Properties

Label 820.2.u.b.201.8
Level $820$
Weight $2$
Character 820.201
Analytic conductor $6.548$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.8
Character \(\chi\) \(=\) 820.201
Dual form 820.2.u.b.461.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.33542 q^{3} +(-0.309017 + 0.951057i) q^{5} +(-1.68976 - 1.22768i) q^{7} +8.12504 q^{9} +(1.44022 + 4.43255i) q^{11} +(3.98542 - 2.89558i) q^{13} +(-1.03070 + 3.17218i) q^{15} +(0.947354 + 2.91566i) q^{17} +(-4.36981 - 3.17485i) q^{19} +(-5.63605 - 4.09483i) q^{21} +(-6.90892 + 5.01963i) q^{23} +(-0.809017 - 0.587785i) q^{25} +17.0942 q^{27} +(3.25893 - 10.0300i) q^{29} +(0.826547 + 2.54385i) q^{31} +(4.80375 + 14.7844i) q^{33} +(1.68976 - 1.22768i) q^{35} +(0.690770 - 2.12597i) q^{37} +(13.2931 - 9.65798i) q^{39} +(-4.00305 + 4.99756i) q^{41} +(6.50654 - 4.72728i) q^{43} +(-2.51078 + 7.72738i) q^{45} +(-1.29163 + 0.938421i) q^{47} +(-0.815042 - 2.50844i) q^{49} +(3.15983 + 9.72494i) q^{51} +(-1.46112 + 4.49688i) q^{53} -4.66066 q^{55} +(-14.5752 - 10.5895i) q^{57} +(0.728491 - 0.529280i) q^{59} +(-6.48509 - 4.71170i) q^{61} +(-13.7293 - 9.97495i) q^{63} +(1.52230 + 4.68515i) q^{65} +(0.657405 - 2.02328i) q^{67} +(-23.0442 + 16.7426i) q^{69} +(1.11976 + 3.44626i) q^{71} +2.17713 q^{73} +(-2.69841 - 1.96051i) q^{75} +(3.00813 - 9.25806i) q^{77} -4.97360 q^{79} +32.6412 q^{81} -14.4597 q^{83} -3.06570 q^{85} +(10.8699 - 33.4541i) q^{87} +(-2.85465 - 2.07402i) q^{89} -10.2892 q^{91} +(2.75688 + 8.48482i) q^{93} +(4.36981 - 3.17485i) q^{95} +(-5.37460 + 16.5413i) q^{97} +(11.7019 + 36.0147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{3} + 8 q^{5} - 5 q^{7} + 46 q^{9} + q^{11} + q^{13} - 2 q^{15} + 7 q^{17} - 13 q^{19} - 6 q^{21} + 4 q^{23} - 8 q^{25} - 28 q^{27} + 3 q^{29} - q^{31} + 14 q^{33} + 5 q^{35} - 25 q^{37} + 26 q^{41}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.33542 1.92571 0.962854 0.270024i \(-0.0870316\pi\)
0.962854 + 0.270024i \(0.0870316\pi\)
\(4\) 0 0
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) −1.68976 1.22768i −0.638667 0.464019i 0.220725 0.975336i \(-0.429158\pi\)
−0.859392 + 0.511317i \(0.829158\pi\)
\(8\) 0 0
\(9\) 8.12504 2.70835
\(10\) 0 0
\(11\) 1.44022 + 4.43255i 0.434244 + 1.33646i 0.893860 + 0.448347i \(0.147987\pi\)
−0.459616 + 0.888118i \(0.652013\pi\)
\(12\) 0 0
\(13\) 3.98542 2.89558i 1.10536 0.803089i 0.123431 0.992353i \(-0.460610\pi\)
0.981926 + 0.189264i \(0.0606101\pi\)
\(14\) 0 0
\(15\) −1.03070 + 3.17218i −0.266126 + 0.819052i
\(16\) 0 0
\(17\) 0.947354 + 2.91566i 0.229767 + 0.707150i 0.997773 + 0.0667071i \(0.0212493\pi\)
−0.768006 + 0.640443i \(0.778751\pi\)
\(18\) 0 0
\(19\) −4.36981 3.17485i −1.00250 0.728361i −0.0398800 0.999204i \(-0.512698\pi\)
−0.962624 + 0.270843i \(0.912698\pi\)
\(20\) 0 0
\(21\) −5.63605 4.09483i −1.22989 0.893565i
\(22\) 0 0
\(23\) −6.90892 + 5.01963i −1.44061 + 1.04666i −0.452695 + 0.891665i \(0.649537\pi\)
−0.987915 + 0.154999i \(0.950463\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 0 0
\(27\) 17.0942 3.28978
\(28\) 0 0
\(29\) 3.25893 10.0300i 0.605168 1.86252i 0.109538 0.993983i \(-0.465063\pi\)
0.495630 0.868534i \(-0.334937\pi\)
\(30\) 0 0
\(31\) 0.826547 + 2.54385i 0.148452 + 0.456889i 0.997439 0.0715254i \(-0.0227867\pi\)
−0.848986 + 0.528415i \(0.822787\pi\)
\(32\) 0 0
\(33\) 4.80375 + 14.7844i 0.836226 + 2.57364i
\(34\) 0 0
\(35\) 1.68976 1.22768i 0.285621 0.207516i
\(36\) 0 0
\(37\) 0.690770 2.12597i 0.113562 0.349508i −0.878082 0.478509i \(-0.841177\pi\)
0.991644 + 0.129002i \(0.0411773\pi\)
\(38\) 0 0
\(39\) 13.2931 9.65798i 2.12860 1.54652i
\(40\) 0 0
\(41\) −4.00305 + 4.99756i −0.625171 + 0.780488i
\(42\) 0 0
\(43\) 6.50654 4.72728i 0.992239 0.720904i 0.0318284 0.999493i \(-0.489867\pi\)
0.960410 + 0.278590i \(0.0898670\pi\)
\(44\) 0 0
\(45\) −2.51078 + 7.72738i −0.374285 + 1.15193i
\(46\) 0 0
\(47\) −1.29163 + 0.938421i −0.188403 + 0.136883i −0.677988 0.735073i \(-0.737148\pi\)
0.489586 + 0.871955i \(0.337148\pi\)
\(48\) 0 0
\(49\) −0.815042 2.50844i −0.116435 0.358349i
\(50\) 0 0
\(51\) 3.15983 + 9.72494i 0.442464 + 1.36176i
\(52\) 0 0
\(53\) −1.46112 + 4.49688i −0.200701 + 0.617693i 0.799162 + 0.601116i \(0.205277\pi\)
−0.999863 + 0.0165775i \(0.994723\pi\)
\(54\) 0 0
\(55\) −4.66066 −0.628443
\(56\) 0 0
\(57\) −14.5752 10.5895i −1.93053 1.40261i
\(58\) 0 0
\(59\) 0.728491 0.529280i 0.0948415 0.0689064i −0.539354 0.842079i \(-0.681331\pi\)
0.634195 + 0.773173i \(0.281331\pi\)
\(60\) 0 0
\(61\) −6.48509 4.71170i −0.830331 0.603271i 0.0893219 0.996003i \(-0.471530\pi\)
−0.919653 + 0.392732i \(0.871530\pi\)
\(62\) 0 0
\(63\) −13.7293 9.97495i −1.72973 1.25673i
\(64\) 0 0
\(65\) 1.52230 + 4.68515i 0.188818 + 0.581121i
\(66\) 0 0
\(67\) 0.657405 2.02328i 0.0803148 0.247183i −0.902834 0.429988i \(-0.858518\pi\)
0.983149 + 0.182805i \(0.0585177\pi\)
\(68\) 0 0
\(69\) −23.0442 + 16.7426i −2.77419 + 2.01557i
\(70\) 0 0
\(71\) 1.11976 + 3.44626i 0.132891 + 0.408996i 0.995256 0.0972906i \(-0.0310176\pi\)
−0.862365 + 0.506287i \(0.831018\pi\)
\(72\) 0 0
\(73\) 2.17713 0.254814 0.127407 0.991851i \(-0.459335\pi\)
0.127407 + 0.991851i \(0.459335\pi\)
\(74\) 0 0
\(75\) −2.69841 1.96051i −0.311586 0.226380i
\(76\) 0 0
