 0 0
\(537\) 49.8693 + 36.2322i 2.15202 + 1.56353i
\(538\) 0 0
\(539\) 3.92677 12.0854i 0.169138 0.520553i
\(540\) 0 0
\(541\) −4.15808 + 3.02102i −0.178770 + 0.129884i −0.673571 0.739122i \(-0.735241\pi\)
0.494802 + 0.869006i \(0.335241\pi\)
\(542\) 0 0
\(543\) −60.4886 + 43.9475i −2.59581 + 1.88597i
\(544\) 0 0
\(545\) −1.62401 1.17991i −0.0695651 0.0505420i
\(546\) 0 0
\(547\) −8.74119 −0.373746 −0.186873 0.982384i \(-0.559835\pi\)
−0.186873 + 0.982384i \(0.559835\pi\)
\(548\) 0 0
\(549\) 12.7175 + 39.1403i 0.542768 + 1.67047i
\(550\) 0 0
\(551\) 2.97337 9.15109i 0.126670 0.389850i
\(552\) 0 0
\(553\) 14.4703 + 44.5350i 0.615339 + 1.89382i
\(554\) 0 0
\(555\) 11.4517 + 35.2448i 0.486099 + 1.49606i
\(556\) 0 0
\(557\) −3.27824 + 2.38178i −0.138903 + 0.100919i −0.655067 0.755571i \(-0.727360\pi\)
0.516164 + 0.856490i \(0.327360\pi\)
\(558\) 0 0
\(559\) −15.9712 11.6038i −0.675510 0.490786i
\(560\) 0 0
\(561\) 4.07532 12.5425i 0.172060 0.529547i
\(562\) 0 0
\(563\) 3.73920 2.71669i 0.157589 0.114495i −0.506196 0.862418i \(-0.668949\pi\)
0.663785 + 0.747923i \(0.268949\pi\)
\(564\) 0 0
\(565\) −2.36630 −0.0995510
\(566\) 0 0
\(567\) −60.6034 186.518i −2.54510 7.83302i
\(568\) 0 0
\(569\) −24.0610 17.4813i −1.00869 0.732855i −0.0447546 0.998998i \(-0.514251\pi\)
−0.963933 + 0.266143i \(0.914251\pi\)
\(570\) 0 0
\(571\) 32.6153 1.36491 0.682453 0.730929i \(-0.260913\pi\)
0.682453 + 0.730929i \(0.260913\pi\)
\(572\) 0 0
\(573\) 78.6576 3.28597
\(574\) 0 0
\(575\) −1.88878 −0.0787674
\(576\) 0 0
\(577\) −1.38673 −0.0577303 −0.0288651 0.999583i \(-0.509189\pi\)
−0.0288651 + 0.999583i \(0.509189\pi\)
\(578\) 0 0
\(579\) 11.9738 + 8.69949i 0.497615 + 0.361539i
\(580\) 0 0
\(581\) −9.34869 28.7723i −0.387849 1.19368i
\(582\) 0 0
\(583\) 6.17270 0.255647
\(584\) 0 0
\(585\) −23.2951 + 16.9249i −0.963135 + 0.699759i
\(586\) 0 0
\(587\) 4.20701 12.9478i 0.173642 0.534415i −0.825927 0.563777i \(-0.809348\pi\)
0.999569 + 0.0293625i \(0.00934771\pi\)
\(588\) 0 0
\(589\) 7.51541 + 5.46026i 0.309667 + 0.224986i
\(590\) 0 0
\(591\) 42.2506 30.6969i 1.73796 1.26270i
\(592\) 0 0
\(593\) 11.3623 + 34.9697i 0.466595 + 1.43603i 0.856965 + 0.515374i \(0.172347\pi\)
−0.390370 + 0.920658i \(0.627653\pi\)
\(594\) 0 0
\(595\) −8.89934 27.3893i −0.364837 1.12285i
\(596\) 0 0
\(597\) −19.6563 + 60.4959i −0.804479 + 2.47593i
\(598\) 0 0
\(599\) −12.9488 39.8522i −0.529072 1.62832i −0.756121 0.654432i \(-0.772908\pi\)
0.227049 0.973883i \(-0.427092\pi\)
\(600\) 0 0
\(601\) −34.6974 −1.41534 −0.707669 0.706544i \(-0.750253\pi\)
−0.707669 + 0.706544i \(0.750253\pi\)
