Properties

Label 820.2.u.b.201.7
Level $820$
Weight $2$
Character 820.201
Analytic conductor $6.548$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.7
Character \(\chi\) \(=\) 820.201
Dual form 820.2.u.b.461.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.19153 q^{3} +(-0.309017 + 0.951057i) q^{5} +(1.32809 + 0.964915i) q^{7} +1.80282 q^{9} +(0.350697 + 1.07933i) q^{11} +(-4.20663 + 3.05630i) q^{13} +(-0.677221 + 2.08427i) q^{15} +(1.10772 + 3.40923i) q^{17} +(6.46733 + 4.69879i) q^{19} +(2.91056 + 2.11464i) q^{21} +(5.76416 - 4.18791i) q^{23} +(-0.809017 - 0.587785i) q^{25} -2.62367 q^{27} +(0.846567 - 2.60546i) q^{29} +(-1.42070 - 4.37246i) q^{31} +(0.768563 + 2.36539i) q^{33} +(-1.32809 + 0.964915i) q^{35} +(2.46732 - 7.59364i) q^{37} +(-9.21898 + 6.69798i) q^{39} +(-0.540510 + 6.38027i) q^{41} +(-5.00327 + 3.63509i) q^{43} +(-0.557101 + 1.71458i) q^{45} +(9.80804 - 7.12596i) q^{47} +(-1.33035 - 4.09440i) q^{49} +(2.42762 + 7.47143i) q^{51} +(-1.74877 + 5.38217i) q^{53} -1.13488 q^{55} +(14.1734 + 10.2976i) q^{57} +(-2.98906 + 2.17168i) q^{59} +(-6.23688 - 4.53136i) q^{61} +(2.39431 + 1.73957i) q^{63} +(-1.60679 - 4.94519i) q^{65} +(1.71907 - 5.29074i) q^{67} +(12.6323 - 9.17793i) q^{69} +(-0.714113 - 2.19781i) q^{71} -5.12044 q^{73} +(-1.77299 - 1.28815i) q^{75} +(-0.575708 + 1.77185i) q^{77} +15.1613 q^{79} -11.1583 q^{81} -8.41696 q^{83} -3.58467 q^{85} +(1.85528 - 5.70996i) q^{87} +(-7.06638 - 5.13403i) q^{89} -8.53586 q^{91} +(-3.11351 - 9.58239i) q^{93} +(-6.46733 + 4.69879i) q^{95} +(2.81546 - 8.66510i) q^{97} +(0.632242 + 1.94584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{3} + 8 q^{5} - 5 q^{7} + 46 q^{9} + q^{11} + q^{13} - 2 q^{15} + 7 q^{17} - 13 q^{19} - 6 q^{21} + 4 q^{23} - 8 q^{25} - 28 q^{27} + 3 q^{29} - q^{31} + 14 q^{33} + 5 q^{35} - 25 q^{37} + 26 q^{41}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.19153 1.26528 0.632641 0.774445i \(-0.281971\pi\)
0.632641 + 0.774445i \(0.281971\pi\)
\(4\) 0 0
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) 1.32809 + 0.964915i 0.501971 + 0.364704i 0.809770 0.586748i \(-0.199592\pi\)
−0.307798 + 0.951452i \(0.599592\pi\)
\(8\) 0 0
\(9\) 1.80282 0.600939
\(10\) 0 0
\(11\) 0.350697 + 1.07933i 0.105739 + 0.325431i 0.989903 0.141745i \(-0.0452713\pi\)
−0.884164 + 0.467176i \(0.845271\pi\)
\(12\) 0 0
\(13\) −4.20663 + 3.05630i −1.16671 + 0.847665i −0.990611 0.136708i \(-0.956348\pi\)
−0.176099 + 0.984372i \(0.556348\pi\)
\(14\) 0 0
\(15\) −0.677221 + 2.08427i −0.174858 + 0.538157i
\(16\) 0 0
\(17\) 1.10772 + 3.40923i 0.268663 + 0.826859i 0.990827 + 0.135137i \(0.0431475\pi\)
−0.722164 + 0.691722i \(0.756852\pi\)
\(18\) 0 0
\(19\) 6.46733 + 4.69879i 1.48371 + 1.07798i 0.976339 + 0.216247i \(0.0693815\pi\)
0.507368 + 0.861730i \(0.330618\pi\)
\(20\) 0 0
\(21\) 2.91056 + 2.11464i 0.635136 + 0.461453i
\(22\) 0 0
\(23\) 5.76416 4.18791i 1.20191 0.873239i 0.207439 0.978248i \(-0.433487\pi\)
0.994471 + 0.105009i \(0.0334873\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 0 0
\(27\) −2.62367 −0.504925
\(28\) 0 0
\(29\) 0.846567 2.60546i 0.157204 0.483823i −0.841174 0.540765i \(-0.818135\pi\)
0.998377 + 0.0569419i \(0.0181350\pi\)
\(30\) 0 0
\(31\) −1.42070 4.37246i −0.255165 0.785317i −0.993797 0.111208i \(-0.964528\pi\)
0.738632 0.674109i \(-0.235472\pi\)
\(32\) 0 0
\(33\) 0.768563 + 2.36539i 0.133790 + 0.411762i
\(34\) 0 0
\(35\) −1.32809 + 0.964915i −0.224488 + 0.163100i
\(36\) 0 0
\(37\) 2.46732 7.59364i 0.405626 1.24839i −0.514746 0.857343i \(-0.672114\pi\)
0.920372 0.391045i \(-0.127886\pi\)
\(38\) 0 0
\(39\) −9.21898 + 6.69798i −1.47622 + 1.07254i
\(40\) 0 0
\(41\) −0.540510 + 6.38027i −0.0844134 + 0.996431i
\(42\) 0 0
\(43\) −5.00327 + 3.63509i −0.762992 + 0.554346i −0.899826 0.436248i \(-0.856307\pi\)
0.136835 + 0.990594i \(0.456307\pi\)
\(44\) 0 0
\(45\) −0.557101 + 1.71458i −0.0830477 + 0.255595i
\(46\) 0 0
\(47\) 9.80804 7.12596i 1.43065 1.03943i 0.440754 0.897628i \(-0.354711\pi\)
0.989895 0.141800i \(-0.0452889\pi\)
\(48\) 0 0
\(49\) −1.33035 4.09440i −0.190050 0.584915i
\(50\) 0 0
\(51\) 2.42762 + 7.47143i 0.339934 + 1.04621i
\(52\) 0 0
\(53\) −1.74877 + 5.38217i −0.240213 + 0.739298i 0.756175 + 0.654370i \(0.227066\pi\)
−0.996387 + 0.0849282i \(0.972934\pi\)
\(54\) 0 0
\(55\) −1.13488 −0.153027
\(56\) 0 0
\(57\) 14.1734 + 10.2976i 1.87731 + 1.36394i
\(58\) 0 0
\(59\) −2.98906 + 2.17168i −0.389143 + 0.282729i −0.765104 0.643906i \(-0.777313\pi\)
0.375961 + 0.926635i \(0.377313\pi\)
\(60\) 0 0
\(61\) −6.23688 4.53136i −0.798551 0.580181i 0.111938 0.993715i \(-0.464294\pi\)
−0.910489 + 0.413534i \(0.864294\pi\)
\(62\) 0 0
\(63\) 2.39431 + 1.73957i 0.301654 + 0.219165i
\(64\) 0 0
\(65\) −1.60679 4.94519i −0.199298 0.613376i
\(66\) 0 0
\(67\) 1.71907 5.29074i 0.210017 0.646367i −0.789453 0.613811i \(-0.789636\pi\)
0.999470 0.0325552i \(-0.0103645\pi\)
\(68\) 0 0
\(69\) 12.6323 9.17793i 1.52076 1.10489i
\(70\) 0 0
\(71\) −0.714113 2.19781i −0.0847496 0.260832i 0.899697 0.436514i \(-0.143787\pi\)
−0.984447 + 0.175682i \(0.943787\pi\)
\(72\) 0 0
\(73\) −5.12044 −0.599302 −0.299651 0.954049i \(-0.596870\pi\)
−0.299651 + 0.954049i \(0.596870\pi\)
\(74\) 0 0
\(75\) −1.77299 1.28815i −0.204727 0.148743i
\(76\) 0 0