\(77\) 3.00813 9.25806i 0.342808 1.05505i
\(78\) 0 0
\(79\) −4.97360 −0.559573 −0.279787 0.960062i \(-0.590264\pi\)
−0.279787 + 0.960062i \(0.590264\pi\)
\(80\) 0 0
\(81\) 32.6412 3.62680
\(82\) 0 0
\(83\) −14.4597 −1.58716 −0.793582 0.608464i \(-0.791786\pi\)
−0.793582 + 0.608464i \(0.791786\pi\)
\(84\) 0 0
\(85\) −3.06570 −0.332522
\(86\) 0 0
\(87\) 10.8699 33.4541i 1.16538 3.58666i
\(88\) 0 0
\(89\) −2.85465 2.07402i −0.302592 0.219846i 0.426119 0.904667i \(-0.359880\pi\)
−0.728711 + 0.684821i \(0.759880\pi\)
\(90\) 0 0
\(91\) −10.2892 −1.07860
\(92\) 0 0
\(93\) 2.75688 + 8.48482i 0.285876 + 0.879835i
\(94\) 0 0
\(95\) 4.36981 3.17485i 0.448333 0.325733i
\(96\) 0 0
\(97\) −5.37460 + 16.5413i −0.545707 + 1.67951i 0.173594 + 0.984817i \(0.444462\pi\)
−0.719302 + 0.694698i \(0.755538\pi\)
\(98\) 0 0
\(99\) 11.7019 + 36.0147i 1.17608 + 3.61961i
\(100\) 0 0
\(101\) −6.38013 4.63543i −0.634846 0.461243i 0.223230 0.974766i \(-0.428340\pi\)
−0.858076 + 0.513523i \(0.828340\pi\)
\(102\) 0 0
\(103\) −5.79954 4.21361i −0.571446 0.415180i 0.264184 0.964472i \(-0.414897\pi\)
−0.835630 + 0.549292i \(0.814897\pi\)
\(104\) 0 0
\(105\) 5.63605 4.09483i 0.550022 0.399614i
\(106\) 0 0
\(107\) 8.80188 + 6.39494i 0.850910 + 0.618222i 0.925397 0.379000i \(-0.123732\pi\)
−0.0744871 + 0.997222i \(0.523732\pi\)
\(108\) 0 0
\(109\) −13.6586 −1.30826 −0.654130 0.756383i \(-0.726965\pi\)
−0.654130 + 0.756383i \(0.726965\pi\)
\(110\) 0 0
\(111\) 2.30401 7.09102i 0.218687 0.673049i
\(112\) 0 0
\(113\) −6.00712 18.4880i −0.565103 1.73921i −0.667646 0.744479i \(-0.732698\pi\)
0.102544 0.994729i \(-0.467302\pi\)
\(114\) 0 0
\(115\) −2.63897 8.12192i −0.246086 0.757373i
\(116\) 0 0
\(117\) 32.3817 23.5267i 2.99369 2.17505i
\(118\) 0 0
\(119\) 1.97869 6.08979i 0.181386 0.558250i
\(120\) 0 0
\(121\) −8.67408 + 6.30209i −0.788553 + 0.572917i
\(122\) 0 0
\(123\) −13.3518 + 16.6690i −1.20390 + 1.50299i
\(124\) 0 0
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) −1.82706 + 5.62312i −0.162126 + 0.498971i −0.998813 0.0487095i \(-0.984489\pi\)
0.836687 + 0.547681i \(0.184489\pi\)
\(128\) 0 0
\(129\) 21.7021 15.7675i 1.91076 1.38825i
\(130\) 0 0
\(131\) −0.0873182 0.268738i −0.00762903 0.0234797i 0.947170 0.320733i \(-0.103929\pi\)
−0.954799 + 0.297254i \(0.903929\pi\)
\(132\) 0 0
\(133\) 3.48621 + 10.7295i 0.302293 + 0.930361i
\(134\) 0 0
\(135\) −5.28240 + 16.2575i −0.454636 + 1.39923i
\(136\) 0 0
\(137\) 1.29862 0.110949 0.0554745 0.998460i \(-0.482333\pi\)
0.0554745 + 0.998460i \(0.482333\pi\)
\(138\) 0 0
\(139\) 12.1357 + 8.81709i 1.02933 + 0.747856i 0.968175 0.250272i \(-0.0805202\pi\)
0.0611594 + 0.998128i \(0.480520\pi\)
\(140\) 0 0
\(141\) −4.30812 + 3.13003i −0.362809 + 0.263596i
\(142\) 0 0
\(143\) 18.5747 + 13.4953i 1.55329 + 1.12853i
\(144\) 0 0
\(145\) 8.53199 + 6.19885i 0.708543 + 0.514787i
\(146\) 0 0
\(147\) −2.71851 8.36671i −0.224219 0.690075i
\(148\) 0 0
\(149\) 5.21209 16.0412i 0.426991 1.31414i −0.474084 0.880479i \(-0.657221\pi\)
0.901075 0.433663i \(-0.142779\pi\)
\(150\) 0 0
\(151\) 5.73818 4.16903i 0.466966 0.339271i −0.329291 0.944228i \(-0.606810\pi\)
0.796258 + 0.604957i \(0.206810\pi\)
\(152\) 0 0
\(153\) 7.69729 + 23.6898i 0.622289 + 1.91521i
\(154\) 0 0
\(155\) −2.67476 −0.214842
\(156\) 0 0
\(157\) −0.158957 0.115489i −0.0126862 0.00921704i 0.581424 0.813601i \(-0.302496\pi\)
−0.594110 + 0.804384i \(0.702496\pi\)
\(158\) 0 0
\(159\) −4.87346 + 14.9990i −0.386491 + 1.18950i
\(160\) 0 0
\(161\) 17.8369 1.40574
\(162\) 0 0
\(163\) −17.7761 −1.39234 −0.696168 0.717879i \(-0.745113\pi\)
−0.696168 + 0.717879i \(0.745113\pi\)
\(164\) 0 0
\(165\) −15.5453 −1.21020
\(166\) 0 0
\(167\) −2.70930 −0.209652 −0.104826 0.994491i \(-0.533429\pi\)
−0.104826 + 0.994491i \(0.533429\pi\)
\(168\) 0 0
\(169\) 3.48200 10.7165i 0.267846 0.824346i
\(170\) 0 0
\(171\) −35.5049 25.7958i −2.71513 1.97266i
\(172\) 0 0
\(173\) 11.8388 0.900084 0.450042 0.893007i \(-0.351409\pi\)
0.450042 + 0.893007i \(0.351409\pi\)
\(174\) 0 0
\(175\) 0.645429 + 1.98643i 0.0487898 + 0.150160i
\(176\) 0 0
\(177\) 2.42983 1.76537i 0.182637 0.132694i
\(178\) 0 0
\(179\) −4.68596 + 14.4219i −0.350245 + 1.07794i 0.608470 + 0.793577i \(0.291783\pi\)
−0.958715 + 0.284367i \(0.908217\pi\)
\(180\) 0 0
\(181\) −2.67735 8.24004i −0.199006 0.612477i −0.999906 0.0136798i \(-0.995645\pi\)
0.800901 0.598797i \(-0.204355\pi\)
\(182\) 0 0
\(183\) −21.6305 15.7155i −1.59897 1.16172i
\(184\) 0 0
\(185\) 1.80846 + 1.31392i 0.132961 + 0.0966015i
\(186\) 0 0
\(187\) −11.5594 + 8.39839i −0.845306 + 0.614151i
\(188\) 0 0
\(189\) −28.8850 20.9862i −2.10107 1.52652i
\(190\) 0 0
\(191\) −13.9269 −1.00772 −0.503859 0.863786i \(-0.668087\pi\)
−0.503859 + 0.863786i \(0.668087\pi\)
\(192\) 0 0
\(193\) −0.708923 + 2.18184i −0.0510294 + 0.157052i −0.973324 0.229436i \(-0.926312\pi\)
0.922294 + 0.386488i \(0.126312\pi\)
\(194\) 0 0
\(195\) 5.07750 + 15.6269i 0.363607 + 1.11907i
\(196\) 0 0
\(197\) −0.684485 2.10663i −0.0487675 0.150091i 0.923707 0.383099i \(-0.125143\pi\)
−0.972475 + 0.233008i \(0.925143\pi\)
\(198\) 0 0
\(199\) −5.30006 + 3.85072i −0.375711 + 0.272970i −0.759575 0.650419i \(-0.774593\pi\)
0.383864 + 0.923390i \(0.374593\pi\)
\(200\) 0 0