\(602\) 0 0
\(603\) −0.487807 0.354413i −0.0198650 0.0144328i
\(604\) 0 0
\(605\) −8.52321 + 6.19247i −0.346518 + 0.251760i
\(606\) 0 0
\(607\) −22.0494 + 16.0198i −0.894956 + 0.650224i −0.937165 0.348885i \(-0.886560\pi\)
0.0422095 + 0.999109i \(0.486560\pi\)
\(608\) 0 0
\(609\) 32.8479 101.096i 1.33107 4.09660i
\(610\) 0 0
\(611\) −1.02587 0.745338i −0.0415023 0.0301532i
\(612\) 0 0
\(613\) −1.90989 + 5.87803i −0.0771396 + 0.237411i −0.982189 0.187895i \(-0.939834\pi\)
0.905050 + 0.425306i \(0.139834\pi\)
\(614\) 0 0
\(615\) 0.208401 + 21.7788i 0.00840355 + 0.878204i
\(616\) 0 0
\(617\) −1.03527 + 3.18625i −0.0416786 + 0.128274i −0.969731 0.244177i \(-0.921482\pi\)
0.928052 + 0.372450i \(0.121482\pi\)
\(618\) 0 0
\(619\) 11.6659 + 8.47574i 0.468891 + 0.340669i 0.797009 0.603968i \(-0.206414\pi\)
−0.328118 + 0.944637i \(0.606414\pi\)
\(620\) 0 0
\(621\) 11.0575 34.0314i 0.443721 1.36563i
\(622\) 0 0
\(623\) 17.6637 12.8334i 0.707679 0.514159i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) 2.92472 + 2.12493i 0.116802 + 0.0848616i
\(628\) 0 0
\(629\) −61.9645 −2.47069
\(630\) 0 0
\(631\) 2.58315 + 7.95013i 0.102834 + 0.316490i 0.989216 0.146465i \(-0.0467894\pi\)
−0.886382 + 0.462954i \(0.846789\pi\)
\(632\) 0 0
\(633\) −17.1580 + 52.8068i −0.681968 + 2.09888i
\(634\) 0 0
\(635\) 1.28324 + 3.94940i 0.0509237 + 0.156727i
\(636\) 0 0
\(637\) −19.3541 59.5659i −0.766839 2.36009i
\(638\) 0 0
\(639\) −65.0697 + 47.2759i −2.57412 + 1.87021i
\(640\) 0 0
\(641\) 38.6042 + 28.0476i 1.52477 + 1.10781i 0.959057 + 0.283213i \(0.0914003\pi\)
0.565716 + 0.824600i \(0.308600\pi\)
\(642\) 0 0
\(643\) −7.53906 + 23.2028i −0.297312 + 0.915031i 0.685124 + 0.728427i \(0.259748\pi\)
−0.982435 + 0.186604i \(0.940252\pi\)
\(644\) 0 0
\(645\) 16.1680 11.7467i 0.636614 0.462527i
\(646\) 0 0
\(647\) 35.2640 1.38637 0.693186 0.720758i \(-0.256206\pi\)
0.693186 + 0.720758i \(0.256206\pi\)
\(648\) 0 0
\(649\) −0.117673 0.362161i −0.00461908 0.0142161i
\(650\) 0 0
\(651\) 83.0256 + 60.3216i 3.25403 + 2.36419i
\(652\) 0 0
\(653\) 5.53063 0.216430 0.108215 0.994128i \(-0.465486\pi\)
0.108215 + 0.994128i \(0.465486\pi\)
\(654\) 0 0
\(655\) −10.1552 −0.396795
\(656\) 0 0
\(657\) −72.4084 −2.82492
\(658\) 0 0
\(659\) 8.41450 0.327783 0.163891 0.986478i \(-0.447595\pi\)
0.163891 + 0.986478i \(0.447595\pi\)
\(660\) 0 0
\(661\) 8.34586 + 6.06362i 0.324616 + 0.235848i 0.738143 0.674645i \(-0.235703\pi\)
−0.413526 + 0.910492i \(0.635703\pi\)
\(662\) 0 0
\(663\) −20.0863 61.8194i −0.780088 2.40086i
\(664\) 0 0
\(665\) 7.89446 0.306134
\(666\) 0 0