\(77\) −0.575708 + 1.77185i −0.0656080 + 0.201921i
\(78\) 0 0
\(79\) 15.1613 1.70578 0.852888 0.522093i \(-0.174849\pi\)
0.852888 + 0.522093i \(0.174849\pi\)
\(80\) 0 0
\(81\) −11.1583 −1.23981
\(82\) 0 0
\(83\) −8.41696 −0.923882 −0.461941 0.886911i \(-0.652847\pi\)
−0.461941 + 0.886911i \(0.652847\pi\)
\(84\) 0 0
\(85\) −3.58467 −0.388812
\(86\) 0 0
\(87\) 1.85528 5.70996i 0.198907 0.612172i
\(88\) 0 0
\(89\) −7.06638 5.13403i −0.749035 0.544206i 0.146492 0.989212i \(-0.453202\pi\)
−0.895528 + 0.445006i \(0.853202\pi\)
\(90\) 0 0
\(91\) −8.53586 −0.894802
\(92\) 0 0
\(93\) −3.11351 9.58239i −0.322856 0.993647i
\(94\) 0 0
\(95\) −6.46733 + 4.69879i −0.663534 + 0.482086i
\(96\) 0 0
\(97\) 2.81546 8.66510i 0.285867 0.879808i −0.700271 0.713877i \(-0.746937\pi\)
0.986137 0.165930i \(-0.0530627\pi\)
\(98\) 0 0
\(99\) 0.632242 + 1.94584i 0.0635427 + 0.195564i
\(100\) 0 0
\(101\) 5.45136 + 3.96065i 0.542431 + 0.394099i 0.824987 0.565152i \(-0.191182\pi\)
−0.282556 + 0.959251i \(0.591182\pi\)
\(102\) 0 0
\(103\) −15.5758 11.3164i −1.53472 1.11504i −0.953538 0.301272i \(-0.902589\pi\)
−0.581186 0.813770i \(-0.697411\pi\)
\(104\) 0 0
\(105\) −2.91056 + 2.11464i −0.284041 + 0.206368i
\(106\) 0 0
\(107\) 9.83902 + 7.14847i 0.951174 + 0.691068i 0.951084 0.308932i \(-0.0999714\pi\)
8.96990e−5 1.00000i \(0.499971\pi\)
\(108\) 0 0
\(109\) 13.0994 1.25470 0.627350 0.778738i \(-0.284140\pi\)
0.627350 + 0.778738i \(0.284140\pi\)
\(110\) 0 0
\(111\) 5.40722 16.6417i 0.513231 1.57956i
\(112\) 0 0
\(113\) 3.63195 + 11.1780i 0.341665 + 1.05154i 0.963345 + 0.268265i \(0.0864504\pi\)
−0.621680 + 0.783271i \(0.713550\pi\)
\(114\) 0 0
\(115\) 2.20171 + 6.77617i 0.205311 + 0.631881i
\(116\) 0 0
\(117\) −7.58379 + 5.50995i −0.701122 + 0.509395i
\(118\) 0 0
\(119\) −1.81845 + 5.59663i −0.166697 + 0.513042i
\(120\) 0 0
\(121\) 7.85721 5.70860i 0.714292 0.518964i
\(122\) 0 0
\(123\) −1.18454 + 13.9826i −0.106807 + 1.26077i
\(124\) 0 0
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) −1.32333 + 4.07280i −0.117427 + 0.361402i −0.992445 0.122687i \(-0.960849\pi\)
0.875019 + 0.484089i \(0.160849\pi\)
\(128\) 0 0
\(129\) −10.9648 + 7.96642i −0.965400 + 0.701404i
\(130\) 0 0
\(131\) 4.31892 + 13.2923i 0.377345 + 1.16135i 0.941883 + 0.335942i \(0.109055\pi\)
−0.564537 + 0.825408i \(0.690945\pi\)
\(132\) 0 0
\(133\) 4.05527 + 12.4808i 0.351637 + 1.08223i
\(134\) 0 0
\(135\) 0.810757 2.49525i 0.0697789 0.214757i
\(136\) 0 0
\(137\) 9.83411 0.840185 0.420093 0.907481i \(-0.361998\pi\)
0.420093 + 0.907481i \(0.361998\pi\)
\(138\) 0 0
\(139\) −17.1316 12.4468i −1.45308 1.05573i −0.985099 0.171988i \(-0.944981\pi\)
−0.467982 0.883738i \(-0.655019\pi\)
\(140\) 0 0
\(141\) 21.4946 15.6168i 1.81018 1.31517i
\(142\) 0 0
\(143\) −4.77402 3.46853i −0.399223 0.290053i
\(144\) 0 0
\(145\) 2.21634 + 1.61027i 0.184057 + 0.133725i
\(146\) 0 0
\(147\) −2.91551 8.97302i −0.240467 0.740082i
\(148\) 0 0
\(149\) 5.17634 15.9312i 0.424063 1.30513i −0.479826 0.877364i \(-0.659300\pi\)
0.903889 0.427767i \(-0.140700\pi\)
\(150\) 0 0
\(151\) −8.45975 + 6.14637i −0.688445 + 0.500184i −0.876148 0.482041i \(-0.839896\pi\)
0.187704 + 0.982226i \(0.439896\pi\)
\(152\) 0 0
\(153\) 1.99703 + 6.14621i 0.161450 + 0.496892i
\(154\) 0 0
\(155\) 4.59748 0.369278
\(156\) 0 0
\(157\) −6.85297 4.97897i −0.546927 0.397365i 0.279724 0.960080i \(-0.409757\pi\)
−0.826651 + 0.562715i \(0.809757\pi\)
\(158\) 0 0
\(159\) −3.83250 + 11.7952i −0.303937 + 0.935421i
\(160\) 0 0
\(161\) 11.6963 0.921798
\(162\) 0 0
\(163\) −21.5103 −1.68481 −0.842407 0.538841i \(-0.818862\pi\)
−0.842407 + 0.538841i \(0.818862\pi\)
\(164\) 0 0
\(165\) −2.48712 −0.193622
\(166\) 0 0
\(167\) −15.3123 −1.18490 −0.592451 0.805606i \(-0.701840\pi\)
−0.592451 + 0.805606i \(0.701840\pi\)
\(168\) 0 0
\(169\) 4.33759 13.3497i 0.333661 1.02690i
\(170\) 0 0
\(171\) 11.6594 + 8.47106i 0.891617 + 0.647798i
\(172\) 0 0
\(173\) −6.18476 −0.470218 −0.235109 0.971969i \(-0.575545\pi\)
−0.235109 + 0.971969i \(0.575545\pi\)
\(174\) 0 0
\(175\) −0.507286 1.56127i −0.0383472 0.118021i
\(176\) 0 0
\(177\) −6.55063 + 4.75931i −0.492376 + 0.357732i
\(178\) 0 0
\(179\) −1.67116 + 5.14330i −0.124908 + 0.384428i −0.993884 0.110426i \(-0.964779\pi\)
0.868976 + 0.494854i \(0.164779\pi\)
\(180\) 0 0
\(181\) 0.362043 + 1.11425i 0.0269104 + 0.0828218i 0.963610 0.267313i \(-0.0861358\pi\)
−0.936699 + 0.350135i \(0.886136\pi\)
\(182\) 0 0
\(183\) −13.6683 9.93063i −1.01039 0.734093i
\(184\) 0 0
\(185\) 6.45954 + 4.69313i 0.474915 + 0.345046i
\(186\) 0 0
\(187\) −3.29122 + 2.39121i −0.240678 + 0.174863i
\(188\) 0 0
\(189\) −3.48447 2.53161i −0.253458 0.184148i
\(190\) 0 0
\(191\) 8.40810 0.608389 0.304195 0.952610i \(-0.401613\pi\)
0.304195 + 0.952610i \(0.401613\pi\)
\(192\) 0 0
\(193\) 0.897313 2.76165i 0.0645900 0.198788i −0.913553 0.406719i \(-0.866673\pi\)
0.978143 + 0.207931i \(0.0666730\pi\)
\(194\) 0 0
\(195\) −3.52134 10.8376i −0.252168 0.776094i
\(196\) 0 0
\(197\) −3.83527 11.8037i −0.273251 0.840981i −0.989677 0.143318i \(-0.954223\pi\)
0.716425 0.697664i \(-0.245777\pi\)
\(198\) 0 0
\(199\) 2.65384 1.92812i 0.188125 0.136681i −0.489736 0.871871i \(-0.662907\pi\)
0.677862 + 0.735190i \(0.262907\pi\)
\(200\) 0 0