\(201\) 2.19272 6.74851i 0.154663 0.476003i
\(202\) 0 0
\(203\) −17.8204 + 12.9473i −1.25074 + 0.908719i
\(204\) 0 0
\(205\) −3.51596 5.35145i −0.245565 0.373762i
\(206\) 0 0
\(207\) −56.1353 + 40.7847i −3.90167 + 2.83473i
\(208\) 0 0
\(209\) 7.77920 23.9419i 0.538098 1.65610i
\(210\) 0 0
\(211\) 20.2500 14.7125i 1.39407 1.01285i 0.398661 0.917098i \(-0.369475\pi\)
0.995405 0.0957498i \(-0.0305249\pi\)
\(212\) 0 0
\(213\) 3.73487 + 11.4947i 0.255909 + 0.787607i
\(214\) 0 0
\(215\) 2.48528 + 7.64890i 0.169495 + 0.521651i
\(216\) 0 0
\(217\) 1.72637 5.31322i 0.117194 0.360685i
\(218\) 0 0
\(219\) 7.26166 0.490698
\(220\) 0 0
\(221\) 12.2181 + 8.87698i 0.821880 + 0.597131i
\(222\) 0 0
\(223\) 5.11803 3.71846i 0.342728 0.249007i −0.403084 0.915163i \(-0.632062\pi\)
0.745812 + 0.666156i \(0.232062\pi\)
\(224\) 0 0
\(225\) −6.57330 4.77578i −0.438220 0.318385i
\(226\) 0 0
\(227\) 8.07829 + 5.86922i 0.536175 + 0.389554i 0.822663 0.568530i \(-0.192488\pi\)
−0.286487 + 0.958084i \(0.592488\pi\)
\(228\) 0 0
\(229\) −3.35428 10.3234i −0.221657 0.682190i −0.998614 0.0526362i \(-0.983238\pi\)
0.776957 0.629554i \(-0.216762\pi\)
\(230\) 0 0
\(231\) 10.0334 30.8795i 0.660147 2.03172i
\(232\) 0 0
\(233\) −4.64205 + 3.37265i −0.304111 + 0.220949i −0.729365 0.684124i \(-0.760185\pi\)
0.425255 + 0.905074i \(0.360185\pi\)
\(234\) 0 0
\(235\) −0.493357 1.51840i −0.0321831 0.0990493i
\(236\) 0 0
\(237\) −16.5890 −1.07757
\(238\) 0 0
\(239\) 4.43359 + 3.22119i 0.286785 + 0.208362i 0.721872 0.692027i \(-0.243282\pi\)
−0.435086 + 0.900389i \(0.643282\pi\)
\(240\) 0 0
\(241\) 3.21806 9.90416i 0.207293 0.637983i −0.792318 0.610108i \(-0.791126\pi\)
0.999611 0.0278749i \(-0.00887401\pi\)
\(242\) 0 0
\(243\) 57.5897 3.69438
\(244\) 0 0
\(245\) 2.63753 0.168506
\(246\) 0 0
\(247\) −26.6086 −1.69306
\(248\) 0 0
\(249\) −48.2294 −3.05641
\(250\) 0 0
\(251\) 3.57057 10.9891i 0.225372 0.693625i −0.772881 0.634551i \(-0.781185\pi\)
0.998254 0.0590742i \(-0.0188149\pi\)
\(252\) 0 0
\(253\) −32.2001 23.3948i −2.02441 1.47082i
\(254\) 0 0
\(255\) −10.2254 −0.640340
\(256\) 0 0
\(257\) 3.98181 + 12.2547i 0.248378 + 0.764430i 0.995062 + 0.0992512i \(0.0316447\pi\)
−0.746684 + 0.665179i \(0.768355\pi\)
\(258\) 0 0
\(259\) −3.77724 + 2.74433i −0.234707 + 0.170524i
\(260\) 0 0
\(261\) 26.4790 81.4938i 1.63901 5.04434i
\(262\) 0 0
\(263\) 3.80885 + 11.7224i 0.234864 + 0.722837i 0.997139 + 0.0755840i \(0.0240821\pi\)
−0.762276 + 0.647253i \(0.775918\pi\)
\(264\) 0 0
\(265\) −3.82527 2.77922i −0.234985 0.170726i
\(266\) 0 0
\(267\) −9.52146 6.91775i −0.582704 0.423359i
\(268\) 0 0
\(269\) 22.4571 16.3160i 1.36923 0.994806i 0.371436 0.928459i \(-0.378865\pi\)
0.997797 0.0663473i \(-0.0211345\pi\)
\(270\) 0 0
\(271\) 7.89280 + 5.73446i 0.479453 + 0.348343i 0.801114 0.598512i \(-0.204241\pi\)
−0.321661 + 0.946855i \(0.604241\pi\)
\(272\) 0 0
\(273\) −34.3189 −2.07708
\(274\) 0 0
\(275\) 1.44022 4.43255i 0.0868487 0.267293i
\(276\) 0 0
\(277\) 1.76931 + 5.44537i 0.106307 + 0.327181i 0.990035 0.140821i \(-0.0449742\pi\)
−0.883728 + 0.468002i \(0.844974\pi\)
\(278\) 0 0
\(279\) 6.71573 + 20.6689i 0.402060 + 1.23741i
\(280\) 0 0
\(281\) 4.23818 3.07922i 0.252828 0.183691i −0.454151 0.890925i \(-0.650057\pi\)
0.706979 + 0.707234i \(0.250057\pi\)
\(282\) 0 0
\(283\) −6.29412 + 19.3713i −0.374146 + 1.15150i 0.569906 + 0.821710i \(0.306980\pi\)
−0.944053 + 0.329795i \(0.893020\pi\)
\(284\) 0 0
\(285\) 14.5752 10.5895i 0.863359 0.627267i
\(286\) 0 0
\(287\) 12.8996 3.53020i 0.761437 0.208381i
\(288\) 0 0
\(289\) 6.14972 4.46803i 0.361748 0.262825i
\(290\) 0 0
\(291\) −17.9265 + 55.1722i −1.05087 + 3.23425i
\(292\) 0 0
\(293\) 1.22346 0.888896i 0.0714753 0.0519299i −0.551474 0.834192i \(-0.685934\pi\)
0.622949 + 0.782262i \(0.285934\pi\)
\(294\) 0 0
\(295\) 0.278259 + 0.856393i 0.0162009 + 0.0498611i
\(296\) 0 0
\(297\) 24.6194 + 75.7709i 1.42857 + 4.39667i
\(298\) 0 0
\(299\) −13.0003 + 40.0107i −0.751824 + 2.31388i
\(300\) 0 0
\(301\) −16.7980 −0.968223
\(302\) 0 0
\(303\) −21.2804 15.4611i −1.22253 0.888218i
\(304\) 0 0
\(305\) 6.48509 4.71170i 0.371335 0.269791i
\(306\) 0 0
\(307\) −3.43825 2.49803i −0.196231 0.142570i 0.485331 0.874331i \(-0.338699\pi\)
−0.681562 + 0.731760i \(0.738699\pi\)
\(308\) 0 0
\(309\) −19.3439 14.0542i −1.10044 0.799515i
\(310\) 0 0
\(311\) 1.28745 + 3.96238i 0.0730048 + 0.224686i 0.980900 0.194511i \(-0.0623119\pi\)
−0.907896 + 0.419196i \(0.862312\pi\)
\(312\) 0 0
\(313\) −5.62796 + 17.3211i −0.318111 + 0.979045i 0.656344 + 0.754462i \(0.272102\pi\)
−0.974455 + 0.224583i \(0.927898\pi\)
\(314\) 0 0
\(315\) 13.7293 9.97495i 0.773560 0.562025i
\(316\) 0 0
\(317\) 8.24654 + 25.3802i 0.463172 + 1.42550i 0.861268 + 0.508152i \(0.169671\pi\)
−0.398096 + 0.917344i \(0.630329\pi\)
\(318\) 0 0
\(319\) 49.1519 2.75198
\(320\) 0 0
\(321\) 29.3580 + 21.3298i 1.63860 + 1.19051i
\(322\) 0 0
\(323\) 5.11702 15.7486i 0.284719 0.876274i
\(324\) 0 0
\(325\) −4.92625 −0.273259
\(326\) 0 0
\(327\) −45.5573 −2.51932
\(328\) 0 0
\(329\) 3.33461 0.183843
\(330\) 0 0
\(331\) 12.3659 0.679690 0.339845 0.940481i \(-0.389625\pi\)
0.339845 + 0.940481i \(0.389625\pi\)
\(332\) 0 0
\(333\) 5.61254 17.2736i 0.307565 0.946588i
\(334\) 0 0
