Properties

Label 820.2.u.b.201.3
Level $820$
Weight $2$
Character 820.201
Analytic conductor $6.548$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.3
Character \(\chi\) \(=\) 820.201
Dual form 820.2.u.b.461.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.435978 q^{3} +(-0.309017 + 0.951057i) q^{5} +(0.796401 + 0.578619i) q^{7} -2.80992 q^{9} +(0.0342651 + 0.105457i) q^{11} +(3.64575 - 2.64879i) q^{13} +(0.134725 - 0.414640i) q^{15} +(1.66518 + 5.12489i) q^{17} +(2.64615 + 1.92254i) q^{19} +(-0.347213 - 0.252265i) q^{21} +(-6.02118 + 4.37464i) q^{23} +(-0.809017 - 0.587785i) q^{25} +2.53300 q^{27} +(-2.75258 + 8.47156i) q^{29} +(0.443306 + 1.36435i) q^{31} +(-0.0149388 - 0.0459769i) q^{33} +(-0.796401 + 0.578619i) q^{35} +(0.347760 - 1.07029i) q^{37} +(-1.58947 + 1.15481i) q^{39} +(3.55812 + 5.32351i) q^{41} +(-7.97924 + 5.79726i) q^{43} +(0.868314 - 2.67240i) q^{45} +(1.79015 - 1.30062i) q^{47} +(-1.86366 - 5.73577i) q^{49} +(-0.725980 - 2.23434i) q^{51} +(0.0174207 - 0.0536153i) q^{53} -0.110884 q^{55} +(-1.15366 - 0.838184i) q^{57} +(7.66208 - 5.56683i) q^{59} +(11.6116 + 8.43629i) q^{61} +(-2.23783 - 1.62588i) q^{63} +(1.39255 + 4.28584i) q^{65} +(-3.36029 + 10.3419i) q^{67} +(2.62510 - 1.90725i) q^{69} +(1.96678 + 6.05313i) q^{71} -0.130566 q^{73} +(0.352714 + 0.256261i) q^{75} +(-0.0337307 + 0.103812i) q^{77} -10.9095 q^{79} +7.32544 q^{81} -2.84830 q^{83} -5.38863 q^{85} +(1.20006 - 3.69341i) q^{87} +(8.89837 + 6.46505i) q^{89} +4.43612 q^{91} +(-0.193272 - 0.594829i) q^{93} +(-2.64615 + 1.92254i) q^{95} +(0.463798 - 1.42742i) q^{97} +(-0.0962822 - 0.296326i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{3} + 8 q^{5} - 5 q^{7} + 46 q^{9} + q^{11} + q^{13} - 2 q^{15} + 7 q^{17} - 13 q^{19} - 6 q^{21} + 4 q^{23} - 8 q^{25} - 28 q^{27} + 3 q^{29} - q^{31} + 14 q^{33} + 5 q^{35} - 25 q^{37} + 26 q^{41}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.435978 −0.251712 −0.125856 0.992049i \(-0.540168\pi\)
−0.125856 + 0.992049i \(0.540168\pi\)
\(4\) 0 0
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) 0.796401 + 0.578619i 0.301011 + 0.218697i 0.728030 0.685545i \(-0.240436\pi\)
−0.427019 + 0.904243i \(0.640436\pi\)
\(8\) 0 0
\(9\) −2.80992 −0.936641
\(10\) 0 0
\(11\) 0.0342651 + 0.105457i 0.0103313 + 0.0317965i 0.956089 0.293076i \(-0.0946788\pi\)
−0.945758 + 0.324872i \(0.894679\pi\)
\(12\) 0 0
\(13\) 3.64575 2.64879i 1.01115 0.734643i 0.0466992 0.998909i \(-0.485130\pi\)
0.964450 + 0.264266i \(0.0851298\pi\)
\(14\) 0 0
\(15\) 0.134725 0.414640i 0.0347857 0.107060i
\(16\) 0 0
\(17\) 1.66518 + 5.12489i 0.403865 + 1.24297i 0.921839 + 0.387572i \(0.126686\pi\)
−0.517975 + 0.855396i \(0.673314\pi\)
\(18\) 0 0
\(19\) 2.64615 + 1.92254i 0.607068 + 0.441061i 0.848381 0.529387i \(-0.177578\pi\)
−0.241313 + 0.970447i \(0.577578\pi\)
\(20\) 0 0
\(21\) −0.347213 0.252265i −0.0757681 0.0550488i
\(22\) 0 0
\(23\) −6.02118 + 4.37464i −1.25550 + 0.912176i −0.998528 0.0542418i \(-0.982726\pi\)
−0.256975 + 0.966418i \(0.582726\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 0 0
\(27\) 2.53300 0.487476
\(28\) 0 0
\(29\) −2.75258 + 8.47156i −0.511141 + 1.57313i 0.279055 + 0.960275i \(0.409979\pi\)
−0.790196 + 0.612854i \(0.790021\pi\)
\(30\) 0 0
\(31\) 0.443306 + 1.36435i 0.0796201 + 0.245045i 0.982941 0.183919i \(-0.0588785\pi\)
−0.903321 + 0.428965i \(0.858878\pi\)
\(32\) 0 0
\(33\) −0.0149388 0.0459769i −0.00260051 0.00800356i
\(34\) 0 0
\(35\) −0.796401 + 0.578619i −0.134616 + 0.0978045i
\(36\) 0 0
\(37\) 0.347760 1.07029i 0.0571714 0.175955i −0.918393 0.395670i \(-0.870513\pi\)
0.975564 + 0.219714i \(0.0705125\pi\)
\(38\) 0 0
\(39\) −1.58947 + 1.15481i −0.254518 + 0.184918i
\(40\) 0 0
\(41\) 3.55812 + 5.32351i 0.555685 + 0.831393i
\(42\) 0 0
\(43\) −7.97924 + 5.79726i −1.21682 + 0.884074i −0.995832 0.0912021i \(-0.970929\pi\)
−0.220991 + 0.975276i \(0.570929\pi\)
\(44\) 0 0
\(45\) 0.868314 2.67240i 0.129441 0.398377i
\(46\) 0 0
\(47\) 1.79015 1.30062i 0.261121 0.189715i −0.449520 0.893270i \(-0.648405\pi\)
0.710641 + 0.703555i \(0.248405\pi\)
\(48\) 0 0
\(49\) −1.86366 5.73577i −0.266238 0.819396i
\(50\) 0 0
\(51\) −0.725980 2.23434i −0.101658 0.312870i
\(52\) 0 0
\(53\) 0.0174207 0.0536153i 0.00239291 0.00736463i −0.949853 0.312697i \(-0.898768\pi\)
0.952246 + 0.305332i \(0.0987676\pi\)
\(54\) 0 0
\(55\) −0.110884 −0.0149516
\(56\) 0 0
\(57\) −1.15366 0.838184i −0.152806 0.111020i