\(201\) 3.76739 11.5948i 0.265731 0.817836i
\(202\) 0 0
\(203\) 3.63837 2.64343i 0.255364 0.185532i
\(204\) 0 0
\(205\) −5.90097 2.48567i −0.412142 0.173607i
\(206\) 0 0
\(207\) 10.3917 7.55003i 0.722275 0.524763i
\(208\) 0 0
\(209\) −2.80349 + 8.62825i −0.193921 + 0.596829i
\(210\) 0 0
\(211\) 12.8019 9.30114i 0.881321 0.640317i −0.0522798 0.998632i \(-0.516649\pi\)
0.933601 + 0.358315i \(0.116649\pi\)
\(212\) 0 0
\(213\) −1.56500 4.81658i −0.107232 0.330027i
\(214\) 0 0
\(215\) −1.91108 5.88170i −0.130335 0.401128i
\(216\) 0 0
\(217\) 2.33223 7.17788i 0.158322 0.487266i
\(218\) 0 0
\(219\) −11.2216 −0.758286
\(220\) 0 0
\(221\) −15.0794 10.9558i −1.01435 0.736969i
\(222\) 0 0
\(223\) −13.0330 + 9.46904i −0.872755 + 0.634094i −0.931325 0.364190i \(-0.881346\pi\)
0.0585697 + 0.998283i \(0.481346\pi\)
\(224\) 0 0
\(225\) −1.45851 1.05967i −0.0972340 0.0706446i
\(226\) 0 0
\(227\) −19.8584 14.4280i −1.31805 0.957618i −0.999954 0.00955858i \(-0.996957\pi\)
−0.318094 0.948059i \(-0.603043\pi\)
\(228\) 0 0
\(229\) 0.984738 + 3.03071i 0.0650733 + 0.200275i 0.978307 0.207162i \(-0.0664227\pi\)
−0.913233 + 0.407437i \(0.866423\pi\)
\(230\) 0 0
\(231\) −1.26168 + 3.88306i −0.0830126 + 0.255487i
\(232\) 0 0
\(233\) 1.94807 1.41535i 0.127622 0.0927229i −0.522143 0.852858i \(-0.674867\pi\)
0.649765 + 0.760135i \(0.274867\pi\)
\(234\) 0 0
\(235\) 3.74634 + 11.5300i 0.244384 + 0.752137i
\(236\) 0 0
\(237\) 33.2264 2.15829
\(238\) 0 0
\(239\) 7.50888 + 5.45552i 0.485709 + 0.352888i 0.803532 0.595262i \(-0.202952\pi\)
−0.317823 + 0.948150i \(0.602952\pi\)
\(240\) 0 0
\(241\) 4.07626 12.5454i 0.262575 0.808123i −0.729667 0.683803i \(-0.760325\pi\)
0.992242 0.124320i \(-0.0396751\pi\)
\(242\) 0 0
\(243\) −16.5828 −1.06379
\(244\) 0 0
\(245\) 4.30511 0.275043
\(246\) 0 0
\(247\) −41.5666 −2.64482
\(248\) 0 0
\(249\) −18.4461 −1.16897
\(250\) 0 0
\(251\) 2.76296 8.50353i 0.174397 0.536738i −0.825209 0.564828i \(-0.808942\pi\)
0.999605 + 0.0280900i \(0.00894250\pi\)
\(252\) 0 0
\(253\) 6.54162 + 4.75276i 0.411268 + 0.298804i
\(254\) 0 0
\(255\) −7.85593 −0.491957
\(256\) 0 0
\(257\) 7.70264 + 23.7063i 0.480478 + 1.47876i 0.838425 + 0.545017i \(0.183477\pi\)
−0.357947 + 0.933742i \(0.616523\pi\)
\(258\) 0 0
\(259\) 10.6041 7.70430i 0.658904 0.478722i
\(260\) 0 0
\(261\) 1.52621 4.69718i 0.0944697 0.290748i
\(262\) 0 0
\(263\) 3.90645 + 12.0228i 0.240882 + 0.741358i 0.996287 + 0.0860994i \(0.0274403\pi\)
−0.755405 + 0.655258i \(0.772560\pi\)
\(264\) 0 0
\(265\) −4.57835 3.32637i −0.281246 0.204337i
\(266\) 0 0
\(267\) −15.4862 11.2514i −0.947741 0.688574i
\(268\) 0 0
\(269\) 22.3692 16.2522i 1.36387 0.990912i 0.365685 0.930739i \(-0.380835\pi\)
0.998188 0.0601731i \(-0.0191653\pi\)
\(270\) 0 0
\(271\) −0.454560 0.330257i −0.0276126 0.0200617i 0.573893 0.818930i \(-0.305432\pi\)
−0.601506 + 0.798868i \(0.705432\pi\)
\(272\) 0 0
\(273\) −18.7066 −1.13218
\(274\) 0 0
\(275\) 0.350697 1.07933i 0.0211478 0.0650863i
\(276\) 0 0
\(277\) 2.58859 + 7.96688i 0.155534 + 0.478683i 0.998215 0.0597300i \(-0.0190240\pi\)
−0.842681 + 0.538413i \(0.819024\pi\)
\(278\) 0 0
\(279\) −2.56126 7.88274i −0.153339 0.471927i
\(280\) 0 0
\(281\) 12.9039 9.37521i 0.769780 0.559278i −0.132114 0.991235i \(-0.542177\pi\)
0.901895 + 0.431956i \(0.142177\pi\)
\(282\) 0 0
\(283\) 4.02623 12.3915i 0.239335 0.736596i −0.757182 0.653204i \(-0.773424\pi\)
0.996517 0.0833925i \(-0.0265755\pi\)
\(284\) 0 0
\(285\) −14.1734 + 10.2976i −0.839558 + 0.609974i
\(286\) 0 0
\(287\) −6.87427 + 7.95204i −0.405775 + 0.469394i
\(288\) 0 0
\(289\) 3.35752 2.43938i 0.197501 0.143493i
\(290\) 0 0
\(291\) 6.17018 18.9899i 0.361702 1.11321i
\(292\) 0 0
\(293\) −7.24313 + 5.26244i −0.423148 + 0.307435i −0.778903 0.627144i \(-0.784224\pi\)
0.355755 + 0.934579i \(0.384224\pi\)
\(294\) 0 0
\(295\) −1.14172 3.51386i −0.0664736 0.204585i
\(296\) 0 0
\(297\) −0.920111 2.83181i −0.0533903 0.164318i
\(298\) 0 0
\(299\) −11.4482 + 35.2340i −0.662067 + 2.03763i
\(300\) 0 0
\(301\) −10.1524 −0.585172
\(302\) 0 0
\(303\) 11.9468 + 8.67989i 0.686328 + 0.498647i
\(304\) 0 0
\(305\) 6.23688 4.53136i 0.357123 0.259465i
\(306\) 0 0
\(307\) 24.2745 + 17.6364i 1.38542 + 1.00656i 0.996351 + 0.0853537i \(0.0272020\pi\)
0.389065 + 0.921210i \(0.372798\pi\)
\(308\) 0 0
\(309\) −34.1348 24.8004i −1.94186 1.41084i
\(310\) 0 0
\(311\) −7.10279 21.8601i −0.402762 1.23957i −0.922750 0.385400i \(-0.874063\pi\)
0.519988 0.854174i \(-0.325937\pi\)
\(312\) 0 0
\(313\) 3.99612 12.2988i 0.225874 0.695169i −0.772328 0.635224i \(-0.780908\pi\)
0.998202 0.0599444i \(-0.0190923\pi\)
\(314\) 0 0
\(315\) −2.39431 + 1.73957i −0.134904 + 0.0980134i
\(316\) 0 0
\(317\) 4.34412 + 13.3698i 0.243990 + 0.750924i 0.995801 + 0.0915450i \(0.0291805\pi\)
−0.751811 + 0.659379i \(0.770819\pi\)
\(318\) 0 0
\(319\) 3.10905 0.174074
\(320\) 0 0
\(321\) 21.5625 + 15.6661i 1.20350 + 0.874396i
\(322\) 0 0
\(323\) −8.85522 + 27.2536i −0.492717 + 1.51643i
\(324\) 0 0
\(325\) 5.19969 0.288427
\(326\) 0 0
\(327\) 28.7079 1.58755
\(328\) 0 0
\(329\) 19.9019 1.09723
\(330\) 0 0
\(331\) 1.82608 0.100371 0.0501853 0.998740i \(-0.484019\pi\)
0.0501853 + 0.998740i \(0.484019\pi\)
\(332\) 0 0
\(333\) 4.44813 13.6900i 0.243756 0.750205i
\(334\) 0 0