\(335\) 1.72111 + 1.25046i 0.0940342 + 0.0683198i
\(336\) 0 0
\(337\) −3.83903 −0.209125 −0.104563 0.994518i \(-0.533344\pi\)
−0.104563 + 0.994518i \(0.533344\pi\)
\(338\) 0 0
\(339\) −20.0363 61.6654i −1.08822 3.34920i
\(340\) 0 0
\(341\) −10.0853 + 7.32743i −0.546152 + 0.396802i
\(342\) 0 0
\(343\) −6.22034 + 19.1442i −0.335867 + 1.03369i
\(344\) 0 0
\(345\) −8.80209 27.0901i −0.473889 1.45848i
\(346\) 0 0
\(347\) −10.9230 7.93602i −0.586377 0.426028i 0.254640 0.967036i \(-0.418043\pi\)
−0.841018 + 0.541008i \(0.818043\pi\)
\(348\) 0 0
\(349\) 13.5471 + 9.84254i 0.725159 + 0.526859i 0.888028 0.459789i \(-0.152075\pi\)
−0.162869 + 0.986648i \(0.552075\pi\)
\(350\) 0 0
\(351\) 68.1276 49.4976i 3.63638 2.64199i
\(352\) 0 0
\(353\) 17.8128 + 12.9418i 0.948080 + 0.688821i 0.950352 0.311177i \(-0.100723\pi\)
−0.00227162 + 0.999997i \(0.500723\pi\)
\(354\) 0 0
\(355\) −3.62362 −0.192322
\(356\) 0 0
\(357\) 6.59978 20.3120i 0.349297 1.07503i
\(358\) 0 0
\(359\) 1.51736 + 4.66996i 0.0800833 + 0.246471i 0.983080 0.183176i \(-0.0586379\pi\)
−0.902997 + 0.429647i \(0.858638\pi\)
\(360\) 0 0
\(361\) 3.14423 + 9.67696i 0.165486 + 0.509314i
\(362\) 0 0
\(363\) −28.9317 + 21.0201i −1.51852 + 1.10327i
\(364\) 0 0
\(365\) −0.672772 + 2.07058i −0.0352145 + 0.108379i
\(366\) 0 0
\(367\) 2.57292 1.86933i 0.134305 0.0975784i −0.518604 0.855014i \(-0.673548\pi\)
0.652909 + 0.757436i \(0.273548\pi\)
\(368\) 0 0
\(369\) −32.5249 + 40.6054i −1.69318 + 2.11383i
\(370\) 0 0
\(371\) 7.98966 5.80483i 0.414803 0.301372i
\(372\) 0 0
\(373\) −9.49473 + 29.2218i −0.491619 + 1.51305i 0.330542 + 0.943791i \(0.392768\pi\)
−0.822161 + 0.569255i \(0.807232\pi\)
\(374\) 0 0
\(375\) 2.69841 1.96051i 0.139345 0.101240i
\(376\) 0 0
\(377\) −16.0543 49.4101i −0.826840 2.54475i
\(378\) 0 0
\(379\) −3.81262 11.7340i −0.195841 0.602737i −0.999966 0.00827636i \(-0.997366\pi\)
0.804125 0.594461i \(-0.202634\pi\)
\(380\) 0 0
\(381\) −6.09403 + 18.7555i −0.312206 + 0.960872i
\(382\) 0 0
\(383\) 29.2716 1.49571 0.747855 0.663862i \(-0.231084\pi\)
0.747855 + 0.663862i \(0.231084\pi\)
\(384\) 0 0
\(385\) 7.87537 + 5.72179i 0.401366 + 0.291610i
\(386\) 0 0
\(387\) 52.8660 38.4094i 2.68733 1.95246i
\(388\) 0 0
\(389\) 12.4093 + 9.01588i 0.629176 + 0.457123i 0.856115 0.516786i \(-0.172872\pi\)
−0.226938 + 0.973909i \(0.572872\pi\)
\(390\) 0 0
\(391\) −21.1807 15.3887i −1.07115 0.778239i
\(392\) 0 0
\(393\) −0.291243 0.896354i −0.0146913 0.0452151i
\(394\) 0 0
\(395\) 1.53693 4.73017i 0.0773311 0.238001i
\(396\) 0 0
\(397\) 9.72585 7.06624i 0.488126 0.354644i −0.316337 0.948647i \(-0.602453\pi\)
0.804463 + 0.594002i \(0.202453\pi\)
\(398\) 0 0
\(399\) 11.6280 + 35.7873i 0.582127 + 1.79160i
\(400\) 0 0
\(401\) 8.26601 0.412785 0.206392 0.978469i \(-0.433828\pi\)
0.206392 + 0.978469i \(0.433828\pi\)
\(402\) 0 0
\(403\) 10.6601 + 7.74499i 0.531016 + 0.385805i
\(404\) 0 0
\(405\) −10.0867 + 31.0436i −0.501212 + 1.54257i
\(406\) 0 0
\(407\) 10.4183 0.516418
\(408\) 0 0
\(409\) −3.64646 −0.180306 −0.0901529 0.995928i \(-0.528736\pi\)
−0.0901529 + 0.995928i \(0.528736\pi\)
\(410\) 0 0
\(411\) 4.33146 0.213655
\(412\) 0 0
\(413\) −1.88076 −0.0925461
\(414\) 0 0
\(415\) 4.46831 13.7520i 0.219341 0.675061i
\(416\) 0 0
\(417\) 40.4776 + 29.4087i 1.98220 + 1.44015i
\(418\) 0 0
\(419\) 0.224533 0.0109692 0.00548459 0.999985i \(-0.498254\pi\)
0.00548459 + 0.999985i \(0.498254\pi\)
\(420\) 0 0
\(421\) 6.99199 + 21.5191i 0.340769 + 1.04878i 0.963810 + 0.266589i \(0.0858967\pi\)
−0.623042 + 0.782189i \(0.714103\pi\)
\(422\) 0 0
\(423\) −10.4945 + 7.62471i −0.510261 + 0.370726i
\(424\) 0 0
\(425\) 0.947354 2.91566i 0.0459534 0.141430i
\(426\) 0 0
\(427\) 5.17377 + 15.9232i 0.250376 + 0.770579i
\(428\) 0 0
\(429\) 61.9545 + 45.0126i 2.99119 + 2.17323i
\(430\) 0 0
\(431\) 9.86774 + 7.16933i 0.475312 + 0.345335i 0.799508 0.600655i \(-0.205094\pi\)
−0.324196 + 0.945990i \(0.605094\pi\)
\(432\) 0 0
\(433\) 28.4081 20.6397i 1.36521 0.991880i 0.367112 0.930177i \(-0.380347\pi\)
0.998095 0.0617035i \(-0.0196533\pi\)
\(434\) 0 0
\(435\) 28.4578 + 20.6758i 1.36445 + 0.991329i
\(436\) 0 0
\(437\) 46.1273 2.20657
\(438\) 0 0
\(439\) 6.67042 20.5295i 0.318362 0.979817i −0.655986 0.754773i \(-0.727747\pi\)
0.974348 0.225045i \(-0.0722528\pi\)
\(440\) 0 0
\(441\) −6.62225 20.3812i −0.315345 0.970533i
\(442\) 0 0
\(443\) −8.73195 26.8742i −0.414867 1.27683i −0.912370 0.409368i \(-0.865749\pi\)
0.497502 0.867463i \(-0.334251\pi\)
\(444\) 0 0
\(445\) 2.85465 2.07402i 0.135323 0.0983182i
\(446\) 0 0
\(447\) 17.3845 53.5040i 0.822259 2.53065i
\(448\) 0 0
\(449\) −16.8159 + 12.2175i −0.793593 + 0.576579i −0.909028 0.416736i \(-0.863174\pi\)
0.115435 + 0.993315i \(0.463174\pi\)
\(450\) 0 0
\(451\) −27.9172 10.5461i −1.31457 0.496596i
\(452\) 0 0
\(453\) 19.1393 13.9055i 0.899240 0.653336i
\(454\) 0 0
\(455\) 3.17955 9.78564i 0.149060 0.458758i
\(456\) 0 0
\(457\) 5.49369 3.99140i 0.256984 0.186710i −0.451833 0.892103i \(-0.649230\pi\)
0.708816 + 0.705393i \(0.249230\pi\)
\(458\) 0 0
\(459\) 16.1942 + 49.8408i 0.755883 + 2.32637i
\(460\) 0 0
\(461\) 7.67147 + 23.6103i 0.357296 + 1.09964i 0.954666 + 0.297678i \(0.0962122\pi\)
−0.597371 + 0.801965i \(0.703788\pi\)
\(462\) 0 0