\(667\) 9.43067 6.85179i 0.365157 0.265302i
\(668\) 0 0
\(669\) −10.6191 + 32.6821i −0.410557 + 1.26356i
\(670\) 0 0
\(671\) −2.64858 1.92431i −0.102247 0.0742871i
\(672\) 0 0
\(673\) 10.7058 7.77820i 0.412677 0.299828i −0.362007 0.932175i \(-0.617909\pi\)
0.774685 + 0.632348i \(0.217909\pi\)
\(674\) 0 0
\(675\) −5.85430 18.0177i −0.225332 0.693501i
\(676\) 0 0
\(677\) −6.98615 21.5011i −0.268499 0.826356i −0.990867 0.134846i \(-0.956946\pi\)
0.722367 0.691510i \(-0.243054\pi\)
\(678\) 0 0
\(679\) 7.37384 22.6943i 0.282982 0.870929i
\(680\) 0 0
\(681\) −13.7883 42.4360i −0.528368 1.62615i
\(682\) 0 0
\(683\) −0.199085 −0.00761776 −0.00380888 0.999993i \(-0.501212\pi\)
−0.00380888 + 0.999993i \(0.501212\pi\)
\(684\) 0 0
\(685\) −0.609557 0.442869i −0.0232900 0.0169212i
\(686\) 0 0
\(687\) −52.4557 + 38.1113i −2.00131 + 1.45404i
\(688\) 0 0
\(689\) 24.6134 17.8827i 0.937696 0.681276i
\(690\) 0 0
\(691\) −11.0111 + 33.8886i −0.418881 + 1.28918i 0.489851 + 0.871806i \(0.337051\pi\)
−0.908733 + 0.417379i \(0.862949\pi\)
\(692\) 0 0
\(693\) 23.9324 + 17.3879i 0.909118 + 0.660513i
\(694\) 0 0
\(695\) 2.81141 8.65264i 0.106643 0.328213i
\(696\) 0 0
\(697\) −34.7409 10.9216i −1.31591 0.413686i
\(698\) 0 0
\(699\) −22.4023 + 68.9470i −0.847331 + 2.60782i
\(700\) 0 0
\(701\) 8.22393 + 5.97504i 0.310614 + 0.225674i 0.732160 0.681133i \(-0.238512\pi\)
−0.421546 + 0.906807i \(0.638512\pi\)
\(702\) 0 0
\(703\) 5.24895 16.1546i 0.197968 0.609282i
\(704\) 0 0
\(705\) 1.03851 0.754522i 0.0391126 0.0284170i
\(706\) 0 0
\(707\) −72.9541 + 53.0043i −2.74372 + 1.99343i
\(708\) 0 0
\(709\) 15.4671 + 11.2375i 0.580877 + 0.422032i 0.839040 0.544069i \(-0.183117\pi\)
−0.258163 + 0.966101i \(0.583117\pi\)
\(710\) 0 0
\(711\) −79.2501 −2.97211
\(712\) 0 0
\(713\) 3.47773 + 10.7034i 0.130242 + 0.400844i
\(714\) 0 0
\(715\) 0.707829 2.17847i 0.0264713 0.0814703i
\(716\) 0 0
\(717\) −6.60548 20.3296i −0.246686 0.759222i
\(718\) 0 0
\(719\) 7.53990 + 23.2054i 0.281191 + 0.865417i 0.987515 + 0.157528i \(0.0503524\pi\)
−0.706324 + 0.707889i \(0.749648\pi\)
\(720\) 0 0
\(721\) −20.1526 + 14.6417i −0.750521 + 0.545285i
\(722\) 0 0
\(723\) 58.1205 + 42.2270i 2.16153 + 1.57044i
\(724\) 0 0
\(725\) 1.90716 5.86963i 0.0708301 0.217993i
\(726\) 0 0
\(727\) 18.3162 13.3075i 0.679310 0.493548i −0.193819 0.981037i \(-0.562087\pi\)
0.873129 + 0.487490i \(0.162087\pi\)
\(728\) 0 0
\(729\) 138.590 5.13298
\(730\) 0 0
\(731\) 10.3261 + 31.7804i 0.381923 + 1.17544i
\(732\) 0 0
\(733\) −15.1355 10.9966i −0.559042 0.406168i 0.272066 0.962279i \(-0.412293\pi\)
−0.831108 + 0.556111i \(0.812293\pi\)