\(335\) 4.50057 + 3.26986i 0.245892 + 0.178651i
\(336\) 0 0
\(337\) −11.5965 −0.631703 −0.315852 0.948809i \(-0.602290\pi\)
−0.315852 + 0.948809i \(0.602290\pi\)
\(338\) 0 0
\(339\) 7.95953 + 24.4969i 0.432303 + 1.33049i
\(340\) 0 0
\(341\) 4.22111 3.06681i 0.228586 0.166077i
\(342\) 0 0
\(343\) 5.73492 17.6503i 0.309657 0.953025i
\(344\) 0 0
\(345\) 4.82512 + 14.8502i 0.259776 + 0.799508i
\(346\) 0 0
\(347\) −3.89268 2.82820i −0.208970 0.151826i 0.478378 0.878154i \(-0.341225\pi\)
−0.687348 + 0.726329i \(0.741225\pi\)
\(348\) 0 0
\(349\) −19.7054 14.3168i −1.05481 0.766361i −0.0816855 0.996658i \(-0.526030\pi\)
−0.973120 + 0.230297i \(0.926030\pi\)
\(350\) 0 0
\(351\) 11.0368 8.01871i 0.589101 0.428007i
\(352\) 0 0
\(353\) −6.43617 4.67615i −0.342563 0.248886i 0.403180 0.915121i \(-0.367905\pi\)
−0.745742 + 0.666235i \(0.767905\pi\)
\(354\) 0 0
\(355\) 2.31092 0.122651
\(356\) 0 0
\(357\) −3.98520 + 12.2652i −0.210919 + 0.649143i
\(358\) 0 0
\(359\) 0.181527 + 0.558683i 0.00958064 + 0.0294862i 0.955733 0.294237i \(-0.0950654\pi\)
−0.946152 + 0.323723i \(0.895065\pi\)
\(360\) 0 0
\(361\) 13.8764 + 42.7071i 0.730336 + 2.24774i
\(362\) 0 0
\(363\) 17.2193 12.5106i 0.903781 0.656636i
\(364\) 0 0
\(365\) 1.58230 4.86982i 0.0828215 0.254898i
\(366\) 0 0
\(367\) 4.97233 3.61261i 0.259554 0.188577i −0.450397 0.892829i \(-0.648717\pi\)
0.709950 + 0.704252i \(0.248717\pi\)
\(368\) 0 0
\(369\) −0.974440 + 11.5025i −0.0507273 + 0.598794i
\(370\) 0 0
\(371\) −7.51587 + 5.46060i −0.390205 + 0.283500i
\(372\) 0 0
\(373\) 3.92559 12.0817i 0.203259 0.625568i −0.796521 0.604611i \(-0.793329\pi\)
0.999780 0.0209573i \(-0.00667140\pi\)
\(374\) 0 0
\(375\) 1.77299 1.28815i 0.0915567 0.0665198i
\(376\) 0 0
\(377\) 4.40188 + 13.5476i 0.226708 + 0.697737i
\(378\) 0 0
\(379\) 10.4802 + 32.2548i 0.538333 + 1.65682i 0.736336 + 0.676616i \(0.236554\pi\)
−0.198003 + 0.980201i \(0.563446\pi\)
\(380\) 0 0
\(381\) −2.90013 + 8.92567i −0.148578 + 0.457276i
\(382\) 0 0
\(383\) −25.7310 −1.31479 −0.657396 0.753545i \(-0.728342\pi\)
−0.657396 + 0.753545i \(0.728342\pi\)
\(384\) 0 0
\(385\) −1.50722 1.09506i −0.0768152 0.0558095i
\(386\) 0 0
\(387\) −9.01998 + 6.55340i −0.458511 + 0.333128i
\(388\) 0 0
\(389\) 14.5168 + 10.5471i 0.736033 + 0.534759i 0.891466 0.453087i \(-0.149677\pi\)
−0.155433 + 0.987846i \(0.549677\pi\)
\(390\) 0 0
\(391\) 20.6626 + 15.0123i 1.04495 + 0.759203i
\(392\) 0 0
\(393\) 9.46505 + 29.1304i 0.477448 + 1.46944i
\(394\) 0 0
\(395\) −4.68509 + 14.4192i −0.235733 + 0.725510i
\(396\) 0 0
\(397\) −31.7114 + 23.0396i −1.59155 + 1.15633i −0.689856 + 0.723947i \(0.742326\pi\)
−0.901692 + 0.432380i \(0.857674\pi\)
\(398\) 0 0
\(399\) 8.88726 + 27.3522i 0.444920 + 1.36932i
\(400\) 0 0
\(401\) 35.9619 1.79585 0.897925 0.440149i \(-0.145074\pi\)
0.897925 + 0.440149i \(0.145074\pi\)
\(402\) 0 0
\(403\) 19.3399 + 14.0513i 0.963389 + 0.699943i
\(404\) 0 0
\(405\) 3.44810 10.6122i 0.171338 0.527323i
\(406\) 0 0
\(407\) 9.06136 0.449155
\(408\) 0 0
\(409\) 3.80637 0.188213 0.0941066 0.995562i \(-0.470001\pi\)
0.0941066 + 0.995562i \(0.470001\pi\)
\(410\) 0 0
\(411\) 21.5518 1.06307
\(412\) 0 0
\(413\) −6.06524 −0.298451
\(414\) 0 0
\(415\) 2.60098 8.00501i 0.127677 0.392950i
\(416\) 0 0
\(417\) −37.5444 27.2776i −1.83856 1.33579i
\(418\) 0 0
\(419\) −0.243846 −0.0119126 −0.00595632 0.999982i \(-0.501896\pi\)
−0.00595632 + 0.999982i \(0.501896\pi\)
\(420\) 0 0
\(421\) −2.36161 7.26829i −0.115098 0.354235i 0.876870 0.480728i \(-0.159628\pi\)
−0.991967 + 0.126493i \(0.959628\pi\)
\(422\) 0 0
\(423\) 17.6821 12.8468i 0.859733 0.624633i
\(424\) 0 0
\(425\) 1.10772 3.40923i 0.0537326 0.165372i
\(426\) 0 0
\(427\) −3.91077 12.0361i −0.189256 0.582469i
\(428\) 0 0
\(429\) −10.4624 7.60139i −0.505130 0.366999i
\(430\) 0 0
\(431\) 0.221876 + 0.161202i 0.0106874 + 0.00776485i 0.593116 0.805117i \(-0.297897\pi\)
−0.582429 + 0.812882i \(0.697897\pi\)
\(432\) 0 0
\(433\) −5.13666 + 3.73200i −0.246852 + 0.179349i −0.704331 0.709872i \(-0.748753\pi\)
0.457478 + 0.889221i \(0.348753\pi\)
\(434\) 0 0
\(435\) 4.85718 + 3.52895i 0.232884 + 0.169200i
\(436\) 0 0
\(437\) 56.9568 2.72461
\(438\) 0 0
\(439\) −2.59846 + 7.99722i −0.124017 + 0.381687i −0.993721 0.111888i \(-0.964310\pi\)
0.869703 + 0.493575i \(0.164310\pi\)
\(440\) 0 0
\(441\) −2.39838 7.38146i −0.114209 0.351498i
\(442\) 0 0
\(443\) 9.52638 + 29.3192i 0.452612 + 1.39300i 0.873916 + 0.486077i \(0.161573\pi\)
−0.421304 + 0.906919i \(0.638427\pi\)
\(444\) 0 0
\(445\) 7.06638 5.13403i 0.334979 0.243376i
\(446\) 0 0
\(447\) 11.3441 34.9136i 0.536559 1.65136i
\(448\) 0 0
\(449\) 9.82818 7.14059i 0.463820 0.336985i −0.331208 0.943558i \(-0.607456\pi\)
0.795028 + 0.606573i \(0.207456\pi\)
\(450\) 0 0
\(451\) −7.07599 + 1.65415i −0.333196 + 0.0778909i
\(452\) 0 0
\(453\) −18.5398 + 13.4700i −0.871077 + 0.632874i
\(454\) 0 0
\(455\) 2.63773 8.11809i 0.123659 0.380582i
\(456\) 0 0
\(457\) −23.4185 + 17.0145i −1.09547 + 0.795906i −0.980315 0.197441i \(-0.936737\pi\)
−0.115156 + 0.993347i \(0.536737\pi\)
\(458\) 0 0
\(459\) −2.90630 8.94467i −0.135654 0.417502i
\(460\) 0 0
\(461\) 9.19319 + 28.2937i 0.428170 + 1.31777i 0.899926 + 0.436042i \(0.143620\pi\)
−0.471756 + 0.881729i \(0.656380\pi\)