\(463\) 0.862331 2.65398i 0.0400759 0.123341i −0.929017 0.370037i \(-0.879345\pi\)
0.969093 + 0.246696i \(0.0793449\pi\)
\(464\) 0 0
\(465\) −8.92147 −0.413723
\(466\) 0 0
\(467\) 9.45879 + 6.87221i 0.437700 + 0.318008i 0.784721 0.619850i \(-0.212806\pi\)
−0.347020 + 0.937858i \(0.612806\pi\)
\(468\) 0 0
\(469\) −3.59480 + 2.61177i −0.165992 + 0.120600i
\(470\) 0 0
\(471\) −0.530189 0.385205i −0.0244298 0.0177493i
\(472\) 0 0
\(473\) 30.3248 + 22.0322i 1.39434 + 1.01304i
\(474\) 0 0
\(475\) 1.66912 + 5.13702i 0.0765845 + 0.235703i
\(476\) 0 0
\(477\) −11.8717 + 36.5373i −0.543567 + 1.67293i
\(478\) 0 0
\(479\) −3.85685 + 2.80216i −0.176224 + 0.128034i −0.672401 0.740187i \(-0.734737\pi\)
0.496177 + 0.868221i \(0.334737\pi\)
\(480\) 0 0
\(481\) −3.40291 10.4731i −0.155159 0.477531i
\(482\) 0 0
\(483\) 59.4935 2.70705
\(484\) 0 0
\(485\) −14.0709 10.2231i −0.638925 0.464206i
\(486\) 0 0
\(487\) −10.1656 + 31.2864i −0.460646 + 1.41772i 0.403730 + 0.914878i \(0.367713\pi\)
−0.864376 + 0.502845i \(0.832287\pi\)
\(488\) 0 0
\(489\) −59.2910 −2.68123
\(490\) 0 0
\(491\) −5.26471 −0.237593 −0.118796 0.992919i \(-0.537904\pi\)
−0.118796 + 0.992919i \(0.537904\pi\)
\(492\) 0 0
\(493\) 32.3313 1.45613
\(494\) 0 0
\(495\) −37.8681 −1.70204
\(496\) 0 0
\(497\) 2.33879 7.19805i 0.104909 0.322877i
\(498\) 0 0
\(499\) −9.14446 6.64384i −0.409362 0.297419i 0.363981 0.931406i \(-0.381417\pi\)
−0.773343 + 0.633987i \(0.781417\pi\)
\(500\) 0 0
\(501\) −9.03665 −0.403728
\(502\) 0 0
\(503\) 8.44803 + 26.0004i 0.376679 + 1.15930i 0.942339 + 0.334660i \(0.108622\pi\)
−0.565660 + 0.824639i \(0.691378\pi\)
\(504\) 0 0
\(505\) 6.38013 4.63543i 0.283912 0.206274i
\(506\) 0 0
\(507\) 11.6139 35.7440i 0.515793 1.58745i
\(508\) 0 0
\(509\) 3.45003 + 10.6181i 0.152920 + 0.470639i 0.997944 0.0640886i \(-0.0204140\pi\)
−0.845024 + 0.534728i \(0.820414\pi\)
\(510\) 0 0
\(511\) −3.67882 2.67282i −0.162742 0.118239i
\(512\) 0 0
\(513\) −74.6984 54.2716i −3.29801 2.39615i
\(514\) 0 0
\(515\) 5.79954 4.21361i 0.255558 0.185674i
\(516\) 0 0
\(517\) −6.01983 4.37366i −0.264752 0.192353i
\(518\) 0 0
\(519\) 39.4873 1.73330
\(520\) 0 0
\(521\) 7.87727 24.2438i 0.345110 1.06214i −0.616416 0.787421i \(-0.711416\pi\)
0.961525 0.274717i \(-0.0885842\pi\)
\(522\) 0 0
\(523\) −3.68459 11.3400i −0.161116 0.495864i 0.837613 0.546264i \(-0.183950\pi\)
−0.998729 + 0.0504001i \(0.983950\pi\)
\(524\) 0 0
\(525\) 2.15278 + 6.62557i 0.0939550 + 0.289164i
\(526\) 0 0
\(527\) −6.63396 + 4.81985i −0.288980 + 0.209956i
\(528\) 0 0
\(529\) 15.4292 47.4861i 0.670833 2.06461i
\(530\) 0 0
\(531\) 5.91903 4.30042i 0.256864 0.186622i
\(532\) 0 0
\(533\) −1.48299 + 31.5085i −0.0642355 + 1.36479i
\(534\) 0 0
\(535\) −8.80188 + 6.39494i −0.380538 + 0.276477i
\(536\) 0 0
\(537\) −15.6297 + 48.1031i −0.674470 + 2.07580i
\(538\) 0 0
\(539\) 9.94495 7.22543i 0.428360 0.311221i
\(540\) 0 0
\(541\) 2.25833 + 6.95043i 0.0970933 + 0.298823i 0.987794 0.155769i \(-0.0497854\pi\)
−0.890700 + 0.454591i \(0.849785\pi\)
\(542\) 0 0
\(543\) −8.93010 27.4840i −0.383227 1.17945i
\(544\) 0 0
\(545\) 4.22075 12.9901i 0.180797 0.556436i
\(546\) 0 0
\(547\) 9.80378 0.419179 0.209590 0.977789i \(-0.432787\pi\)
0.209590 + 0.977789i \(0.432787\pi\)
\(548\) 0 0
\(549\) −52.6917 38.2827i −2.24883 1.63387i
\(550\) 0 0
\(551\) −46.0846 + 33.4824i −1.96327 + 1.42640i
\(552\) 0 0
\(553\) 8.40416 + 6.10598i 0.357381 + 0.259653i
\(554\) 0 0
\(555\) 6.03198 + 4.38249i 0.256043 + 0.186026i
\(556\) 0 0
\(557\) −10.2160 31.4416i −0.432865 1.33222i −0.895258 0.445548i \(-0.853009\pi\)
0.462393 0.886675i \(-0.346991\pi\)
\(558\) 0 0
\(559\) 12.2431 37.6804i 0.517829 1.59371i
\(560\) 0 0
\(561\) −38.5555 + 28.0122i −1.62781 + 1.18268i
\(562\) 0 0
\(563\) −0.534193 1.64408i −0.0225135 0.0692896i 0.939169 0.343457i \(-0.111598\pi\)
−0.961682 + 0.274167i \(0.911598\pi\)
\(564\) 0 0
\(565\) 19.4395 0.817824
\(566\) 0 0
\(567\) −55.1557 40.0729i −2.31632 1.68290i
\(568\) 0 0
\(569\) 6.71066 20.6533i 0.281325 0.865830i −0.706151 0.708062i \(-0.749570\pi\)
0.987476 0.157769i \(-0.0504301\pi\)
\(570\) 0 0
\(571\) −26.1499 −1.09434 −0.547169 0.837022i \(-0.684295\pi\)
−0.547169 + 0.837022i \(0.684295\pi\)
\(572\) 0 0
\(573\) −46.4522 −1.94057
\(574\) 0 0
\(575\) 8.53990 0.356138
\(576\) 0 0
\(577\) −36.1356 −1.50434 −0.752172 0.658967i \(-0.770994\pi\)
−0.752172 + 0.658967i \(0.770994\pi\)
\(578\) 0 0
\(579\) −2.36456 + 7.27736i −0.0982676 + 0.302437i
\(580\) 0 0
\(581\) 24.4334 + 17.7519i 1.01367 + 0.736474i
\(582\) 0 0
\(583\) −22.0370 −0.912678
\(584\) 0 0
\(585\) 12.3687 + 38.0670i 0.511384 + 1.57388i
\(586\) 0 0
\(587\) −2.43422 + 1.76856i −0.100471 + 0.0729964i −0.636886 0.770958i \(-0.719778\pi\)
0.536416 + 0.843954i \(0.319778\pi\)
\(588\) 0 0
\(589\) 4.46450 13.7403i 0.183957 0.566160i
\(590\) 0 0
\(591\) −2.28305 7.02649i −0.0939119 0.289031i
\(592\) 0 0
\(593\) −15.7878 11.4705i −0.648327 0.471037i 0.214374 0.976752i \(-0.431229\pi\)
−0.862701 + 0.505715i \(0.831229\pi\)
\(594\) 0 0
\(595\) 5.18029 + 3.76370i 0.212371 + 0.154297i
\(596\) 0 0
\(597\) −17.6779 + 12.8438i −0.723510 + 0.525661i
\(598\) 0 0
\(599\) −35.6648 25.9120i −1.45722 1.05873i −0.984075 0.177752i \(-0.943118\pi\)