\(734\) 0 0
\(735\) 63.4031 2.33866
\(736\) 0 0
\(737\) 0.0479655 0.00176683
\(738\) 0 0
\(739\) −46.1534 −1.69778 −0.848890 0.528569i \(-0.822729\pi\)
−0.848890 + 0.528569i \(0.822729\pi\)
\(740\) 0 0
\(741\) 17.8183 0.654570
\(742\) 0 0
\(743\) 11.6899 + 8.49322i 0.428861 + 0.311586i 0.781193 0.624289i \(-0.214611\pi\)
−0.352332 + 0.935875i \(0.614611\pi\)
\(744\) 0 0
\(745\) −0.0295797 0.0910370i −0.00108372 0.00333534i
\(746\) 0 0
\(747\) 51.2004 1.87333
\(748\) 0 0
\(749\) −14.0374 + 10.1988i −0.512917 + 0.372656i
\(750\) 0 0
\(751\) −14.4227 + 44.3885i −0.526292 + 1.61976i 0.235456 + 0.971885i \(0.424342\pi\)
−0.761748 + 0.647874i \(0.775658\pi\)
\(752\) 0 0
\(753\) 4.50950 + 3.27635i 0.164335 + 0.119397i
\(754\) 0 0
\(755\) −9.22344 + 6.70122i −0.335675 + 0.243883i
\(756\) 0 0
\(757\) −0.0868966 0.267440i −0.00315831 0.00972028i 0.949465 0.313873i \(-0.101627\pi\)
−0.952623 + 0.304153i \(0.901627\pi\)
\(758\) 0 0
\(759\) 1.35340 + 4.16535i 0.0491255 + 0.151193i
\(760\) 0 0
\(761\) 5.68699 17.5028i 0.206153 0.634474i −0.793511 0.608556i \(-0.791749\pi\)
0.999664 0.0259183i \(-0.00825097\pi\)
\(762\) 0 0
\(763\) 3.14105 + 9.66715i 0.113714 + 0.349974i
\(764\) 0 0
\(765\) 48.7394 1.76218
\(766\) 0 0
\(767\) −1.51842 1.10320i −0.0548270 0.0398341i
\(768\) 0 0
\(769\) 10.7268 7.79350i 0.386820 0.281041i −0.377331 0.926078i \(-0.623158\pi\)
0.764151 + 0.645037i \(0.223158\pi\)
\(770\) 0 0
\(771\) −22.0864 + 16.0467i −0.795423 + 0.577908i
\(772\) 0 0
\(773\) 13.8106 42.5046i 0.496732 1.52878i −0.317509 0.948255i \(-0.602846\pi\)
0.814241 0.580527i \(-0.197154\pi\)
\(774\) 0 0
\(775\) 4.82048 + 3.50229i 0.173157 + 0.125806i
\(776\) 0 0
\(777\) 57.9871 178.466i 2.08028 6.40244i
\(778\) 0 0
\(779\) 5.79022 8.13206i 0.207456 0.291361i
\(780\) 0 0
\(781\) 1.97716 6.08507i 0.0707483 0.217741i
\(782\) 0 0
\(783\) 94.5921 + 68.7252i 3.38044 + 2.45604i
\(784\) 0 0
\(785\) −3.87817 + 11.9358i −0.138418 + 0.426006i
\(786\) 0 0
\(787\) 40.6586 29.5402i 1.44932 1.05300i 0.463336 0.886183i \(-0.346652\pi\)
0.985989 0.166813i \(-0.0533475\pi\)
\(788\) 0 0
\(789\) 54.2627 39.4242i 1.93180 1.40354i
\(790\) 0 0
\(791\) 9.69366 + 7.04286i 0.344667 + 0.250415i
\(792\) 0 0
\(793\) −16.1360 −0.573005
\(794\) 0 0
\(795\) 9.51733 + 29.2913i 0.337545 + 1.03886i
\(796\) 0 0
\(797\) −0.699249 + 2.15207i −0.0247687 + 0.0762301i −0.962677 0.270654i \(-0.912760\pi\)
0.937908 + 0.346884i \(0.112760\pi\)
\(798\) 0 0
\(799\) 0.663269 + 2.04133i 0.0234648 + 0.0722171i
\(800\) 0 0
\(801\) 11.4185 + 35.1426i 0.403454 + 1.24170i
\(802\) 0 0
\(803\) 4.65999 3.38568i 0.164447 0.119478i