\(462\) 0 0
\(463\) −3.01803 + 9.28856i −0.140260 + 0.431676i −0.996371 0.0851161i \(-0.972874\pi\)
0.856111 + 0.516792i \(0.172874\pi\)
\(464\) 0 0
\(465\) 10.0755 0.467241
\(466\) 0 0
\(467\) 19.2051 + 13.9533i 0.888704 + 0.645682i 0.935540 0.353221i \(-0.114914\pi\)
−0.0468354 + 0.998903i \(0.514914\pi\)
\(468\) 0 0
\(469\) 7.38819 5.36783i 0.341155 0.247864i
\(470\) 0 0
\(471\) −15.0185 10.9116i −0.692016 0.502779i
\(472\) 0 0
\(473\) −5.67810 4.12538i −0.261079 0.189685i
\(474\) 0 0
\(475\) −2.47030 7.60280i −0.113345 0.348840i
\(476\) 0 0
\(477\) −3.15272 + 9.70307i −0.144353 + 0.444273i
\(478\) 0 0
\(479\) 7.95890 5.78248i 0.363651 0.264208i −0.390922 0.920424i \(-0.627844\pi\)
0.754573 + 0.656216i \(0.227844\pi\)
\(480\) 0 0
\(481\) 12.8293 + 39.4846i 0.584966 + 1.80034i
\(482\) 0 0
\(483\) 25.6328 1.16633
\(484\) 0 0
\(485\) 7.37098 + 5.35533i 0.334699 + 0.243173i
\(486\) 0 0
\(487\) −0.136199 + 0.419177i −0.00617176 + 0.0189947i −0.954095 0.299504i \(-0.903179\pi\)
0.947923 + 0.318499i \(0.103179\pi\)
\(488\) 0 0
\(489\) −47.1405 −2.13177
\(490\) 0 0
\(491\) −21.8149 −0.984493 −0.492247 0.870456i \(-0.663824\pi\)
−0.492247 + 0.870456i \(0.663824\pi\)
\(492\) 0 0
\(493\) 9.82038 0.442288
\(494\) 0 0
\(495\) −2.04598 −0.0919599
\(496\) 0 0
\(497\) 1.17230 3.60796i 0.0525847 0.161839i
\(498\) 0 0
\(499\) 10.5828 + 7.68887i 0.473752 + 0.344201i 0.798902 0.601461i \(-0.205415\pi\)
−0.325149 + 0.945663i \(0.605415\pi\)
\(500\) 0 0
\(501\) −33.5575 −1.49924
\(502\) 0 0
\(503\) 6.65513 + 20.4824i 0.296738 + 0.913265i 0.982632 + 0.185564i \(0.0594112\pi\)
−0.685894 + 0.727701i \(0.740589\pi\)
\(504\) 0 0
\(505\) −5.45136 + 3.96065i −0.242582 + 0.176246i
\(506\) 0 0
\(507\) 9.50597 29.2564i 0.422175 1.29932i
\(508\) 0 0
\(509\) 5.66350 + 17.4305i 0.251030 + 0.772591i 0.994586 + 0.103917i \(0.0331377\pi\)
−0.743556 + 0.668674i \(0.766862\pi\)
\(510\) 0 0
\(511\) −6.80041 4.94079i −0.300832 0.218568i
\(512\) 0 0
\(513\) −16.9681 12.3281i −0.749160 0.544297i
\(514\) 0 0
\(515\) 15.5758 11.3164i 0.686350 0.498662i
\(516\) 0 0
\(517\) 11.1309 + 8.08709i 0.489538 + 0.355670i
\(518\) 0 0
\(519\) −13.5541 −0.594959
\(520\) 0 0
\(521\) 4.26460 13.1251i 0.186835 0.575020i −0.813140 0.582068i \(-0.802244\pi\)
0.999975 + 0.00704838i \(0.00224359\pi\)
\(522\) 0 0
\(523\) −4.59607 14.1452i −0.200972 0.618528i −0.999855 0.0170414i \(-0.994575\pi\)
0.798883 0.601487i \(-0.205425\pi\)
\(524\) 0 0
\(525\) −1.11173 3.42156i −0.0485200 0.149329i
\(526\) 0 0
\(527\) 13.3330 9.68696i 0.580793 0.421971i
\(528\) 0 0
\(529\) 8.57957 26.4052i 0.373025 1.14805i
\(530\) 0 0
\(531\) −5.38874 + 3.91515i −0.233851 + 0.169903i
\(532\) 0 0
\(533\) −17.2263 28.4914i −0.746153 1.23410i
\(534\) 0 0
\(535\) −9.83902 + 7.14847i −0.425378 + 0.309055i
\(536\) 0 0
\(537\) −3.66240 + 11.2717i −0.158044 + 0.486410i
\(538\) 0 0
\(539\) 3.95268 2.87179i 0.170254 0.123697i
\(540\) 0 0
\(541\) −6.84596 21.0697i −0.294331 0.905857i −0.983445 0.181205i \(-0.942000\pi\)
0.689115 0.724652i \(-0.258000\pi\)
\(542\) 0 0
\(543\) 0.793429 + 2.44192i 0.0340493 + 0.104793i
\(544\) 0 0
\(545\) −4.04795 + 12.4583i −0.173395 + 0.533656i
\(546\) 0 0
\(547\) 25.7682 1.10177 0.550884 0.834582i \(-0.314291\pi\)
0.550884 + 0.834582i \(0.314291\pi\)
\(548\) 0 0
\(549\) −11.2440 8.16921i −0.479880 0.348654i
\(550\) 0 0
\(551\) 17.7176 12.8726i 0.754793 0.548389i
\(552\) 0 0
\(553\) 20.1356 + 14.6293i 0.856251 + 0.622103i
\(554\) 0 0
\(555\) 14.1563 + 10.2851i 0.600901 + 0.436580i
\(556\) 0 0
\(557\) 7.61218 + 23.4279i 0.322538 + 0.992671i 0.972540 + 0.232738i \(0.0747684\pi\)
−0.650001 + 0.759933i \(0.725232\pi\)
\(558\) 0 0
\(559\) 9.93701 30.5830i 0.420291 1.29352i
\(560\) 0 0
\(561\) −7.21281 + 5.24041i −0.304525 + 0.221250i
\(562\) 0 0
\(563\) 7.39362 + 22.7552i 0.311604 + 0.959018i 0.977130 + 0.212644i \(0.0682073\pi\)
−0.665526 + 0.746375i \(0.731793\pi\)
\(564\) 0 0
\(565\) −11.7532 −0.494462
\(566\) 0 0
\(567\) −14.8192 10.7668i −0.622350 0.452164i
\(568\) 0 0
\(569\) −3.59503 + 11.0644i −0.150711 + 0.463842i −0.997701 0.0677672i \(-0.978412\pi\)
0.846990 + 0.531609i \(0.178412\pi\)
\(570\) 0 0
\(571\) −27.2402 −1.13997 −0.569983 0.821656i \(-0.693050\pi\)
−0.569983 + 0.821656i \(0.693050\pi\)
\(572\) 0 0
\(573\) 18.4266 0.769784
\(574\) 0 0
\(575\) −7.12489 −0.297128
\(576\) 0 0
\(577\) −19.6631 −0.818585 −0.409292 0.912403i \(-0.634224\pi\)
−0.409292 + 0.912403i \(0.634224\pi\)
\(578\) 0 0
\(579\) 1.96649 6.05224i 0.0817246 0.251522i
\(580\) 0 0
\(581\) −11.1785 8.12165i −0.463762 0.336943i
\(582\) 0 0
\(583\) −6.42245 −0.265991
\(584\) 0 0
\(585\) −2.89675 8.91528i −0.119766 0.368602i
\(586\) 0 0
\(587\) −3.41153 + 2.47862i −0.140809 + 0.102304i −0.655960 0.754796i \(-0.727736\pi\)
0.515151 + 0.857100i \(0.327736\pi\)
\(588\) 0 0
\(589\) 11.3571 34.9537i 0.467963 1.44024i
\(590\) 0 0
\(591\) −8.40511 25.8683i −0.345740 1.06408i
\(592\) 0 0
\(593\) 13.6980 + 9.95214i 0.562507 + 0.408686i 0.832376 0.554212i \(-0.186980\pi\)
−0.269868 + 0.962897i \(0.586980\pi\)
\(594\) 0 0
\(595\) −4.76077 3.45891i −0.195173 0.141801i
\(596\) 0 0
\(597\) 5.81597 4.22555i 0.238032 0.172940i
\(598\) 0 0
\(599\) 2.05515 + 1.49315i 0.0839711 + 0.0610086i 0.628979 0.777423i \(-0.283473\pi\)