−0.473148 0.880983i \(-0.656882\pi\)
\(600\) 0 0
\(601\) 38.2332 1.55956 0.779782 0.626051i \(-0.215330\pi\)
0.779782 + 0.626051i \(0.215330\pi\)
\(602\) 0 0
\(603\) 5.34144 16.4393i 0.217520 0.669459i
\(604\) 0 0
\(605\) −3.31320 10.1970i −0.134701 0.414567i
\(606\) 0 0
\(607\) 2.57731 + 7.93214i 0.104610 + 0.321956i 0.989639 0.143580i \(-0.0458616\pi\)
−0.885029 + 0.465536i \(0.845862\pi\)
\(608\) 0 0
\(609\) −59.4384 + 43.1846i −2.40857 + 1.74993i
\(610\) 0 0
\(611\) −2.43040 + 7.48001i −0.0983235 + 0.302609i
\(612\) 0 0
\(613\) −2.05084 + 1.49002i −0.0828325 + 0.0601814i −0.628431 0.777866i \(-0.716302\pi\)
0.545598 + 0.838047i \(0.316302\pi\)
\(614\) 0 0
\(615\) −11.7272 17.8494i −0.472886 0.719756i
\(616\) 0 0
\(617\) −5.81819 + 4.22716i −0.234232 + 0.170179i −0.698710 0.715405i \(-0.746242\pi\)
0.464478 + 0.885585i \(0.346242\pi\)
\(618\) 0 0
\(619\) −2.01414 + 6.19889i −0.0809552 + 0.249154i −0.983340 0.181777i \(-0.941815\pi\)
0.902385 + 0.430932i \(0.141815\pi\)
\(620\) 0 0
\(621\) −118.102 + 85.8064i −4.73929 + 3.44329i
\(622\) 0 0
\(623\) 2.27742 + 7.00918i 0.0912430 + 0.280817i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 0 0
\(627\) 25.9469 79.8564i 1.03622 3.18916i
\(628\) 0 0
\(629\) 6.85301 0.273247
\(630\) 0 0
\(631\) 16.6157 + 12.0720i 0.661461 + 0.480580i 0.867156 0.498037i \(-0.165945\pi\)
−0.205695 + 0.978616i \(0.565945\pi\)
\(632\) 0 0
\(633\) 67.5422 49.0723i 2.68456 1.95045i
\(634\) 0 0
\(635\) −4.78331 3.47528i −0.189820 0.137912i
\(636\) 0 0
\(637\) −10.5117 7.63718i −0.416488 0.302596i
\(638\) 0 0
\(639\) 9.09809 + 28.0011i 0.359915 + 1.10770i
\(640\) 0 0
\(641\) −9.92677 + 30.5514i −0.392084 + 1.20671i 0.539126 + 0.842225i \(0.318755\pi\)
−0.931210 + 0.364484i \(0.881245\pi\)
\(642\) 0 0
\(643\) −10.1087 + 7.34438i −0.398647 + 0.289634i −0.768990 0.639261i \(-0.779240\pi\)
0.370343 + 0.928895i \(0.379240\pi\)
\(644\) 0 0
\(645\) 8.28945 + 25.5123i 0.326397 + 1.00455i
\(646\) 0 0
\(647\) −25.7019 −1.01045 −0.505223 0.862989i \(-0.668590\pi\)
−0.505223 + 0.862989i \(0.668590\pi\)
\(648\) 0 0
\(649\) 3.39525 + 2.46679i 0.133275 + 0.0968301i
\(650\) 0 0
\(651\) 5.75817 17.7218i 0.225681 0.694573i
\(652\) 0 0
\(653\) −29.9489 −1.17199 −0.585995 0.810315i \(-0.699296\pi\)
−0.585995 + 0.810315i \(0.699296\pi\)
\(654\) 0 0
\(655\) 0.282568 0.0110408
\(656\) 0 0
\(657\) 17.6893 0.690126
\(658\) 0 0
\(659\) 43.5367 1.69595 0.847974 0.530038i \(-0.177822\pi\)
0.847974 + 0.530038i \(0.177822\pi\)
\(660\) 0 0
\(661\) −11.8803 + 36.5639i −0.462092 + 1.42217i 0.400512 + 0.916292i \(0.368832\pi\)
−0.862603 + 0.505881i \(0.831168\pi\)
\(662\) 0 0
\(663\) 40.7526 + 29.6085i 1.58270 + 1.14990i
\(664\) 0 0
\(665\) −11.2816 −0.437482
\(666\) 0 0
\(667\) 27.8309 + 85.6548i 1.07762 + 3.31657i
\(668\) 0 0
\(669\) 17.0708 12.4026i 0.659995 0.479514i
\(670\) 0 0
\(671\) 11.5449 35.5314i 0.445684 1.37167i
\(672\) 0 0
\(673\) 1.77591 + 5.46570i 0.0684564 + 0.210687i 0.979433 0.201772i \(-0.0646700\pi\)
−0.910976 + 0.412459i \(0.864670\pi\)
\(674\) 0 0
\(675\) −13.8295 10.0477i −0.532297 0.386737i
\(676\) 0 0
\(677\) 14.9671 + 10.8743i 0.575233 + 0.417931i 0.837003 0.547199i \(-0.184306\pi\)
−0.261769 + 0.965131i \(0.584306\pi\)
\(678\) 0 0
\(679\) 29.3892 21.3525i 1.12785 0.819433i
\(680\) 0 0
\(681\) 26.9445 + 19.5763i 1.03252 + 0.750167i
\(682\) 0 0
\(683\) 11.7416 0.449280 0.224640 0.974442i \(-0.427879\pi\)
0.224640 + 0.974442i \(0.427879\pi\)
\(684\) 0 0
\(685\) −0.401297 + 1.23506i −0.0153328 + 0.0471894i
\(686\) 0 0
\(687\) −11.1879 34.4329i −0.426847 1.31370i
\(688\) 0 0
\(689\) 7.19787 + 22.1528i 0.274217 + 0.843953i
\(690\) 0 0
\(691\) 17.2683 12.5461i 0.656915 0.477277i −0.208705 0.977979i \(-0.566925\pi\)
0.865620 + 0.500702i \(0.166925\pi\)
\(692\) 0 0
\(693\) 24.4412 75.2221i 0.928443 2.85745i
\(694\) 0 0
\(695\) −12.1357 + 8.81709i −0.460333 + 0.334451i
\(696\) 0 0
\(697\) −18.3635 6.93704i −0.695566 0.262759i
\(698\) 0 0
\(699\) −15.4832 + 11.2492i −0.585628 + 0.425484i
\(700\) 0 0
\(701\) 14.8791 45.7931i 0.561975 1.72958i −0.114798 0.993389i \(-0.536622\pi\)
0.676773 0.736192i \(-0.263378\pi\)
\(702\) 0 0
\(703\) −9.76819 + 7.09700i −0.368414 + 0.267669i
\(704\) 0 0
\(705\) −1.64555 5.06449i −0.0619751 0.190740i
\(706\) 0 0
\(707\) 5.09003 + 15.6655i 0.191430 + 0.589161i
\(708\) 0 0
\(709\) 7.32742 22.5515i 0.275187 0.846939i −0.713983 0.700163i \(-0.753111\pi\)
0.989170 0.146775i \(-0.0468895\pi\)
\(710\) 0 0
\(711\) −40.4107 −1.51552
\(712\) 0 0
\(713\) −18.4797 13.4263i −0.692071 0.502819i
\(714\) 0 0
\(715\) −18.5747 + 13.4953i −0.694655 + 0.504696i
\(716\) 0 0
\(717\) 14.7879 + 10.7440i 0.552265 + 0.401244i
\(718\) 0 0
\(719\) 30.0373 + 21.8233i 1.12020 + 0.813874i 0.984240 0.176841i \(-0.0565877\pi\)
0.135961 + 0.990714i \(0.456588\pi\)
\(720\) 0 0
\(721\) 4.62684 + 14.2400i 0.172313 + 0.530324i
\(722\) 0 0
\(723\) 10.7336 33.0346i 0.399186 1.22857i
\(724\) 0 0
\(725\) −8.53199 + 6.19885i −0.316870 + 0.230220i
\(726\) 0 0
\(727\) 4.23471 + 13.0331i 0.157057 + 0.483370i 0.998363 0.0571873i \(-0.0182132\pi\)
−0.841307 + 0.540558i \(0.818213\pi\)
\(728\) 0 0
\(729\) 94.1623 3.48749
\(730\) 0 0
\(731\) 19.9471 + 14.4924i 0.737771 + 0.536022i