\(804\) 0 0
\(805\) 7.73746 + 5.62160i 0.272710 + 0.198135i
\(806\) 0 0
\(807\) −0.0347033 + 0.106806i −0.00122162 + 0.00375975i
\(808\) 0 0
\(809\) −21.8016 + 15.8398i −0.766504 + 0.556897i −0.900898 0.434030i \(-0.857091\pi\)
0.134395 + 0.990928i \(0.457091\pi\)
\(810\) 0 0
\(811\) −2.08130 −0.0730844 −0.0365422 0.999332i \(-0.511634\pi\)
−0.0365422 + 0.999332i \(0.511634\pi\)
\(812\) 0 0
\(813\) −1.61018 4.95563i −0.0564715 0.173801i
\(814\) 0 0
\(815\) 8.17856 + 5.94207i 0.286482 + 0.208142i
\(816\) 0 0
\(817\) −9.16009 −0.320471
\(818\) 0 0
\(819\) 145.804 5.09479
\(820\) 0 0
\(821\) −48.4974 −1.69257 −0.846286 0.532729i \(-0.821167\pi\)
−0.846286 + 0.532729i \(0.821167\pi\)
\(822\) 0 0
\(823\) 31.9055 1.11215 0.556077 0.831131i \(-0.312306\pi\)
0.556077 + 0.831131i \(0.312306\pi\)
\(824\) 0 0
\(825\) 1.87595 + 1.36296i 0.0653123 + 0.0474522i
\(826\) 0 0
\(827\) 0.894838 + 2.75403i 0.0311166 + 0.0957670i 0.965409 0.260742i \(-0.0839671\pi\)
−0.934292 + 0.356509i \(0.883967\pi\)
\(828\) 0 0
\(829\) 41.4154 1.43842 0.719208 0.694795i \(-0.244505\pi\)
0.719208 + 0.694795i \(0.244505\pi\)
\(830\) 0 0
\(831\) 62.8916 45.6934i 2.18169 1.58509i
\(832\) 0 0
\(833\) −32.7602 + 100.826i −1.13507 + 3.49340i
\(834\) 0 0
\(835\) −0.599556 0.435603i −0.0207485 0.0150747i
\(836\) 0 0
\(837\) −91.3236 + 66.3505i −3.15661 + 2.29341i
\(838\) 0 0
\(839\) 8.20847 + 25.2631i 0.283388 + 0.872179i 0.986877 + 0.161473i \(0.0516244\pi\)
−0.703489 + 0.710706i \(0.748376\pi\)
\(840\) 0 0
\(841\) 2.80891 + 8.64494i 0.0968591 + 0.298102i
\(842\) 0 0
\(843\) 13.6311 41.9522i 0.469480 1.44491i
\(844\) 0 0
\(845\) 0.528496 + 1.62654i 0.0181808 + 0.0559547i
\(846\) 0 0
\(847\) 53.3465 1.83301
\(848\) 0 0
\(849\) −57.7838 41.9824i −1.98313 1.44083i
\(850\) 0 0
\(851\) 16.6482 12.0956i 0.570692 0.414632i
\(852\) 0 0
\(853\) −18.6821 + 13.5734i −0.639665 + 0.464744i −0.859735 0.510740i \(-0.829371\pi\)
0.220070 + 0.975484i \(0.429371\pi\)
\(854\) 0 0
\(855\) −4.12867 + 12.7067i −0.141197 + 0.434561i
\(856\) 0 0
\(857\) −14.8075 10.7583i −0.505815 0.367496i 0.305419 0.952218i \(-0.401203\pi\)
−0.811234 + 0.584722i \(0.801203\pi\)
\(858\) 0 0
\(859\) −11.4063 + 35.1050i −0.389178 + 1.19777i 0.544226 + 0.838939i \(0.316823\pi\)
−0.933404 + 0.358827i \(0.883177\pi\)
\(860\) 0 0
\(861\) 63.9667 89.8380i 2.17998 3.06167i
\(862\) 0 0
\(863\) 1.65703 5.09982i 0.0564061 0.173600i −0.918884 0.394527i \(-0.870908\pi\)
0.975290 + 0.220927i \(0.0709084\pi\)
\(864\) 0 0
\(865\) −1.91302 1.38989i −0.0650446 0.0472577i
\(866\) 0 0
\(867\) −16.1309 + 49.6457i −0.547833 + 1.68606i