\(58\) 0 0
\(59\) 7.66208 5.56683i 0.997518 0.724739i 0.0359634 0.999353i \(-0.488550\pi\)
0.961555 + 0.274614i \(0.0885500\pi\)
\(60\) 0 0
\(61\) 11.6116 + 8.43629i 1.48671 + 1.08016i 0.975318 + 0.220807i \(0.0708691\pi\)
0.511390 + 0.859349i \(0.329131\pi\)
\(62\) 0 0
\(63\) −2.23783 1.62588i −0.281940 0.204841i
\(64\) 0 0
\(65\) 1.39255 + 4.28584i 0.172725 + 0.531592i
\(66\) 0 0
\(67\) −3.36029 + 10.3419i −0.410525 + 1.26347i 0.505668 + 0.862728i \(0.331246\pi\)
−0.916193 + 0.400738i \(0.868754\pi\)
\(68\) 0 0
\(69\) 2.62510 1.90725i 0.316025 0.229606i
\(70\) 0 0
\(71\) 1.96678 + 6.05313i 0.233414 + 0.718375i 0.997328 + 0.0730564i \(0.0232753\pi\)
−0.763914 + 0.645318i \(0.776725\pi\)
\(72\) 0 0
\(73\) −0.130566 −0.0152815 −0.00764077 0.999971i \(-0.502432\pi\)
−0.00764077 + 0.999971i \(0.502432\pi\)
\(74\) 0 0
\(75\) 0.352714 + 0.256261i 0.0407279 + 0.0295905i
\(76\) 0 0
\(77\) −0.0337307 + 0.103812i −0.00384397 + 0.0118305i
\(78\) 0 0
\(79\) −10.9095 −1.22742 −0.613708 0.789533i \(-0.710323\pi\)
−0.613708 + 0.789533i \(0.710323\pi\)
\(80\) 0 0
\(81\) 7.32544 0.813938
\(82\) 0 0
\(83\) −2.84830 −0.312642 −0.156321 0.987706i \(-0.549963\pi\)
−0.156321 + 0.987706i \(0.549963\pi\)
\(84\) 0 0
\(85\) −5.38863 −0.584479
\(86\) 0 0
\(87\) 1.20006 3.69341i 0.128660 0.395976i
\(88\) 0 0
\(89\) 8.89837 + 6.46505i 0.943226 + 0.685294i 0.949195 0.314688i \(-0.101900\pi\)
−0.00596914 + 0.999982i \(0.501900\pi\)
\(90\) 0 0
\(91\) 4.43612 0.465032
\(92\) 0 0
\(93\) −0.193272 0.594829i −0.0200413 0.0616809i
\(94\) 0 0
\(95\) −2.64615 + 1.92254i −0.271489 + 0.197248i
\(96\) 0 0
\(97\) 0.463798 1.42742i 0.0470916 0.144933i −0.924746 0.380585i \(-0.875723\pi\)
0.971837 + 0.235652i \(0.0757226\pi\)
\(98\) 0 0
\(99\) −0.0962822 0.296326i −0.00967673 0.0297819i
\(100\) 0 0
\(101\) 0.0747393 + 0.0543013i 0.00743684 + 0.00540318i 0.591497 0.806307i \(-0.298537\pi\)
−0.584061 + 0.811710i \(0.698537\pi\)
\(102\) 0 0
\(103\) −9.24854 6.71945i −0.911285 0.662087i 0.0300544 0.999548i \(-0.490432\pi\)
−0.941340 + 0.337461i \(0.890432\pi\)
\(104\) 0 0
\(105\) 0.347213 0.252265i 0.0338845 0.0246186i
\(106\) 0 0
\(107\) −15.7872 11.4701i −1.52620 1.10885i −0.958302 0.285757i \(-0.907755\pi\)
−0.567903 0.823096i \(-0.692245\pi\)
\(108\) 0 0
\(109\) 11.1064 1.06380 0.531901 0.846806i \(-0.321478\pi\)
0.531901 + 0.846806i \(0.321478\pi\)
\(110\) 0 0
\(111\) −0.151616 + 0.466625i −0.0143907 + 0.0442901i
\(112\) 0 0
\(113\) −3.16903 9.75328i −0.298117 0.917511i −0.982156 0.188066i \(-0.939778\pi\)
0.684039 0.729445i \(-0.260222\pi\)
\(114\) 0 0
\(115\) −2.29989 7.07832i −0.214466 0.660057i
\(116\) 0 0
\(117\) −10.2443 + 7.44290i −0.947084 + 0.688097i
\(118\) 0 0
\(119\) −1.63921 + 5.04497i −0.150266 + 0.462471i
\(120\) 0 0
\(121\) 8.88924 6.45841i 0.808113 0.587128i
\(122\) 0 0
\(123\) −1.55126 2.32093i −0.139872 0.209272i
\(124\) 0 0
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) 5.58416 17.1863i 0.495514 1.52504i −0.320640 0.947201i \(-0.603898\pi\)
0.816154 0.577835i \(-0.196102\pi\)
\(128\) 0 0
\(129\) 3.47877 2.52748i 0.306289 0.222532i
\(130\) 0 0
\(131\) −1.23387 3.79748i −0.107804 0.331787i 0.882574 0.470173i \(-0.155809\pi\)
−0.990378 + 0.138386i \(0.955809\pi\)
\(132\) 0 0
\(133\) 0.994976 + 3.06222i 0.0862754 + 0.265528i
\(134\) 0 0
\(135\) −0.782740 + 2.40902i −0.0673675 + 0.207336i
\(136\) 0 0
\(137\) 21.7141 1.85516 0.927581 0.373621i \(-0.121884\pi\)
0.927581 + 0.373621i \(0.121884\pi\)
\(138\) 0 0
\(139\) −6.42301 4.66659i −0.544793 0.395815i 0.281069 0.959687i \(-0.409311\pi\)
−0.825862 + 0.563872i \(0.809311\pi\)
\(140\) 0 0
\(141\) −0.780468 + 0.567043i −0.0657272 + 0.0477536i
\(142\) 0 0
\(143\) 0.404256 + 0.293709i 0.0338055 + 0.0245612i
\(144\) 0 0
\(145\) −7.20634 5.23571i −0.598454 0.434802i
\(146\) 0 0
\(147\) 0.812517 + 2.50067i 0.0670153 + 0.206252i
\(148\) 0 0
\(149\) 1.01947 3.13761i 0.0835182 0.257043i −0.900574 0.434704i \(-0.856853\pi\)
0.984092 + 0.177661i \(0.0568531\pi\)
\(150\) 0 0
\(151\) 9.98663 7.25571i 0.812700 0.590461i −0.101912 0.994793i \(-0.532496\pi\)
0.914612 + 0.404332i \(0.132496\pi\)
\(152\) 0 0
\(153\) −4.67902 14.4005i −0.378276 1.16421i
\(154\) 0 0
\(155\) −1.43457 −0.115227
\(156\) 0 0
\(157\) 7.12964 + 5.17999i 0.569007 + 0.413408i 0.834745 0.550637i \(-0.185615\pi\)
−0.265737 + 0.964046i \(0.585615\pi\)
\(158\) 0 0
\(159\) −0.00759503 + 0.0233751i −0.000602325 + 0.00185377i