\(732\) 0 0
\(733\) −5.12741 + 15.7805i −0.189385 + 0.582867i −0.999996 0.00271745i \(-0.999135\pi\)
0.810611 + 0.585585i \(0.199135\pi\)
\(734\) 0 0
\(735\) 8.79728 0.324493
\(736\) 0 0
\(737\) 9.91512 0.365228
\(738\) 0 0
\(739\) 5.19391 0.191061 0.0955305 0.995427i \(-0.469545\pi\)
0.0955305 + 0.995427i \(0.469545\pi\)
\(740\) 0 0
\(741\) −88.7509 −3.26035
\(742\) 0 0
\(743\) −3.13542 + 9.64982i −0.115027 + 0.354018i −0.991953 0.126609i \(-0.959591\pi\)
0.876925 + 0.480627i \(0.159591\pi\)
\(744\) 0 0
\(745\) 13.6454 + 9.91398i 0.499929 + 0.363220i
\(746\) 0 0
\(747\) −117.486 −4.29859
\(748\) 0 0
\(749\) −7.02209 21.6118i −0.256581 0.789677i
\(750\) 0 0
\(751\) −39.5434 + 28.7300i −1.44296 + 1.04837i −0.455547 + 0.890212i \(0.650556\pi\)
−0.987413 + 0.158160i \(0.949444\pi\)
\(752\) 0 0
\(753\) 11.9094 36.6532i 0.434001 1.33572i
\(754\) 0 0
\(755\) 2.19179 + 6.74563i 0.0797674 + 0.245499i
\(756\) 0 0
\(757\) 30.2686 + 21.9914i 1.10013 + 0.799292i 0.981081 0.193596i \(-0.0620151\pi\)
0.119050 + 0.992888i \(0.462015\pi\)
\(758\) 0 0
\(759\) −107.401 78.0314i −3.89841 2.83236i
\(760\) 0 0
\(761\) 5.24832 3.81313i 0.190251 0.138226i −0.488582 0.872518i \(-0.662486\pi\)
0.678834 + 0.734292i \(0.262486\pi\)
\(762\) 0 0
\(763\) 23.0797 + 16.7684i 0.835542 + 0.607057i
\(764\) 0 0
\(765\) −24.9090 −0.900585
\(766\) 0 0
\(767\) 1.37077 4.21881i 0.0494958 0.152332i
\(768\) 0 0
\(769\) −13.0012 40.0136i −0.468835 1.44293i −0.854094 0.520119i \(-0.825888\pi\)
0.385259 0.922809i \(-0.374112\pi\)
\(770\) 0 0
\(771\) 13.2810 + 40.8748i 0.478304 + 1.47207i
\(772\) 0 0
\(773\) −28.7605 + 20.8957i −1.03444 + 0.751567i −0.969193 0.246301i \(-0.920785\pi\)
−0.0652506 + 0.997869i \(0.520785\pi\)
\(774\) 0 0
\(775\) 0.826547 2.54385i 0.0296905 0.0913778i
\(776\) 0 0
\(777\) −12.5987 + 9.15349i −0.451976 + 0.328380i
\(778\) 0 0
\(779\) 33.3591 9.12932i 1.19521 0.327092i
\(780\) 0 0
\(781\) −13.6630 + 9.92678i −0.488902 + 0.355208i
\(782\) 0 0
\(783\) 55.7088 171.454i 1.99087 6.12727i
\(784\) 0 0
\(785\) 0.158957 0.115489i 0.00567343 0.00412198i
\(786\) 0 0
\(787\) −5.65684 17.4100i −0.201645 0.620598i −0.999835 0.0181924i \(-0.994209\pi\)
0.798190 0.602406i \(-0.205791\pi\)
\(788\) 0 0
\(789\) 12.7041 + 39.0993i 0.452279 + 1.39197i
\(790\) 0 0
\(791\) −12.5468 + 38.6151i −0.446113 + 1.37299i
\(792\) 0 0
\(793\) −39.4889 −1.40229
\(794\) 0 0
\(795\) −12.7589 9.26988i −0.452511 0.328769i
\(796\) 0 0
\(797\) 5.86018 4.25767i 0.207578 0.150814i −0.479139 0.877739i \(-0.659051\pi\)
0.686717 + 0.726925i \(0.259051\pi\)
\(798\) 0 0
\(799\) −3.95974 2.87692i −0.140085 0.101778i
\(800\) 0 0
\(801\) −23.1941 16.8515i −0.819525 0.595420i
\(802\) 0 0
\(803\) 3.13556 + 9.65026i 0.110651 + 0.340550i
\(804\) 0 0
\(805\) −5.51190 + 16.9639i −0.194269 + 0.597898i
\(806\) 0 0
\(807\) 74.9039 54.4209i 2.63674 1.91570i
\(808\) 0 0
\(809\) 3.50044 + 10.7732i 0.123069 + 0.378767i 0.993544 0.113445i \(-0.0361886\pi\)
−0.870475 + 0.492212i \(0.836189\pi\)
\(810\) 0 0
\(811\) 54.3313 1.90783 0.953916 0.300074i \(-0.0970115\pi\)
0.953916 + 0.300074i \(0.0970115\pi\)
\(812\) 0 0
\(813\) 26.3258 + 19.1268i 0.923287 + 0.670807i
\(814\) 0 0
\(815\) 5.49313 16.9061i 0.192416 0.592196i
\(816\) 0 0
\(817\) −43.4408 −1.51980
\(818\) 0 0
\(819\) −83.6005 −2.92124
\(820\) 0 0
\(821\) 21.8549 0.762742 0.381371 0.924422i \(-0.375452\pi\)
0.381371 + 0.924422i \(0.375452\pi\)
\(822\) 0 0
\(823\) 32.2458 1.12402 0.562009 0.827131i \(-0.310029\pi\)
0.562009 + 0.827131i \(0.310029\pi\)
\(824\) 0 0
\(825\) 4.80375 14.7844i 0.167245 0.514728i
\(826\) 0 0
\(827\) 21.5312 + 15.6433i 0.748714 + 0.543972i 0.895428 0.445207i \(-0.146870\pi\)
−0.146714 + 0.989179i \(0.546870\pi\)
\(828\) 0 0
\(829\) 25.6128 0.889570 0.444785 0.895637i \(-0.353280\pi\)
0.444785 + 0.895637i \(0.353280\pi\)
\(830\) 0 0
\(831\) 5.90139 + 18.1626i 0.204717 + 0.630054i
\(832\) 0 0
\(833\) 6.54162 4.75276i 0.226654 0.164674i
\(834\) 0 0
\(835\) 0.837219 2.57669i 0.0289732 0.0891702i
\(836\) 0 0
\(837\) 14.1292 + 43.4851i 0.488375 + 1.50306i
\(838\) 0 0
\(839\) −18.0619 13.1227i −0.623565 0.453047i 0.230600 0.973049i \(-0.425931\pi\)
−0.854165 + 0.520002i \(0.825931\pi\)
\(840\) 0 0
\(841\) −66.5179 48.3281i −2.29372 1.66649i
\(842\) 0 0
\(843\) 14.1361 10.2705i 0.486873 0.353734i
\(844\) 0 0
\(845\) 9.11599 + 6.62316i 0.313600 + 0.227844i
\(846\) 0 0
\(847\) 22.3940 0.769467
\(848\) 0 0
\(849\) −20.9935 + 64.6115i −0.720497 + 2.21746i
\(850\) 0 0
\(851\) 5.89911 + 18.1556i 0.202219 + 0.622365i
\(852\) 0 0
\(853\) −1.07527 3.30936i −0.0368167 0.113310i 0.930959 0.365123i \(-0.118973\pi\)
−0.967776 + 0.251813i \(0.918973\pi\)
\(854\) 0 0
\(855\) 35.5049 25.7958i 1.21424 0.882199i
\(856\) 0 0
\(857\) 17.0710 52.5390i 0.583133 1.79470i −0.0235106 0.999724i \(-0.507484\pi\)
0.606643 0.794974i \(-0.292516\pi\)
\(858\) 0 0
\(859\) 1.03047 0.748680i 0.0351591 0.0255446i −0.570067 0.821598i \(-0.693083\pi\)
0.605226 + 0.796054i \(0.293083\pi\)
\(860\) 0 0
\(861\) 43.0255 11.7747i 1.46631 0.401281i
\(862\) 0 0
\(863\) −31.8678 + 23.1533i −1.08479 + 0.788147i −0.978512 0.206189i \(-0.933894\pi\)
−0.106279 + 0.994336i \(0.533894\pi\)
\(864\) 0 0
\(865\) −3.65838 + 11.2593i −0.124389 + 0.382829i