\(868\) 0 0
\(869\) 5.10030 3.70558i 0.173016 0.125703i
\(870\) 0 0
\(871\) 0.191260 0.138959i 0.00648061 0.00470844i
\(872\) 0 0
\(873\) 32.6719 + 23.7375i 1.10578 + 0.803393i
\(874\) 0 0
\(875\) 5.06361 0.171181
\(876\) 0 0
\(877\) 6.01552 + 18.5139i 0.203130 + 0.625169i 0.999785 + 0.0207353i \(0.00660071\pi\)
−0.796655 + 0.604434i \(0.793399\pi\)
\(878\) 0 0
\(879\) 7.87050 24.2229i 0.265465 0.817018i
\(880\) 0 0
\(881\) 4.77125 + 14.6844i 0.160747 + 0.494730i 0.998698 0.0510167i \(-0.0162462\pi\)
−0.837950 + 0.545746i \(0.816246\pi\)
\(882\) 0 0
\(883\) −0.835994 2.57292i −0.0281334 0.0865858i 0.936004 0.351990i \(-0.114495\pi\)
−0.964137 + 0.265404i \(0.914495\pi\)
\(884\) 0 0
\(885\) 1.53713 1.11679i 0.0516701 0.0375405i
\(886\) 0 0
\(887\) 19.9485 + 14.4935i 0.669806 + 0.486643i 0.869960 0.493122i \(-0.164144\pi\)
−0.200154 + 0.979764i \(0.564144\pi\)
\(888\) 0 0
\(889\) 6.49782 19.9982i 0.217930 0.670719i
\(890\) 0 0
\(891\) −21.3607 + 15.5195i −0.715610 + 0.519921i
\(892\) 0 0
\(893\) −0.588375 −0.0196892
\(894\) 0 0
\(895\) −5.60012 17.2354i −0.187191 0.576116i
\(896\) 0 0
\(897\) 17.4639 + 12.6883i 0.583103 + 0.423649i
\(898\) 0 0
\(899\) −36.7737 −1.22647
\(900\) 0 0
\(901\) −51.4976 −1.71563
\(902\) 0 0
\(903\) −101.195 −3.36756
\(904\) 0 0
\(905\) 21.9814 0.730685
\(906\) 0 0
\(907\) 11.3418 + 8.24032i 0.376599 + 0.273615i 0.759942 0.649991i \(-0.225227\pi\)
−0.383343 + 0.923606i \(0.625227\pi\)
\(908\) 0 0
\(909\) −47.1606 145.146i −1.56422 4.81417i
\(910\) 0 0
\(911\) −5.89227 −0.195220 −0.0976098 0.995225i \(-0.531120\pi\)
−0.0976098 + 0.995225i \(0.531120\pi\)
\(912\) 0 0
\(913\) −3.29510 + 2.39403i −0.109052 + 0.0792310i
\(914\) 0 0
\(915\) 5.04773 15.5353i 0.166873 0.513581i
\(916\) 0 0
\(917\) 41.6011 + 30.2250i 1.37379 + 0.998117i
\(918\) 0 0
\(919\) 0.825909 0.600058i 0.0272442 0.0197941i −0.574080 0.818799i \(-0.694640\pi\)
0.601324 + 0.799005i \(0.294640\pi\)
\(920\) 0 0
\(921\) 14.7490 + 45.3928i 0.485996 + 1.49574i
\(922\) 0 0
\(923\) −9.74496 29.9919i −0.320759 0.987196i
\(924\) 0 0
\(925\) 3.36675 10.3618i 0.110698 0.340693i
\(926\) 0 0
\(927\) −13.0275 40.0944i −0.427878 1.31687i
\(928\) 0 0
\(929\) −40.4358 −1.32666 −0.663328 0.748329i \(-0.730857\pi\)
−0.663328 + 0.748329i \(0.730857\pi\)
\(930\) 0 0
\(931\) −23.5109 17.0817i −0.770538 0.559829i
\(932\) 0 0
\(933\) −30.0018 + 21.7976i −0.982216 + 0.713621i
\(934\) 0 0
\(935\) −3.13672 + 2.27896i −0.102582 + 0.0745300i
\(936\) 0 0
\(937\) −7.26941 + 22.3730i −0.237481 + 0.730893i 0.759301 + 0.650739i \(0.225541\pi\)