−0.545008 + 0.838431i \(0.683473\pi\)
\(600\) 0 0
\(601\) −30.3057 −1.23619 −0.618097 0.786102i \(-0.712096\pi\)
−0.618097 + 0.786102i \(0.712096\pi\)
\(602\) 0 0
\(603\) 3.09916 9.53823i 0.126208 0.388427i
\(604\) 0 0
\(605\) 3.00119 + 9.23671i 0.122016 + 0.375526i
\(606\) 0 0
\(607\) −12.4187 38.2209i −0.504060 1.55134i −0.802345 0.596860i \(-0.796415\pi\)
0.298285 0.954477i \(-0.403585\pi\)
\(608\) 0 0
\(609\) 7.97361 5.79317i 0.323107 0.234751i
\(610\) 0 0
\(611\) −19.4798 + 59.9526i −0.788067 + 2.42542i
\(612\) 0 0
\(613\) −26.4211 + 19.1961i −1.06714 + 0.775322i −0.975396 0.220461i \(-0.929244\pi\)
−0.0917431 + 0.995783i \(0.529244\pi\)
\(614\) 0 0
\(615\) −12.9322 5.44742i −0.521476 0.219661i
\(616\) 0 0
\(617\) −8.54800 + 6.21048i −0.344129 + 0.250025i −0.746402 0.665495i \(-0.768220\pi\)
0.402273 + 0.915520i \(0.368220\pi\)
\(618\) 0 0
\(619\) 1.98160 6.09875i 0.0796473 0.245129i −0.903302 0.429005i \(-0.858864\pi\)
0.982950 + 0.183876i \(0.0588643\pi\)
\(620\) 0 0
\(621\) −15.1232 + 10.9877i −0.606874 + 0.440920i
\(622\) 0 0
\(623\) −4.43090 13.6369i −0.177520 0.546352i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 0 0
\(627\) −6.14394 + 18.9091i −0.245365 + 0.755157i
\(628\) 0 0
\(629\) 28.6216 1.14122
\(630\) 0 0
\(631\) −1.11053 0.806849i −0.0442096 0.0321201i 0.565461 0.824775i \(-0.308698\pi\)
−0.609671 + 0.792655i \(0.708698\pi\)
\(632\) 0 0
\(633\) 28.0558 20.3838i 1.11512 0.810182i
\(634\) 0 0
\(635\) −3.46453 2.51713i −0.137486 0.0998891i
\(636\) 0 0
\(637\) 18.1100 + 13.1577i 0.717545 + 0.521327i
\(638\) 0 0
\(639\) −1.28741 3.96226i −0.0509293 0.156744i
\(640\) 0 0
\(641\) −13.8833 + 42.7284i −0.548357 + 1.68767i 0.164515 + 0.986375i \(0.447394\pi\)
−0.712872 + 0.701294i \(0.752606\pi\)
\(642\) 0 0
\(643\) 18.7947 13.6552i 0.741193 0.538508i −0.151892 0.988397i \(-0.548537\pi\)
0.893084 + 0.449889i \(0.148537\pi\)
\(644\) 0 0
\(645\) −4.18819 12.8899i −0.164910 0.507541i
\(646\) 0 0
\(647\) −8.89098 −0.349541 −0.174770 0.984609i \(-0.555918\pi\)
−0.174770 + 0.984609i \(0.555918\pi\)
\(648\) 0 0
\(649\) −3.39222 2.46460i −0.133156 0.0967438i
\(650\) 0 0
\(651\) 5.11117 15.7306i 0.200322 0.616529i
\(652\) 0 0
\(653\) 16.4185 0.642506 0.321253 0.946993i \(-0.395896\pi\)
0.321253 + 0.946993i \(0.395896\pi\)
\(654\) 0 0
\(655\) −13.9763 −0.546099
\(656\) 0 0
\(657\) −9.23121 −0.360144
\(658\) 0 0
\(659\) 32.4165 1.26277 0.631384 0.775470i \(-0.282487\pi\)
0.631384 + 0.775470i \(0.282487\pi\)
\(660\) 0 0
\(661\) 6.03165 18.5635i 0.234604 0.722037i −0.762569 0.646906i \(-0.776062\pi\)
0.997174 0.0751311i \(-0.0239375\pi\)
\(662\) 0 0
\(663\) −33.0470 24.0101i −1.28344 0.932474i
\(664\) 0 0
\(665\) −13.1231 −0.508893
\(666\) 0 0
\(667\) −6.03170 18.5637i −0.233548 0.718787i
\(668\) 0 0
\(669\) −28.5623 + 20.7517i −1.10428 + 0.802307i
\(670\) 0 0
\(671\) 2.70359 8.32081i 0.104371 0.321221i
\(672\) 0 0
\(673\) −10.2229 31.4630i −0.394065 1.21281i −0.929687 0.368350i \(-0.879923\pi\)
0.535622 0.844458i \(-0.320077\pi\)
\(674\) 0 0
\(675\) 2.12259 + 1.54215i 0.0816985 + 0.0593575i
\(676\) 0 0
\(677\) −34.5829 25.1260i −1.32913 0.965669i −0.999770 0.0214641i \(-0.993167\pi\)
−0.329359 0.944205i \(-0.606833\pi\)
\(678\) 0 0
\(679\) 12.1003 8.79137i 0.464366 0.337382i
\(680\) 0 0
\(681\) −43.5203 31.6194i −1.66770 1.21166i
\(682\) 0 0
\(683\) 29.3904 1.12459 0.562296 0.826936i \(-0.309918\pi\)
0.562296 + 0.826936i \(0.309918\pi\)
\(684\) 0 0
\(685\) −3.03891 + 9.35280i −0.116111 + 0.357352i
\(686\) 0 0
\(687\) 2.15809 + 6.64190i 0.0823361 + 0.253404i
\(688\) 0 0
\(689\) −9.09307 27.9856i −0.346419 1.06617i
\(690\) 0 0
\(691\) −37.7349 + 27.4160i −1.43550 + 1.04295i −0.446546 + 0.894761i \(0.647346\pi\)
−0.988958 + 0.148194i \(0.952654\pi\)
\(692\) 0 0
\(693\) −1.03790 + 3.19431i −0.0394264 + 0.121342i
\(694\) 0 0
\(695\) 17.1316 12.4468i 0.649838 0.472135i
\(696\) 0 0
\(697\) −22.3505 + 5.22486i −0.846586 + 0.197906i
\(698\) 0 0
\(699\) 4.26926 3.10180i 0.161478 0.117321i
\(700\) 0 0
\(701\) −13.9859 + 43.0443i −0.528242 + 1.62576i 0.229573 + 0.973291i \(0.426267\pi\)
−0.757815 + 0.652470i \(0.773733\pi\)
\(702\) 0 0
\(703\) 51.6379 37.5171i 1.94756 1.41499i
\(704\) 0 0
\(705\) 8.21022 + 25.2685i 0.309215 + 0.951665i
\(706\) 0 0
\(707\) 3.41822 + 10.5202i 0.128555 + 0.395653i
\(708\) 0 0
\(709\) −11.3353 + 34.8864i −0.425706 + 1.31019i 0.476611 + 0.879114i \(0.341865\pi\)
−0.902317 + 0.431073i \(0.858135\pi\)
\(710\) 0 0
\(711\) 27.3330 1.02507
\(712\) 0 0
\(713\) −26.5006 19.2538i −0.992454 0.721060i
\(714\) 0 0
\(715\) 4.77402 3.46853i 0.178538 0.129716i
\(716\) 0 0
\(717\) 16.4560 + 11.9560i 0.614559 + 0.446503i
\(718\) 0 0
\(719\) −16.2078 11.7756i −0.604448 0.439157i 0.243007 0.970025i \(-0.421866\pi\)
−0.847455 + 0.530867i \(0.821866\pi\)
\(720\) 0 0
\(721\) −9.76662 30.0586i −0.363728 1.11944i
\(722\) 0 0
\(723\) 8.93326 27.4938i 0.332232 1.02250i
\(724\) 0 0
\(725\) −2.21634 + 1.61027i −0.0823128 + 0.0598038i
\(726\) 0 0
\(727\) 8.89058 + 27.3624i 0.329733 + 1.01482i 0.969258 + 0.246045i \(0.0791311\pi\)
−0.639525 + 0.768770i \(0.720869\pi\)
\(728\) 0 0
\(729\) −2.86682 −0.106179
\(730\) 0 0
\(731\) −17.9351 13.0306i −0.663353 0.481954i
\(732\) 0 0