\(866\) 0 0
\(867\) 20.5119 14.9028i 0.696621 0.506125i
\(868\) 0 0
\(869\) −7.16309 22.0457i −0.242991 0.747850i
\(870\) 0 0
\(871\) −3.23854 9.96721i −0.109734 0.337726i
\(872\) 0 0
\(873\) −43.6688 + 134.399i −1.47797 + 4.54871i
\(874\) 0 0
\(875\) −2.08865 −0.0706093
\(876\) 0 0
\(877\) −6.61692 4.80748i −0.223438 0.162337i 0.470435 0.882435i \(-0.344097\pi\)
−0.693873 + 0.720098i \(0.744097\pi\)
\(878\) 0 0
\(879\) 4.08076 2.96484i 0.137641 0.100002i
\(880\) 0 0
\(881\) 20.3449 + 14.7814i 0.685436 + 0.497999i 0.875157 0.483840i \(-0.160758\pi\)
−0.189720 + 0.981838i \(0.560758\pi\)
\(882\) 0 0
\(883\) −36.7804 26.7225i −1.23776 0.899285i −0.240312 0.970696i \(-0.577250\pi\)
−0.997447 + 0.0714110i \(0.977250\pi\)
\(884\) 0 0
\(885\) 0.928111 + 2.85643i 0.0311981 + 0.0960179i
\(886\) 0 0
\(887\) −2.90142 + 8.92964i −0.0974201 + 0.299828i −0.987877 0.155240i \(-0.950385\pi\)
0.890457 + 0.455068i \(0.150385\pi\)
\(888\) 0 0
\(889\) 9.99067 7.25865i 0.335076 0.243447i
\(890\) 0 0
\(891\) 47.0106 + 144.684i 1.57492 + 4.84709i
\(892\) 0 0
\(893\) 8.62351 0.288575
\(894\) 0 0
\(895\) −12.2680 8.91323i −0.410074 0.297936i
\(896\) 0 0
\(897\) −43.3613 + 133.452i −1.44779 + 4.45585i
\(898\) 0 0
\(899\) 28.2084 0.940802
\(900\) 0 0
\(901\) −14.4955 −0.482917
\(902\) 0 0
\(903\) −56.0286 −1.86451
\(904\) 0 0
\(905\) 8.66409 0.288004
\(906\) 0 0
\(907\) 5.34193 16.4408i 0.177376 0.545907i −0.822358 0.568970i \(-0.807342\pi\)
0.999734 + 0.0230633i \(0.00734192\pi\)
\(908\) 0 0
\(909\) −51.8388 37.6631i −1.71938 1.24921i
\(910\) 0 0
\(911\) −54.5483 −1.80727 −0.903633 0.428307i \(-0.859110\pi\)
−0.903633 + 0.428307i \(0.859110\pi\)
\(912\) 0 0
\(913\) −20.8253 64.0936i −0.689216 2.12119i
\(914\) 0 0
\(915\) 21.6305 15.7155i 0.715083 0.519538i
\(916\) 0 0
\(917\) −0.182377 + 0.561300i −0.00602263 + 0.0185357i
\(918\) 0 0
\(919\) −2.65635 8.17539i −0.0876248 0.269681i 0.897637 0.440736i \(-0.145283\pi\)
−0.985262 + 0.171055i \(0.945283\pi\)
\(920\) 0 0
\(921\) −11.4680 8.33200i −0.377884 0.274549i
\(922\) 0 0
\(923\) 14.4417 + 10.4925i 0.475353 + 0.345364i
\(924\) 0 0
\(925\) −1.80846 + 1.31392i −0.0594618 + 0.0432015i
\(926\) 0 0
\(927\) −47.1215 34.2358i −1.54767 1.12445i
\(928\) 0 0
\(929\) 29.4749 0.967041 0.483520 0.875333i \(-0.339358\pi\)
0.483520 + 0.875333i \(0.339358\pi\)
\(930\) 0 0
\(931\) −4.40236 + 13.5491i −0.144281 + 0.444052i
\(932\) 0 0
\(933\) 4.29420 + 13.2162i 0.140586 + 0.432679i
\(934\) 0 0
\(935\) −4.41529 13.5889i −0.144396 0.444404i
\(936\) 0 0
\(937\) 42.0020 30.5162i 1.37215 0.996922i 0.374579 0.927195i \(-0.377787\pi\)
0.997566 0.0697268i \(-0.0222128\pi\)
\(938\) 0 0
\(939\) −18.7716 + 57.7731i −0.612589 + 1.88535i
\(940\) 0 0
\(941\) 22.9438 16.6697i 0.747947 0.543416i −0.147243 0.989100i \(-0.547040\pi\)
0.895190 + 0.445685i \(0.147040\pi\)
\(942\) 0 0
\(943\) 2.57083 54.6216i 0.0837179 1.77872i
\(944\) 0 0
\(945\) 28.8850 20.9862i 0.939629 0.682680i
\(946\) 0 0
\(947\) 2.34187 7.20753i 0.0761005 0.234213i −0.905769 0.423772i \(-0.860706\pi\)
0.981869 + 0.189559i \(0.0607057\pi\)
\(948\) 0 0
\(949\) 8.67680 6.30407i 0.281661 0.204639i
\(950\) 0 0
\(951\) 27.5057 + 84.6538i 0.891933 + 2.74509i
\(952\) 0 0
\(953\) 3.17955 + 9.78565i 0.102996 + 0.316988i 0.989255 0.146202i \(-0.0467048\pi\)
−0.886259 + 0.463190i \(0.846705\pi\)
\(954\) 0 0
\(955\) 4.30366 13.2453i 0.139263 0.428608i
\(956\) 0 0
\(957\) 163.942 5.29950
\(958\) 0 0
\(959\) −2.19436 1.59429i −0.0708594 0.0514824i
\(960\) 0 0
\(961\) 19.2915 14.0161i 0.622307 0.452133i
\(962\) 0 0
\(963\) 71.5156 + 51.9592i 2.30456 + 1.67436i
\(964\) 0 0
\(965\) −1.85598 1.34845i −0.0597462 0.0434082i
\(966\) 0 0
\(967\) −3.28081 10.0973i −0.105504 0.324707i 0.884345 0.466835i \(-0.154606\pi\)
−0.989848 + 0.142128i \(0.954606\pi\)
\(968\) 0 0
\(969\) 17.0674 52.5282i 0.548285 1.68745i
\(970\) 0 0
\(971\) −36.4545 + 26.4858i −1.16988 + 0.849969i −0.990995 0.133901i \(-0.957250\pi\)
−0.178887 + 0.983870i \(0.557250\pi\)
\(972\) 0 0
\(973\) −9.68177 29.7974i −0.310383 0.955262i
\(974\) 0 0
\(975\) −16.4311 −0.526218
\(976\) 0 0
\(977\) −47.2187 34.3064i −1.51066 1.09756i −0.965883 0.258979i \(-0.916614\pi\)
−0.544778 0.838580i \(-0.683386\pi\)
\(978\) 0 0
\(979\) 5.08188 15.6404i 0.162418 0.499870i
\(980\) 0 0
\(981\) −110.977 −3.54322
\(982\) 0 0
\(983\) 0.907982 0.0289601 0.0144801 0.999895i \(-0.495391\pi\)
0.0144801 + 0.999895i \(0.495391\pi\)
\(984\) 0 0
\(985\) 2.21504 0.0705770
\(986\) 0 0
\(987\) 11.1223 0.354028
\(988\) 0 0
\(989\) −21.2240 + 65.3208i −0.674885 + 2.07708i
\(990\) 0 0
\(991\) 33.8655 + 24.6047i 1.07577 + 0.781595i 0.976941 0.213509i \(-0.0684892\pi\)
0.0988324 + 0.995104i \(0.468489\pi\)
\(992\) 0 0
\(993\) 41.2454 1.30888
\(994\) 0 0
\(995\) −2.02444 6.23060i −0.0641792 0.197523i
\(996\) 0 0
\(997\) −37.0372 + 26.9091i −1.17298 + 0.852219i −0.991363 0.131150i \(-0.958133\pi\)
−0.181617 + 0.983369i \(0.558133\pi\)
\(998\) 0 0
\(999\) 11.8082 36.3418i 0.373594 1.14980i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.b.201.8 32
41.10 even 5 inner 820.2.u.b.461.8 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.b.201.8 32 1.1 even 1 trivial
820.2.u.b.461.8 yes 32 41.10 even 5 inner