\(160\) 0 0
\(161\) −7.32653 −0.577411
\(162\) 0 0
\(163\) −9.74773 −0.763501 −0.381751 0.924265i \(-0.624679\pi\)
−0.381751 + 0.924265i \(0.624679\pi\)
\(164\) 0 0
\(165\) 0.0483430 0.00376350
\(166\) 0 0
\(167\) 6.16980 0.477434 0.238717 0.971089i \(-0.423273\pi\)
0.238717 + 0.971089i \(0.423273\pi\)
\(168\) 0 0
\(169\) 2.25817 6.94993i 0.173705 0.534610i
\(170\) 0 0
\(171\) −7.43547 5.40218i −0.568605 0.413115i
\(172\) 0 0
\(173\) −20.4914 −1.55793 −0.778965 0.627067i \(-0.784255\pi\)
−0.778965 + 0.627067i \(0.784255\pi\)
\(174\) 0 0
\(175\) −0.304198 0.936225i −0.0229952 0.0707720i
\(176\) 0 0
\(177\) −3.34050 + 2.42701i −0.251087 + 0.182426i
\(178\) 0 0
\(179\) −3.46687 + 10.6699i −0.259126 + 0.797507i 0.733863 + 0.679297i \(0.237715\pi\)
−0.992989 + 0.118209i \(0.962285\pi\)
\(180\) 0 0
\(181\) −6.77182 20.8415i −0.503346 1.54914i −0.803534 0.595258i \(-0.797050\pi\)
0.300189 0.953880i \(-0.402950\pi\)
\(182\) 0 0
\(183\) −5.06238 3.67804i −0.374222 0.271888i
\(184\) 0 0
\(185\) 0.910447 + 0.661479i 0.0669374 + 0.0486329i
\(186\) 0 0
\(187\) −0.483398 + 0.351209i −0.0353496 + 0.0256830i
\(188\) 0 0
\(189\) 2.01728 + 1.46564i 0.146736 + 0.106610i
\(190\) 0 0
\(191\) 12.3513 0.893708 0.446854 0.894607i \(-0.352544\pi\)
0.446854 + 0.894607i \(0.352544\pi\)
\(192\) 0 0
\(193\) −2.10033 + 6.46415i −0.151185 + 0.465300i −0.997754 0.0669786i \(-0.978664\pi\)
0.846569 + 0.532279i \(0.178664\pi\)
\(194\) 0 0
\(195\) −0.607122 1.86853i −0.0434769 0.133808i
\(196\) 0 0
\(197\) 7.75108 + 23.8554i 0.552241 + 1.69962i 0.703119 + 0.711072i \(0.251790\pi\)
−0.150878 + 0.988552i \(0.548210\pi\)
\(198\) 0 0
\(199\) 10.1753 7.39278i 0.721307 0.524060i −0.165495 0.986211i \(-0.552922\pi\)
0.886801 + 0.462151i \(0.152922\pi\)
\(200\) 0 0
\(201\) 1.46501 4.50885i 0.103334 0.318030i
\(202\) 0 0
\(203\) −7.09396 + 5.15406i −0.497898 + 0.361744i
\(204\) 0 0
\(205\) −6.16248 + 1.73891i −0.430406 + 0.121451i
\(206\) 0 0
\(207\) 16.9191 12.2924i 1.17596 0.854382i
\(208\) 0 0
\(209\) −0.112075 + 0.344931i −0.00775237 + 0.0238594i
\(210\) 0 0
\(211\) −7.63557 + 5.54757i −0.525655 + 0.381910i −0.818730 0.574179i \(-0.805321\pi\)
0.293075 + 0.956089i \(0.405321\pi\)
\(212\) 0 0
\(213\) −0.857474 2.63903i −0.0587531 0.180824i
\(214\) 0 0
\(215\) −3.04780 9.38016i −0.207858 0.639722i
\(216\) 0 0
\(217\) −0.436393 + 1.34308i −0.0296243 + 0.0911741i
\(218\) 0 0
\(219\) 0.0569237 0.00384655
\(220\) 0 0
\(221\) 19.6456 + 14.2733i 1.32150 + 0.960129i
\(222\) 0 0
\(223\) 10.0080 7.27124i 0.670185 0.486918i −0.199902 0.979816i \(-0.564062\pi\)
0.870087 + 0.492898i \(0.164062\pi\)
\(224\) 0 0
\(225\) 2.27328 + 1.65163i 0.151552 + 0.110109i
\(226\) 0 0
\(227\) 1.87638 + 1.36327i 0.124539 + 0.0904832i 0.648311 0.761375i \(-0.275476\pi\)
−0.523772 + 0.851859i \(0.675476\pi\)
\(228\) 0 0
\(229\) −5.78994 17.8196i −0.382610 1.17755i −0.938199 0.346096i \(-0.887507\pi\)
0.555589 0.831457i \(-0.312493\pi\)
\(230\) 0 0
\(231\) 0.0147059 0.0452600i 0.000967574 0.00297789i
\(232\) 0 0
\(233\) −0.0728639 + 0.0529388i −0.00477348 + 0.00346813i −0.590169 0.807279i \(-0.700939\pi\)
0.585396 + 0.810748i \(0.300939\pi\)
\(234\) 0 0
\(235\) 0.683778 + 2.10445i 0.0446048 + 0.137279i
\(236\) 0 0
\(237\) 4.75631 0.308955
\(238\) 0 0
\(239\) −21.7255 15.7845i −1.40530 1.02101i −0.993984 0.109521i \(-0.965068\pi\)
−0.411319 0.911492i \(-0.634932\pi\)
\(240\) 0 0
\(241\) −5.15590 + 15.8682i −0.332121 + 1.02216i 0.636003 + 0.771687i \(0.280587\pi\)
−0.968123 + 0.250475i \(0.919413\pi\)
\(242\) 0 0
\(243\) −10.7927 −0.692354
\(244\) 0 0
\(245\) 6.03095 0.385303
\(246\) 0 0
\(247\) 14.7396 0.937858
\(248\) 0 0
\(249\) 1.24180 0.0786957
\(250\) 0 0
\(251\) −2.65400 + 8.16819i −0.167519 + 0.515571i −0.999213 0.0396632i \(-0.987372\pi\)
0.831694 + 0.555235i \(0.187372\pi\)
\(252\) 0 0
\(253\) −0.667653 0.485078i −0.0419750 0.0304966i
\(254\) 0 0
\(255\) 2.34932 0.147120
\(256\) 0 0
\(257\) −5.19980 16.0033i −0.324354 0.998260i −0.971731 0.236090i \(-0.924134\pi\)
0.647377 0.762170i \(-0.275866\pi\)
\(258\) 0 0
\(259\) 0.896249 0.651163i 0.0556902 0.0404613i
\(260\) 0 0
\(261\) 7.73453 23.8044i 0.478755 1.47346i
\(262\) 0 0
\(263\) −7.59003 23.3597i −0.468021 1.44042i −0.855143 0.518393i \(-0.826531\pi\)
0.387121 0.922029i \(-0.373469\pi\)
\(264\) 0 0
\(265\) 0.0456079 + 0.0331361i 0.00280167 + 0.00203553i
\(266\) 0 0
\(267\) −3.87950 2.81862i −0.237421 0.172497i
\(268\) 0 0