\(733\) −8.32468 + 25.6207i −0.307479 + 0.946324i 0.671261 + 0.741221i \(0.265753\pi\)
−0.978740 + 0.205103i \(0.934247\pi\)
\(734\) 0 0
\(735\) 9.43479 0.348008
\(736\) 0 0
\(737\) 6.31334 0.232555
\(738\) 0 0
\(739\) 20.2645 0.745442 0.372721 0.927943i \(-0.378425\pi\)
0.372721 + 0.927943i \(0.378425\pi\)
\(740\) 0 0
\(741\) −91.0945 −3.34644
\(742\) 0 0
\(743\) 7.68092 23.6394i 0.281786 0.867247i −0.705558 0.708652i \(-0.749304\pi\)
0.987344 0.158595i \(-0.0506963\pi\)
\(744\) 0 0
\(745\) 13.5518 + 9.84599i 0.496501 + 0.360729i
\(746\) 0 0
\(747\) −15.1742 −0.555197
\(748\) 0 0
\(749\) 6.16946 + 18.9876i 0.225427 + 0.693793i
\(750\) 0 0
\(751\) 9.08489 6.60056i 0.331512 0.240858i −0.409560 0.912283i \(-0.634318\pi\)
0.741072 + 0.671425i \(0.234318\pi\)
\(752\) 0 0
\(753\) 6.05513 18.6358i 0.220661 0.679125i
\(754\) 0 0
\(755\) −3.23134 9.94503i −0.117600 0.361937i
\(756\) 0 0
\(757\) 5.92701 + 4.30622i 0.215421 + 0.156512i 0.690263 0.723559i \(-0.257495\pi\)
−0.474842 + 0.880071i \(0.657495\pi\)
\(758\) 0 0
\(759\) 14.3362 + 10.4158i 0.520370 + 0.378071i
\(760\) 0 0
\(761\) 20.2174 14.6888i 0.732880 0.532469i −0.157593 0.987504i \(-0.550373\pi\)
0.890473 + 0.455035i \(0.150373\pi\)
\(762\) 0 0
\(763\) 17.3973 + 12.6399i 0.629823 + 0.457593i
\(764\) 0 0
\(765\) −6.46251 −0.233653
\(766\) 0 0
\(767\) 5.93659 18.2709i 0.214358 0.659726i
\(768\) 0 0
\(769\) −7.34500 22.6056i −0.264868 0.815179i −0.991724 0.128389i \(-0.959019\pi\)
0.726856 0.686790i \(-0.240981\pi\)
\(770\) 0 0
\(771\) 16.8806 + 51.9531i 0.607940 + 1.87105i
\(772\) 0 0
\(773\) −27.1021 + 19.6908i −0.974794 + 0.708230i −0.956539 0.291604i \(-0.905811\pi\)
−0.0182553 + 0.999833i \(0.505811\pi\)
\(774\) 0 0
\(775\) −1.42070 + 4.37246i −0.0510330 + 0.157063i
\(776\) 0 0
\(777\) 23.2391 16.8842i 0.833699 0.605718i
\(778\) 0 0
\(779\) −33.4752 + 38.7236i −1.19937 + 1.38742i
\(780\) 0 0
\(781\) 2.12174 1.54153i 0.0759217 0.0551603i
\(782\) 0 0
\(783\) −2.22111 + 6.83587i −0.0793759 + 0.244294i
\(784\) 0 0
\(785\) 6.85297 4.97897i 0.244593 0.177707i
\(786\) 0 0
\(787\) 5.23116 + 16.0999i 0.186471 + 0.573898i 0.999971 0.00766710i \(-0.00244054\pi\)
−0.813500 + 0.581565i \(0.802441\pi\)
\(788\) 0 0
\(789\) 8.56110 + 26.3484i 0.304783 + 0.938027i
\(790\) 0 0
\(791\) −5.96225 + 18.3499i −0.211993 + 0.652448i
\(792\) 0 0
\(793\) 40.0855 1.42348
\(794\) 0 0
\(795\) −10.0336 7.28984i −0.355855 0.258544i
\(796\) 0 0
\(797\) 31.9564 23.2177i 1.13195 0.822412i 0.145975 0.989288i \(-0.453368\pi\)
0.985978 + 0.166876i \(0.0533680\pi\)
\(798\) 0 0
\(799\) 35.1586 + 25.5442i 1.24382 + 0.903690i
\(800\) 0 0
\(801\) −12.7394 9.25571i −0.450124 0.327035i
\(802\) 0 0
\(803\) −1.79572 5.52666i −0.0633696 0.195032i
\(804\) 0 0
\(805\) −3.61436 + 11.1238i −0.127389 + 0.392064i
\(806\) 0 0
\(807\) 49.0228 35.6171i 1.72568 1.25378i
\(808\) 0 0
\(809\) −14.8231 45.6208i −0.521152 1.60394i −0.771801 0.635864i \(-0.780644\pi\)
0.250649 0.968078i \(-0.419356\pi\)
\(810\) 0 0
\(811\) −15.0733 −0.529294 −0.264647 0.964345i \(-0.585255\pi\)
−0.264647 + 0.964345i \(0.585255\pi\)
\(812\) 0 0
\(813\) −0.996184 0.723770i −0.0349377 0.0253837i
\(814\) 0 0
\(815\) 6.64704 20.4575i 0.232836 0.716594i
\(816\) 0 0
\(817\) −49.4383 −1.72963
\(818\) 0 0
\(819\) −15.3886 −0.537721
\(820\) 0 0
\(821\) −35.5310 −1.24004 −0.620020 0.784586i \(-0.712876\pi\)
−0.620020 + 0.784586i \(0.712876\pi\)
\(822\) 0 0
\(823\) −4.83727 −0.168617 −0.0843083 0.996440i \(-0.526868\pi\)
−0.0843083 + 0.996440i \(0.526868\pi\)
\(824\) 0 0
\(825\) 0.768563 2.36539i 0.0267579 0.0823525i
\(826\) 0 0
\(827\) −11.8350 8.59861i −0.411542 0.299003i 0.362684 0.931912i \(-0.381861\pi\)
−0.774226 + 0.632909i \(0.781861\pi\)
\(828\) 0 0
\(829\) 12.3635 0.429401 0.214700 0.976680i \(-0.431123\pi\)
0.214700 + 0.976680i \(0.431123\pi\)
\(830\) 0 0
\(831\) 5.67299 + 17.4597i 0.196794 + 0.605669i
\(832\) 0 0
\(833\) 12.4851 9.07095i 0.432583 0.314290i
\(834\) 0 0
\(835\) 4.73177 14.5629i 0.163750 0.503969i
\(836\) 0 0
\(837\) 3.72744 + 11.4719i 0.128839 + 0.396526i
\(838\) 0 0
\(839\) −38.9745 28.3166i −1.34555 0.977597i −0.999220 0.0394837i \(-0.987429\pi\)
−0.346327 0.938114i \(-0.612571\pi\)
\(840\) 0 0
\(841\) 17.3897 + 12.6344i 0.599646 + 0.435668i
\(842\) 0 0
\(843\) 28.2793 20.5461i 0.973989 0.707645i
\(844\) 0 0
\(845\) 11.3560 + 8.25058i 0.390657 + 0.283829i
\(846\) 0 0
\(847\) 15.9434 0.547822
\(848\) 0 0
\(849\) 8.82362 27.1563i 0.302826 0.932002i
\(850\) 0 0
\(851\) −17.5794 54.1039i −0.602615 1.85466i
\(852\) 0 0
\(853\) 9.22063 + 28.3782i 0.315708 + 0.971650i 0.975462 + 0.220168i \(0.0706606\pi\)
−0.659754 + 0.751482i \(0.729339\pi\)
\(854\) 0 0
\(855\) −11.6594 + 8.47106i −0.398743 + 0.289704i
\(856\) 0 0
\(857\) 11.8196 36.3770i 0.403749 1.24261i −0.518186 0.855268i \(-0.673392\pi\)
0.921935 0.387345i \(-0.126608\pi\)
\(858\) 0 0
\(859\) −17.8754 + 12.9872i −0.609900 + 0.443118i −0.849379 0.527783i \(-0.823023\pi\)
0.239479 + 0.970902i \(0.423023\pi\)
\(860\) 0 0
\(861\) −15.0652 + 17.4272i −0.513420 + 0.593916i
\(862\) 0 0
\(863\) −27.9666 + 20.3190i −0.951995 + 0.691665i −0.951278 0.308335i \(-0.900228\pi\)
−0.000717415 1.00000i \(0.500228\pi\)
\(864\) 0 0
\(865\) 1.91119 5.88205i 0.0649826 0.199996i
\(866\) 0 0