−0.996783 + 0.0801532i \(0.974459\pi\)
\(938\) 0 0
\(939\) −28.1625 20.4613i −0.919049 0.667728i
\(940\) 0 0
\(941\) 3.78720 11.6558i 0.123459 0.379968i −0.870158 0.492773i \(-0.835983\pi\)
0.993617 + 0.112805i \(0.0359835\pi\)
\(942\) 0 0
\(943\) 11.4659 3.84716i 0.373380 0.125281i
\(944\) 0 0
\(945\) −29.6439 + 91.2345i −0.964316 + 2.96786i
\(946\) 0 0
\(947\) 18.4368 + 13.3951i 0.599116 + 0.435283i 0.845565 0.533873i \(-0.179264\pi\)
−0.246449 + 0.969156i \(0.579264\pi\)
\(948\) 0 0
\(949\) 8.77300 27.0005i 0.284784 0.876474i
\(950\) 0 0
\(951\) 25.1601 18.2799i 0.815872 0.592766i
\(952\) 0 0
\(953\) 34.9081 25.3622i 1.13078 0.821563i 0.144975 0.989435i \(-0.453690\pi\)
0.985809 + 0.167873i \(0.0536897\pi\)
\(954\) 0 0
\(955\) −18.7084 13.5925i −0.605391 0.439842i
\(956\) 0 0
\(957\) −14.3110 −0.462608
\(958\) 0 0
\(959\) 1.17896 + 3.62847i 0.0380706 + 0.117169i
\(960\) 0 0
\(961\) 1.39152 4.28267i 0.0448878 0.138151i
\(962\) 0 0
\(963\) −9.07439 27.9281i −0.292418 0.899971i
\(964\) 0 0
\(965\) −1.34461 4.13829i −0.0432846 0.133216i
\(966\) 0 0
\(967\) 28.7208 20.8669i 0.923598 0.671034i −0.0208186 0.999783i \(-0.506627\pi\)
0.944417 + 0.328750i \(0.106627\pi\)
\(968\) 0 0
\(969\) −24.4003 17.7279i −0.783851 0.569501i
\(970\) 0 0
\(971\) 12.0668 37.1379i 0.387243 1.19181i −0.547597 0.836742i \(-0.684457\pi\)
0.934840 0.355069i \(-0.115543\pi\)
\(972\) 0 0
\(973\) −37.2701 + 27.0783i −1.19482 + 0.868090i
\(974\) 0 0
\(975\) 11.4289 0.366017
\(976\) 0 0
\(977\) 9.58655 + 29.5044i 0.306701 + 0.943928i 0.979037 + 0.203682i \(0.0652909\pi\)
−0.672336 + 0.740246i \(0.734709\pi\)
\(978\) 0 0
\(979\) −2.37807 1.72777i −0.0760033 0.0552196i
\(980\) 0 0
\(981\) −17.2027 −0.549241
\(982\) 0 0
\(983\) −11.5781 −0.369284 −0.184642 0.982806i \(-0.559112\pi\)
−0.184642 + 0.982806i \(0.559112\pi\)
\(984\) 0 0
\(985\) −15.3538 −0.489211
\(986\) 0 0
\(987\) −6.50001 −0.206897
\(988\) 0 0
\(989\) −8.97792 6.52284i −0.285481 0.207414i
\(990\) 0 0
\(991\) 16.6977 + 51.3904i 0.530421 + 1.63247i 0.753339 + 0.657632i \(0.228442\pi\)
−0.222918 + 0.974837i \(0.571558\pi\)
\(992\) 0 0
\(993\) 28.3781 0.900553
\(994\) 0 0
\(995\) 15.1292 10.9920i 0.479628 0.348470i
\(996\) 0 0
\(997\) 13.8108 42.5054i 0.437393 1.34616i −0.453220 0.891398i \(-0.649725\pi\)
0.890614 0.454760i \(-0.150275\pi\)
\(998\) 0 0
\(999\) 166.985 + 121.322i 5.28318 + 3.83846i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.b.221.1 yes 32
41.18 even 5 inner 820.2.u.b.141.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.b.141.1 32 41.18 even 5 inner
820.2.u.b.221.1 yes 32 1.1 even 1 trivial