\(269\) 10.1922 7.40510i 0.621432 0.451497i −0.231989 0.972718i \(-0.574523\pi\)
0.853422 + 0.521221i \(0.174523\pi\)
\(270\) 0 0
\(271\) 26.1340 + 18.9874i 1.58753 + 1.15341i 0.907366 + 0.420342i \(0.138090\pi\)
0.680160 + 0.733063i \(0.261910\pi\)
\(272\) 0 0
\(273\) −1.93405 −0.117054
\(274\) 0 0
\(275\) 0.0342651 0.105457i 0.00206626 0.00635930i
\(276\) 0 0
\(277\) −7.47352 23.0011i −0.449041 1.38200i −0.877991 0.478677i \(-0.841117\pi\)
0.428951 0.903328i \(-0.358883\pi\)
\(278\) 0 0
\(279\) −1.24566 3.83373i −0.0745754 0.229520i
\(280\) 0 0
\(281\) 5.07720 3.68880i 0.302880 0.220055i −0.425955 0.904744i \(-0.640062\pi\)
0.728836 + 0.684689i \(0.240062\pi\)
\(282\) 0 0
\(283\) −2.39112 + 7.35912i −0.142138 + 0.437455i −0.996632 0.0820064i \(-0.973867\pi\)
0.854494 + 0.519461i \(0.173867\pi\)
\(284\) 0 0
\(285\) 1.15366 0.838184i 0.0683370 0.0496498i
\(286\) 0 0
\(287\) −0.246599 + 6.29845i −0.0145563 + 0.371786i
\(288\) 0 0
\(289\) −9.73837 + 7.07534i −0.572845 + 0.416196i
\(290\) 0 0
\(291\) −0.202206 + 0.622325i −0.0118535 + 0.0364814i
\(292\) 0 0
\(293\) −4.50920 + 3.27612i −0.263430 + 0.191393i −0.711658 0.702526i \(-0.752055\pi\)
0.448228 + 0.893919i \(0.352055\pi\)
\(294\) 0 0
\(295\) 2.92665 + 9.00732i 0.170396 + 0.524426i
\(296\) 0 0
\(297\) 0.0867934 + 0.267123i 0.00503626 + 0.0155000i
\(298\) 0 0
\(299\) −10.3642 + 31.8977i −0.599377 + 1.84469i
\(300\) 0 0
\(301\) −9.70908 −0.559622
\(302\) 0 0
\(303\) −0.0325847 0.0236742i −0.00187194 0.00136004i
\(304\) 0 0
\(305\) −11.6116 + 8.43629i −0.664876 + 0.483060i
\(306\) 0 0
\(307\) −15.7405 11.4362i −0.898360 0.652697i 0.0396840 0.999212i \(-0.487365\pi\)
−0.938044 + 0.346515i \(0.887365\pi\)
\(308\) 0 0
\(309\) 4.03216 + 2.92953i 0.229381 + 0.166655i
\(310\) 0 0
\(311\) 8.50365 + 26.1715i 0.482198 + 1.48405i 0.835999 + 0.548732i \(0.184889\pi\)
−0.353801 + 0.935321i \(0.615111\pi\)
\(312\) 0 0
\(313\) −1.40341 + 4.31924i −0.0793252 + 0.244138i −0.982853 0.184392i \(-0.940968\pi\)
0.903528 + 0.428530i \(0.140968\pi\)
\(314\) 0 0
\(315\) 2.23783 1.62588i 0.126087 0.0916077i
\(316\) 0 0
\(317\) 6.03604 + 18.5770i 0.339018 + 1.04339i 0.964709 + 0.263319i \(0.0848171\pi\)
−0.625691 + 0.780071i \(0.715183\pi\)
\(318\) 0 0
\(319\) −0.987703 −0.0553007
\(320\) 0 0
\(321\) 6.88287 + 5.00069i 0.384164 + 0.279112i
\(322\) 0 0
\(323\) −5.44649 + 16.7626i −0.303051 + 0.932694i
\(324\) 0 0
\(325\) −4.50639 −0.249970
\(326\) 0 0
\(327\) −4.84216 −0.267772
\(328\) 0 0
\(329\) 2.17825 0.120091
\(330\) 0 0
\(331\) −2.12384 −0.116737 −0.0583684 0.998295i \(-0.518590\pi\)
−0.0583684 + 0.998295i \(0.518590\pi\)
\(332\) 0 0
\(333\) −0.977179 + 3.00745i −0.0535491 + 0.164807i
\(334\) 0 0
\(335\) −8.79736 6.39166i −0.480651 0.349214i
\(336\) 0 0
\(337\) −15.2219 −0.829192 −0.414596 0.910005i \(-0.636077\pi\)
−0.414596 + 0.910005i \(0.636077\pi\)
\(338\) 0 0
\(339\) 1.38163 + 4.25221i 0.0750397 + 0.230949i
\(340\) 0 0
\(341\) −0.128691 + 0.0934994i −0.00696900 + 0.00506328i
\(342\) 0 0
\(343\) 3.96399 12.1999i 0.214035 0.658733i
\(344\) 0 0
\(345\) 1.00270 + 3.08599i 0.0539835 + 0.166144i
\(346\) 0 0
\(347\) 18.4412 + 13.3983i 0.989977 + 0.719261i 0.959916 0.280287i \(-0.0904297\pi\)
0.0300613 + 0.999548i \(0.490430\pi\)
\(348\) 0 0
\(349\) 28.2196 + 20.5027i 1.51056 + 1.09748i 0.965929 + 0.258807i \(0.0833295\pi\)
0.544629 + 0.838677i \(0.316670\pi\)
\(350\) 0 0
\(351\) 9.23468 6.70939i 0.492911 0.358121i
\(352\) 0 0
\(353\) 15.8670 + 11.5280i 0.844514 + 0.613575i 0.923628 0.383290i \(-0.125209\pi\)
−0.0791140 + 0.996866i \(0.525209\pi\)
\(354\) 0 0
\(355\) −6.36464 −0.337800
\(356\) 0 0
\(357\) 0.714659 2.19950i 0.0378238 0.116410i
\(358\) 0 0
\(359\) 1.65486 + 5.09312i 0.0873399 + 0.268805i 0.985182 0.171513i \(-0.0548657\pi\)
−0.897842 + 0.440318i \(0.854866\pi\)
\(360\) 0 0
\(361\) −2.56538 7.89544i −0.135020 0.415549i
\(362\) 0 0
\(363\) −3.87551 + 2.81572i −0.203412 + 0.147787i
\(364\) 0 0
\(365\) 0.0403470 0.124175i 0.00211186 0.00649963i
\(366\) 0 0
\(367\) −10.0423 + 7.29614i −0.524202 + 0.380855i −0.818185 0.574956i \(-0.805019\pi\)
0.293982 + 0.955811i \(0.405019\pi\)
\(368\) 0 0
\(369\) −9.99804 14.9587i −0.520477 0.778717i
\(370\) 0 0
\(371\) 0.0448967 0.0326194i 0.00233092 0.00169351i
\(372\) 0 0
\(373\) 7.95813 24.4926i 0.412056 1.26818i −0.502801 0.864402i \(-0.667697\pi\)
0.914857 0.403777i \(-0.132303\pi\)
\(374\) 0 0
\(375\) −0.352714 + 0.256261i −0.0182141 + 0.0132333i