\(867\) 7.35811 5.34598i 0.249894 0.181559i
\(868\) 0 0
\(869\) 5.31701 + 16.3641i 0.180367 + 0.555113i
\(870\) 0 0
\(871\) 8.93860 + 27.5102i 0.302873 + 0.932147i
\(872\) 0 0
\(873\) 5.07576 15.6216i 0.171789 0.528711i
\(874\) 0 0
\(875\) 1.64161 0.0554966
\(876\) 0 0
\(877\) −18.0950 13.1468i −0.611025 0.443936i 0.238750 0.971081i \(-0.423262\pi\)
−0.849775 + 0.527145i \(0.823262\pi\)
\(878\) 0 0
\(879\) −15.8736 + 11.5328i −0.535402 + 0.388992i
\(880\) 0 0
\(881\) −1.09078 0.792500i −0.0367494 0.0267000i 0.569259 0.822158i \(-0.307230\pi\)
−0.606008 + 0.795458i \(0.707230\pi\)
\(882\) 0 0
\(883\) 3.26024 + 2.36870i 0.109716 + 0.0797132i 0.641290 0.767298i \(-0.278399\pi\)
−0.531574 + 0.847012i \(0.678399\pi\)
\(884\) 0 0
\(885\) −2.50212 7.70073i −0.0841078 0.258857i
\(886\) 0 0
\(887\) 7.75237 23.8593i 0.260299 0.801118i −0.732440 0.680831i \(-0.761619\pi\)
0.992739 0.120287i \(-0.0383814\pi\)
\(888\) 0 0
\(889\) −5.68741 + 4.13215i −0.190750 + 0.138588i
\(890\) 0 0
\(891\) −3.91318 12.0435i −0.131096 0.403473i
\(892\) 0 0
\(893\) 96.9152 3.24314
\(894\) 0 0
\(895\) −4.37515 3.17873i −0.146245 0.106253i
\(896\) 0 0
\(897\) −25.0891 + 77.2164i −0.837702 + 2.57818i
\(898\) 0 0
\(899\) −12.5950 −0.420067
\(900\) 0 0
\(901\) −20.2862 −0.675831
\(902\) 0 0
\(903\) −22.2492 −0.740408
\(904\) 0 0
\(905\) −1.17160 −0.0389452
\(906\) 0 0
\(907\) 3.12845 9.62837i 0.103878 0.319705i −0.885587 0.464473i \(-0.846244\pi\)
0.989466 + 0.144768i \(0.0462437\pi\)
\(908\) 0 0
\(909\) 9.82781 + 7.14032i 0.325968 + 0.236830i
\(910\) 0 0
\(911\) −27.6630 −0.916517 −0.458258 0.888819i \(-0.651527\pi\)
−0.458258 + 0.888819i \(0.651527\pi\)
\(912\) 0 0
\(913\) −2.95180 9.08471i −0.0976903 0.300660i
\(914\) 0 0
\(915\) 13.6683 9.93063i 0.451861 0.328296i
\(916\) 0 0
\(917\) −7.08998 + 21.8207i −0.234132 + 0.720584i
\(918\) 0 0
\(919\) −5.66205 17.4260i −0.186774 0.574830i 0.813201 0.581983i \(-0.197723\pi\)
−0.999974 + 0.00715295i \(0.997723\pi\)
\(920\) 0 0
\(921\) 53.1983 + 38.6508i 1.75294 + 1.27359i
\(922\) 0 0
\(923\) 9.72118 + 7.06285i 0.319977 + 0.232477i
\(924\) 0 0
\(925\) −6.45954 + 4.69313i −0.212388 + 0.154309i
\(926\) 0 0
\(927\) −28.0802 20.4015i −0.922276 0.670073i
\(928\) 0 0
\(929\) −12.7993 −0.419932 −0.209966 0.977709i \(-0.567335\pi\)
−0.209966 + 0.977709i \(0.567335\pi\)
\(930\) 0 0
\(931\) 10.6349 32.7309i 0.348545 1.07271i
\(932\) 0 0
\(933\) −15.5660 47.9072i −0.509608 1.56841i
\(934\) 0 0
\(935\) −1.25713 3.86906i −0.0411126 0.126532i
\(936\) 0 0
\(937\) 5.82749 4.23392i 0.190376 0.138316i −0.488515 0.872556i \(-0.662461\pi\)
0.678890 + 0.734240i \(0.262461\pi\)
\(938\) 0 0
\(939\) 8.75763 26.9532i 0.285794 0.879585i
\(940\) 0 0
\(941\) −25.4844 + 18.5155i −0.830769 + 0.603589i −0.919777 0.392442i \(-0.871630\pi\)
0.0890078 + 0.996031i \(0.471630\pi\)
\(942\) 0 0
\(943\) 23.6044 + 39.0405i 0.768665 + 1.27133i
\(944\) 0 0
\(945\) 3.48447 2.53161i 0.113350 0.0823534i
\(946\) 0 0
\(947\) −0.870580 + 2.67937i −0.0282901 + 0.0870678i −0.964205 0.265159i \(-0.914575\pi\)
0.935915 + 0.352227i \(0.114575\pi\)
\(948\) 0 0
\(949\) 21.5398 15.6496i 0.699212 0.508007i
\(950\) 0 0
\(951\) 9.52027 + 29.3004i 0.308716 + 0.950130i
\(952\) 0 0
\(953\) −11.8667 36.5219i −0.384399 1.18306i −0.936915 0.349557i \(-0.886332\pi\)
0.552516 0.833502i \(-0.313668\pi\)
\(954\) 0 0
\(955\) −2.59825 + 7.99658i −0.0840773 + 0.258763i
\(956\) 0 0
\(957\) 6.81359 0.220252
\(958\) 0 0
\(959\) 13.0606 + 9.48909i 0.421749 + 0.306419i
\(960\) 0 0
\(961\) 7.97951 5.79746i 0.257404 0.187015i
\(962\) 0 0
\(963\) 17.7380 + 12.8874i 0.571598 + 0.415290i
\(964\) 0 0
\(965\) 2.34920 + 1.70679i 0.0756233 + 0.0549435i
\(966\) 0 0
\(967\) 4.26257 + 13.1189i 0.137075 + 0.421874i 0.995907 0.0903836i \(-0.0288093\pi\)
−0.858832 + 0.512258i \(0.828809\pi\)
\(968\) 0 0
\(969\) −19.4065 + 59.7271i −0.623427 + 1.91871i
\(970\) 0 0
\(971\) −0.999494 + 0.726175i −0.0320753 + 0.0233041i −0.603707 0.797206i \(-0.706310\pi\)
0.571632 + 0.820510i \(0.306310\pi\)
\(972\) 0 0
\(973\) −10.7422 33.0610i −0.344379 1.05989i
\(974\) 0 0
\(975\) 11.3953 0.364941
\(976\) 0 0
\(977\) −27.5516 20.0174i −0.881455 0.640415i 0.0521808 0.998638i \(-0.483383\pi\)
−0.933636 + 0.358223i \(0.883383\pi\)
\(978\) 0 0
\(979\) 3.06317 9.42747i 0.0978994 0.301303i
\(980\) 0 0
\(981\) 23.6159 0.753998
\(982\) 0 0
\(983\) −41.6280 −1.32773 −0.663863 0.747854i \(-0.731084\pi\)
−0.663863 + 0.747854i \(0.731084\pi\)
\(984\) 0 0
\(985\) 12.4112 0.395453
\(986\) 0 0
\(987\) 43.6157 1.38830
\(988\) 0 0
\(989\) −13.6162 + 41.9064i −0.432971 + 1.33255i
\(990\) 0 0
\(991\) 30.2656 + 21.9892i 0.961418 + 0.698511i 0.953480 0.301458i \(-0.0974732\pi\)
0.00793821 + 0.999968i \(0.497473\pi\)
\(992\) 0 0
\(993\) 4.00192 0.126997
\(994\) 0 0
\(995\) 1.01368 + 3.11977i 0.0321357 + 0.0989034i
\(996\) 0 0
\(997\) −12.1126 + 8.80030i −0.383609 + 0.278708i −0.762832 0.646597i \(-0.776191\pi\)
0.379223 + 0.925305i \(0.376191\pi\)
\(998\) 0 0
\(999\) −6.47344 + 19.9232i −0.204810 + 0.630342i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.b.201.7 32
41.10 even 5 inner 820.2.u.b.461.7 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.b.201.7 32 1.1 even 1 trivial
820.2.u.b.461.7 yes 32 41.10 even 5 inner