\(376\) 0 0
\(377\) 12.4042 + 38.1762i 0.638849 + 1.96617i
\(378\) 0 0
\(379\) 9.20897 + 28.3423i 0.473033 + 1.45585i 0.848592 + 0.529047i \(0.177451\pi\)
−0.375559 + 0.926798i \(0.622549\pi\)
\(380\) 0 0
\(381\) −2.43457 + 7.49284i −0.124727 + 0.383870i
\(382\) 0 0
\(383\) −3.80812 −0.194586 −0.0972929 0.995256i \(-0.531018\pi\)
−0.0972929 + 0.995256i \(0.531018\pi\)
\(384\) 0 0
\(385\) −0.0883082 0.0641597i −0.00450060 0.00326988i
\(386\) 0 0
\(387\) 22.4211 16.2899i 1.13973 0.828060i
\(388\) 0 0
\(389\) −3.87455 2.81502i −0.196447 0.142727i 0.485213 0.874396i \(-0.338742\pi\)
−0.681661 + 0.731668i \(0.738742\pi\)
\(390\) 0 0
\(391\) −32.4459 23.5733i −1.64086 1.19215i
\(392\) 0 0
\(393\) 0.537942 + 1.65562i 0.0271356 + 0.0835148i
\(394\) 0 0
\(395\) 3.37122 10.3756i 0.169625 0.522051i
\(396\) 0 0
\(397\) −8.00201 + 5.81380i −0.401609 + 0.291786i −0.770196 0.637807i \(-0.779842\pi\)
0.368587 + 0.929593i \(0.379842\pi\)
\(398\) 0 0
\(399\) −0.433788 1.33506i −0.0217166 0.0668367i
\(400\) 0 0
\(401\) 3.82103 0.190813 0.0954065 0.995438i \(-0.469585\pi\)
0.0954065 + 0.995438i \(0.469585\pi\)
\(402\) 0 0
\(403\) 5.23007 + 3.79987i 0.260529 + 0.189285i
\(404\) 0 0
\(405\) −2.26368 + 6.96691i −0.112483 + 0.346188i
\(406\) 0 0
\(407\) 0.124786 0.00618542
\(408\) 0 0
\(409\) 16.2992 0.805943 0.402972 0.915212i \(-0.367977\pi\)
0.402972 + 0.915212i \(0.367977\pi\)
\(410\) 0 0
\(411\) −9.46688 −0.466967
\(412\) 0 0
\(413\) 9.32316 0.458763
\(414\) 0 0
\(415\) 0.880173 2.70890i 0.0432060 0.132974i
\(416\) 0 0
\(417\) 2.80029 + 2.03453i 0.137131 + 0.0996314i
\(418\) 0 0
\(419\) −29.8156 −1.45659 −0.728294 0.685264i \(-0.759687\pi\)
−0.728294 + 0.685264i \(0.759687\pi\)
\(420\) 0 0
\(421\) 3.03992 + 9.35590i 0.148157 + 0.455979i 0.997403 0.0720171i \(-0.0229436\pi\)
−0.849247 + 0.527996i \(0.822944\pi\)
\(422\) 0 0
\(423\) −5.03020 + 3.65465i −0.244576 + 0.177695i
\(424\) 0 0
\(425\) 1.66518 5.12489i 0.0807729 0.248594i
\(426\) 0 0
\(427\) 4.36605 + 13.4373i 0.211288 + 0.650278i
\(428\) 0 0
\(429\) −0.176247 0.128051i −0.00850926 0.00618234i
\(430\) 0 0
\(431\) −17.5600 12.7581i −0.845837 0.614536i 0.0781583 0.996941i \(-0.475096\pi\)
−0.923995 + 0.382405i \(0.875096\pi\)
\(432\) 0 0
\(433\) 5.78016 4.19953i 0.277777 0.201817i −0.440170 0.897914i \(-0.645082\pi\)
0.717947 + 0.696098i \(0.245082\pi\)
\(434\) 0 0
\(435\) 3.14181 + 2.28266i 0.150638 + 0.109445i
\(436\) 0 0
\(437\) −24.3433 −1.16450
\(438\) 0 0
\(439\) 4.48283 13.7967i 0.213954 0.658483i −0.785272 0.619151i \(-0.787477\pi\)
0.999226 0.0393320i \(-0.0125230\pi\)
\(440\) 0 0
\(441\) 5.23675 + 16.1171i 0.249369 + 0.767480i
\(442\) 0 0
\(443\) 12.4673 + 38.3704i 0.592340 + 1.82303i 0.567546 + 0.823341i \(0.307893\pi\)
0.0247933 + 0.999693i \(0.492107\pi\)
\(444\) 0 0
\(445\) −8.89837 + 6.46505i −0.421823 + 0.306473i
\(446\) 0 0
\(447\) −0.444466 + 1.36793i −0.0210225 + 0.0647007i
\(448\) 0 0
\(449\) −11.8880 + 8.63711i −0.561028 + 0.407610i −0.831835 0.555023i \(-0.812709\pi\)
0.270807 + 0.962634i \(0.412709\pi\)
\(450\) 0 0
\(451\) −0.439483 + 0.557639i −0.0206944 + 0.0262582i
\(452\) 0 0
\(453\) −4.35395 + 3.16333i −0.204566 + 0.148626i
\(454\) 0 0
\(455\) −1.37084 + 4.21900i −0.0642658 + 0.197790i
\(456\) 0 0
\(457\) −4.24686 + 3.08552i −0.198660 + 0.144335i −0.682668 0.730729i \(-0.739180\pi\)
0.484008 + 0.875063i \(0.339180\pi\)
\(458\) 0 0
\(459\) 4.21789 + 12.9813i 0.196874 + 0.605917i
\(460\) 0 0
\(461\) 1.80273 + 5.54824i 0.0839616 + 0.258407i 0.984220 0.176948i \(-0.0566226\pi\)
−0.900259 + 0.435356i \(0.856623\pi\)
\(462\) 0 0
\(463\) 5.01463 15.4334i 0.233050 0.717253i −0.764324 0.644832i \(-0.776927\pi\)
0.997374 0.0724212i \(-0.0230726\pi\)
\(464\) 0 0
\(465\) 0.625440 0.0290041
\(466\) 0 0
\(467\) 2.53495 + 1.84175i 0.117303 + 0.0852259i 0.644890 0.764275i \(-0.276903\pi\)
−0.527587 + 0.849501i \(0.676903\pi\)
\(468\) 0 0
\(469\) −8.66017 + 6.29198i −0.399890 + 0.290537i
\(470\) 0 0
\(471\) −3.10837 2.25836i −0.143226 0.104060i
\(472\) 0 0
\(473\) −0.884771 0.642824i −0.0406818 0.0295571i
\(474\) 0 0
\(475\) −1.01074 3.11073i −0.0463758 0.142730i
\(476\) 0 0
\(477\) −0.0489508 + 0.150655i −0.00224130 + 0.00689802i
\(478\) 0 0
\(479\) 27.9414 20.3006i 1.27667 0.927558i 0.277227 0.960805i \(-0.410585\pi\)
0.999447 + 0.0332468i \(0.0105848\pi\)
\(480\) 0 0
\(481\) −1.56714 4.82317i −0.0714556 0.219918i
\(482\) 0 0
\(483\) 3.19420 0.145341
\(484\) 0 0
\(485\) 1.21424 + 0.882196i 0.0551358 + 0.0400585i
\(486\) 0 0
\(487\) 8.00922 24.6498i 0.362932 1.11699i −0.588334 0.808618i \(-0.700216\pi\)
0.951266 0.308372i \(-0.0997842\pi\)
\(488\) 0 0
\(489\) 4.24980 0.192182
\(490\) 0 0
\(491\) 41.6531 1.87978 0.939890 0.341478i \(-0.110927\pi\)
0.939890 + 0.341478i \(0.110927\pi\)
\(492\) 0 0
\(493\) −47.9993 −2.16178
\(494\) 0 0
\(495\) 0.311576 0.0140043
\(496\) 0 0
\(497\) −1.93611 + 5.95874i −0.0868465 + 0.267286i
\(498\) 0 0
\(499\) 29.7231 + 21.5951i 1.33059 + 0.966730i 0.999734 + 0.0230487i \(0.00733728\pi\)
0.330856 + 0.943681i \(0.392663\pi\)
\(500\) 0 0
\(501\) −2.68990 −0.120176
\(502\) 0 0
\(503\) 1.69973 + 5.23122i 0.0757871 + 0.233249i 0.981772 0.190061i \(-0.0608684\pi\)
−0.905985 + 0.423309i \(0.860868\pi\)
\(504\) 0 0
\(505\) −0.0747393 + 0.0543013i −0.00332585 + 0.00241637i
\(506\) 0 0
\(507\) −0.984512 + 3.03002i −0.0437237 + 0.134568i
\(508\) 0 0
\(509\) −2.95347 9.08984i −0.130910 0.402900i 0.864021 0.503455i \(-0.167938\pi\)
−0.994931 + 0.100555i \(0.967938\pi\)
\(510\) 0 0
\(511\) −0.103983 0.0755478i −0.00459992 0.00334204i
\(512\) 0 0
\(513\) 6.70269 + 4.86979i 0.295931 + 0.215006i
\(514\) 0 0
\(515\) 9.24854 6.71945i 0.407539 0.296095i
\(516\) 0 0
\(517\) 0.198500 + 0.144218i 0.00873000 + 0.00634272i
\(518\) 0 0
\(519\) 8.93379 0.392150
\(520\) 0 0
\(521\) 3.68717 11.3479i 0.161538 0.497162i −0.837227 0.546856i \(-0.815824\pi\)
0.998765 + 0.0496936i \(0.0158245\pi\)
\(522\) 0 0
\(523\) 7.61594 + 23.4395i 0.333022 + 1.02494i 0.967688 + 0.252150i \(0.0811375\pi\)
−0.634666 + 0.772786i \(0.718862\pi\)
\(524\) 0 0
\(525\) 0.132624 + 0.408174i 0.00578817 + 0.0178142i
\(526\) 0 0
\(527\) −6.25398 + 4.54378i −0.272428 + 0.197930i
\(528\) 0 0
\(529\) 10.0097 30.8067i 0.435205 1.33942i
\(530\) 0 0
\(531\) −21.5299 + 15.6424i −0.934316 + 0.678821i
\(532\) 0 0
\(533\) 27.0729 + 9.98348i 1.17266 + 0.432433i
\(534\) 0 0
\(535\) 15.7872 11.4701i 0.682540 0.495894i
\(536\) 0 0
\(537\) 1.51148 4.65185i 0.0652250 0.200742i
\(538\) 0 0
\(539\) 0.541019 0.393073i 0.0233033 0.0169309i
\(540\) 0 0
\(541\) 7.47716 + 23.0123i 0.321468 + 0.989378i 0.973010 + 0.230765i \(0.0741228\pi\)
−0.651541 + 0.758613i \(0.725877\pi\)
\(542\) 0 0
\(543\) 2.95236 + 9.08645i 0.126698 + 0.389937i
\(544\) 0 0
\(545\) −3.43207 + 10.5628i −0.147014 + 0.452462i
\(546\) 0 0
\(547\) −12.5343 −0.535930 −0.267965 0.963429i \(-0.586351\pi\)
−0.267965 + 0.963429i \(0.586351\pi\)
\(548\) 0 0
\(549\) −32.6276 23.7053i −1.39251 1.01172i
\(550\) 0 0
\(551\) −23.5706 + 17.1251i −1.00414 + 0.729552i
\(552\) 0 0
\(553\) −8.68834 6.31245i −0.369466 0.268433i
\(554\) 0 0
\(555\) −0.396935 0.288390i −0.0168489 0.0122415i
\(556\) 0 0
\(557\) −8.58681 26.4275i −0.363835 1.11977i −0.950707 0.310089i \(-0.899641\pi\)
0.586872 0.809679i \(-0.300359\pi\)
\(558\) 0 0
\(559\) −13.7346 + 42.2707i −0.580911 + 1.78786i
\(560\) 0 0
\(561\) 0.210751 0.153119i 0.00889791 0.00646471i
\(562\) 0 0
\(563\) 11.4608 + 35.2727i 0.483014 + 1.48657i 0.834836 + 0.550498i \(0.185562\pi\)
−0.351822 + 0.936067i \(0.614438\pi\)
\(564\) 0 0
\(565\) 10.2552 0.431440
\(566\) 0 0
\(567\) 5.83399 + 4.23864i 0.245004 + 0.178006i
\(568\) 0 0
\(569\) −0.983838 + 3.02794i −0.0412446 + 0.126938i −0.969559 0.244859i \(-0.921258\pi\)
0.928314 + 0.371797i \(0.121258\pi\)
\(570\) 0 0
\(571\) −14.2902 −0.598025 −0.299012 0.954249i \(-0.596657\pi\)
−0.299012 + 0.954249i \(0.596657\pi\)
\(572\) 0 0
\(573\) −5.38489 −0.224957
\(574\) 0 0
\(575\) 7.44259 0.310377
\(576\) 0 0
\(577\) −1.91141 −0.0795730 −0.0397865 0.999208i \(-0.512668\pi\)
−0.0397865 + 0.999208i \(0.512668\pi\)
\(578\) 0 0
\(579\) 0.915698 2.81823i 0.0380551 0.117122i
\(580\) 0 0
\(581\) −2.26839 1.64808i −0.0941087 0.0683739i
\(582\) 0 0
\(583\) 0.00625103 0.000258891
\(584\) 0 0
\(585\) −3.91297 12.0429i −0.161781 0.497911i
\(586\) 0 0
\(587\) 10.3182 7.49663i 0.425879 0.309419i −0.354120 0.935200i \(-0.615220\pi\)
0.779999 + 0.625781i \(0.215220\pi\)
\(588\) 0 0
\(589\) −1.44997 + 4.46256i −0.0597451 + 0.183876i
\(590\) 0 0
\(591\) −3.37930 10.4004i −0.139006 0.427816i
\(592\) 0 0
\(593\) −16.9542 12.3180i −0.696227 0.505839i 0.182474 0.983211i \(-0.441589\pi\)
−0.878701 + 0.477372i \(0.841589\pi\)
\(594\) 0 0
\(595\) −4.29151 3.11796i −0.175935 0.127824i
\(596\) 0 0
\(597\) −4.43620 + 3.22309i −0.181562 + 0.131912i
\(598\) 0 0
\(599\) 16.6234 + 12.0776i 0.679215 + 0.493479i 0.873097 0.487546i \(-0.162108\pi\)
−0.193882 + 0.981025i \(0.562108\pi\)
\(600\) 0 0
\(601\) −21.8199 −0.890050 −0.445025 0.895518i \(-0.646805\pi\)
−0.445025 + 0.895518i \(0.646805\pi\)
\(602\) 0 0
\(603\) 9.44217 29.0600i 0.384515 1.18341i
\(604\) 0 0
\(605\) 3.39539 + 10.4499i 0.138042 + 0.424850i
\(606\) 0 0
\(607\) 8.68802 + 26.7390i 0.352636 + 1.08530i 0.957368 + 0.288872i \(0.0932802\pi\)
−0.604732 + 0.796429i \(0.706720\pi\)
\(608\) 0 0
\(609\) 3.09281 2.24706i 0.125327 0.0910554i
\(610\) 0 0
\(611\) 3.08137 9.48349i 0.124659 0.383661i
\(612\) 0 0
\(613\) 21.9860 15.9737i 0.888005 0.645173i −0.0473524 0.998878i \(-0.515078\pi\)
0.935357 + 0.353705i \(0.115078\pi\)
\(614\) 0 0
\(615\) 2.68671 0.758128i 0.108338 0.0305707i
\(616\) 0 0
\(617\) −25.2332 + 18.3330i −1.01585 + 0.738059i −0.965428 0.260668i \(-0.916057\pi\)
−0.0504234 + 0.998728i \(0.516057\pi\)
\(618\) 0 0
\(619\) 4.30978 13.2641i 0.173225 0.533131i −0.826323 0.563196i \(-0.809571\pi\)
0.999548 + 0.0300652i \(0.00957150\pi\)
\(620\) 0 0
\(621\) −15.2516 + 11.0810i −0.612027 + 0.444664i
\(622\) 0 0
\(623\) 3.34587 + 10.2975i 0.134050 + 0.412562i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 0 0
\(627\) 0.0488621 0.150382i 0.00195137 0.00600569i
\(628\) 0 0
\(629\) 6.06422 0.241796
\(630\) 0 0
\(631\) 0.816013 + 0.592868i 0.0324850 + 0.0236017i 0.603909 0.797053i \(-0.293609\pi\)
−0.571424 + 0.820655i \(0.693609\pi\)
\(632\) 0 0
\(633\) 3.32894 2.41862i 0.132314 0.0961314i
\(634\) 0 0
\(635\) 14.6195 + 10.6217i 0.580158 + 0.421510i
\(636\) 0 0
\(637\) −21.9873 15.9747i −0.871169 0.632941i
\(638\) 0 0
\(639\) −5.52651 17.0088i −0.218625 0.672859i
\(640\) 0 0
\(641\) 10.7099 32.9616i 0.423015 1.30191i −0.481868 0.876244i \(-0.660041\pi\)
0.904883 0.425661i \(-0.139959\pi\)
\(642\) 0 0
\(643\) 39.3215 28.5687i 1.55069 1.12664i 0.607528 0.794298i \(-0.292161\pi\)
0.943159 0.332342i \(-0.107839\pi\)
\(644\) 0 0
\(645\) 1.32877 + 4.08954i 0.0523204 + 0.161026i
\(646\) 0 0
\(647\) 22.2774 0.875817 0.437908 0.899020i \(-0.355719\pi\)
0.437908 + 0.899020i \(0.355719\pi\)
\(648\) 0 0
\(649\) 0.849603 + 0.617273i 0.0333498 + 0.0242301i
\(650\) 0 0
\(651\) 0.190258 0.585553i 0.00745678 0.0229496i
\(652\) 0 0
\(653\) 6.88646 0.269488 0.134744 0.990880i \(-0.456979\pi\)
0.134744 + 0.990880i \(0.456979\pi\)
\(654\) 0 0
\(655\) 3.99290 0.156016
\(656\) 0 0
\(657\) 0.366879 0.0143133
\(658\) 0 0
\(659\) −47.1488 −1.83666 −0.918329 0.395818i \(-0.870461\pi\)
−0.918329 + 0.395818i \(0.870461\pi\)
\(660\) 0 0
\(661\) 2.09407 6.44489i 0.0814500 0.250677i −0.902036 0.431660i \(-0.857928\pi\)
0.983486 + 0.180983i \(0.0579279\pi\)
\(662\) 0 0
\(663\) −8.56504 6.22287i −0.332639 0.241676i
\(664\) 0 0
\(665\) −3.21981 −0.124859
\(666\) 0 0
\(667\) −20.4863 63.0503i −0.793233 2.44132i
\(668\) 0 0
\(669\) −4.36327 + 3.17010i −0.168694 + 0.122563i
\(670\) 0 0
\(671\) −0.491795 + 1.51359i −0.0189855 + 0.0584315i
\(672\) 0 0
\(673\) 8.52908 + 26.2498i 0.328772 + 1.01186i 0.969709 + 0.244263i \(0.0785459\pi\)
−0.640937 + 0.767593i \(0.721454\pi\)
\(674\) 0 0
\(675\) −2.04924 1.48886i −0.0788752 0.0573062i
\(676\) 0 0
\(677\) 2.70107 + 1.96244i 0.103811 + 0.0754228i 0.638480 0.769639i \(-0.279564\pi\)
−0.534669 + 0.845062i \(0.679564\pi\)
\(678\) 0 0
\(679\) 1.19530 0.868439i 0.0458716 0.0333276i
\(680\) 0 0
\(681\) −0.818058 0.594354i −0.0313481 0.0227757i
\(682\) 0 0
\(683\) −23.7792 −0.909888 −0.454944 0.890520i \(-0.650341\pi\)
−0.454944 + 0.890520i \(0.650341\pi\)
\(684\) 0 0
\(685\) −6.71003 + 20.6514i −0.256377 + 0.789048i
\(686\) 0 0
\(687\) 2.52429 + 7.76895i 0.0963075 + 0.296404i
\(688\) 0 0
\(689\) −0.0785044 0.241612i −0.00299078 0.00920468i
\(690\) 0 0
\(691\) −3.36656 + 2.44595i −0.128070 + 0.0930483i −0.649976 0.759955i \(-0.725221\pi\)
0.521906 + 0.853003i \(0.325221\pi\)
\(692\) 0 0
\(693\) 0.0947807 0.291705i 0.00360042 0.0110810i
\(694\) 0 0
\(695\) 6.42301 4.66659i 0.243639 0.177014i
\(696\) 0 0
\(697\) −21.3575 + 27.0995i −0.808974 + 1.02647i
\(698\) 0 0
\(699\) 0.0317671 0.0230801i 0.00120154 0.000872971i
\(700\) 0 0
\(701\) 0.000132870 0 0.000408931i 5.01842e−6 0 1.54451e-5i −0.951054 0.309025i \(-0.899997\pi\)
0.951059 + 0.309009i \(0.0999974\pi\)
\(702\) 0 0
\(703\) 2.97791 2.16358i 0.112314 0.0816008i
\(704\) 0 0
\(705\) −0.298112 0.917495i −0.0112276 0.0345549i
\(706\) 0 0
\(707\) 0.0281027 + 0.0864911i 0.00105691 + 0.00325283i
\(708\) 0 0
\(709\) 9.44853 29.0796i 0.354847 1.09211i −0.601251 0.799060i \(-0.705331\pi\)
0.956098 0.293047i \(-0.0946692\pi\)
\(710\) 0 0
\(711\) 30.6549 1.14965
\(712\) 0 0
\(713\) −8.63779 6.27572i −0.323488 0.235028i
\(714\) 0 0
\(715\) −0.404256 + 0.293709i −0.0151183 + 0.0109841i
\(716\) 0 0
\(717\) 9.47182 + 6.88168i 0.353732 + 0.257001i
\(718\) 0 0
\(719\) −33.4758 24.3216i −1.24844 0.907042i −0.250307 0.968167i \(-0.580531\pi\)
−0.998130 + 0.0611242i \(0.980531\pi\)
\(720\) 0 0
\(721\) −3.47754 10.7028i −0.129510 0.398592i
\(722\) 0 0
\(723\) 2.24786 6.91819i 0.0835987 0.257290i
\(724\) 0 0
\(725\) 7.20634 5.23571i 0.267637 0.194449i
\(726\) 0 0
\(727\) −5.11486 15.7419i −0.189700 0.583835i 0.810298 0.586018i \(-0.199305\pi\)
−0.999998 + 0.00218265i \(0.999305\pi\)
\(728\) 0 0
\(729\) −17.2709 −0.639664
\(730\) 0 0
\(731\) −42.9972 31.2393i −1.59031 1.15543i
\(732\) 0 0
\(733\) 2.53508 7.80218i 0.0936354 0.288180i −0.893260 0.449540i \(-0.851588\pi\)
0.986896 + 0.161360i \(0.0515879\pi\)
\(734\) 0 0
\(735\) −2.62936 −0.0969854
\(736\) 0 0
\(737\) −1.20577 −0.0444151
\(738\) 0 0
\(739\) −3.03056 −0.111481 −0.0557406 0.998445i \(-0.517752\pi\)
−0.0557406 + 0.998445i \(0.517752\pi\)
\(740\) 0 0
\(741\) −6.42614 −0.236070
\(742\) 0 0
\(743\) 11.7609 36.1964i 0.431467 1.32792i −0.465197 0.885207i \(-0.654017\pi\)
0.896664 0.442712i \(-0.145983\pi\)
\(744\) 0 0
\(745\) 2.66901 + 1.93915i 0.0977848 + 0.0710449i
\(746\) 0 0
\(747\) 8.00351 0.292833
\(748\) 0 0
\(749\) −5.93613 18.2695i −0.216902 0.667554i
\(750\) 0 0
\(751\) 40.5164 29.4369i 1.47846 1.07417i 0.500416 0.865785i \(-0.333180\pi\)
0.978047 0.208382i \(-0.0668197\pi\)
\(752\) 0 0
\(753\) 1.15709 3.56115i 0.0421666 0.129775i
\(754\) 0 0
\(755\) 3.81455 + 11.7400i 0.138826 + 0.427262i
\(756\) 0 0
\(757\) 7.31272 + 5.31300i 0.265785 + 0.193104i 0.712694 0.701475i \(-0.247475\pi\)
−0.446908 + 0.894580i \(0.647475\pi\)
\(758\) 0 0
\(759\) 0.291082 + 0.211483i 0.0105656 + 0.00767636i
\(760\) 0 0
\(761\) −19.9175 + 14.4709i −0.722011 + 0.524571i −0.887026 0.461720i \(-0.847233\pi\)
0.165015 + 0.986291i \(0.447233\pi\)
\(762\) 0 0
\(763\) 8.84516 + 6.42639i 0.320216 + 0.232651i
\(764\) 0 0
\(765\) 15.1416 0.547447
\(766\) 0 0
\(767\) 13.1887 40.5905i 0.476215 1.46564i
\(768\) 0 0
\(769\) −9.51098 29.2718i −0.342975 1.05557i −0.962659 0.270716i \(-0.912739\pi\)
0.619685 0.784851i \(-0.287261\pi\)
\(770\) 0 0
\(771\) 2.26700 + 6.97710i 0.0816439 + 0.251274i
\(772\) 0 0
\(773\) 23.9265 17.3836i 0.860575 0.625244i −0.0674664 0.997722i \(-0.521492\pi\)
0.928041 + 0.372477i \(0.121492\pi\)
\(774\) 0 0
\(775\) 0.443306 1.36435i 0.0159240 0.0490091i
\(776\) 0 0
\(777\) −0.390745 + 0.283893i −0.0140179 + 0.0101846i
\(778\) 0 0
\(779\) −0.819357 + 20.9274i −0.0293565 + 0.749802i
\(780\) 0 0
\(781\) −0.570954 + 0.414822i −0.0204303 + 0.0148435i
\(782\) 0 0
\(783\) −6.97227 + 21.4584i −0.249169 + 0.766862i
\(784\) 0 0
\(785\) −7.12964 + 5.17999i −0.254468 + 0.184882i
\(786\) 0 0
\(787\) −4.70317 14.4749i −0.167650 0.515973i 0.831572 0.555417i \(-0.187441\pi\)
−0.999222 + 0.0394438i \(0.987441\pi\)
\(788\) 0 0
\(789\) 3.30909 + 10.1843i 0.117807 + 0.362571i
\(790\) 0 0
\(791\) 3.11961 9.60118i 0.110921 0.341379i
\(792\) 0 0
\(793\) 64.6788 2.29681
\(794\) 0 0
\(795\) −0.0198841 0.0144466i −0.000705215 0.000512368i
\(796\) 0 0
\(797\) 15.4847 11.2503i 0.548496 0.398506i −0.278734 0.960368i \(-0.589915\pi\)
0.827231 + 0.561862i \(0.189915\pi\)
\(798\) 0 0
\(799\) 9.64647 + 7.00857i 0.341268 + 0.247945i
\(800\) 0 0
\(801\) −25.0038 18.1663i −0.883464 0.641874i
\(802\) 0 0
\(803\) −0.00447384 0.0137691i −0.000157878 0.000485900i
\(804\) 0 0
\(805\) 2.26402 6.96794i 0.0797963 0.245588i
\(806\) 0 0
\(807\) −4.44360 + 3.22846i −0.156422 + 0.113647i
\(808\) 0 0
\(809\) 8.57892 + 26.4032i 0.301619 + 0.928288i 0.980917 + 0.194425i \(0.0622842\pi\)
−0.679298 + 0.733862i \(0.737716\pi\)
\(810\) 0 0
\(811\) 15.9671 0.560681 0.280340 0.959901i \(-0.409553\pi\)
0.280340 + 0.959901i \(0.409553\pi\)
\(812\) 0 0
\(813\) −11.3938 8.27811i −0.399599 0.290326i
\(814\) 0 0
\(815\) 3.01221 9.27064i 0.105513 0.324736i
\(816\) 0 0
\(817\) −32.2597 −1.12862
\(818\) 0 0
\(819\) −12.4652 −0.435568
\(820\) 0 0
\(821\) −39.5005 −1.37858 −0.689289 0.724486i \(-0.742077\pi\)
−0.689289 + 0.724486i \(0.742077\pi\)
\(822\) 0 0
\(823\) 26.4527 0.922084 0.461042 0.887378i \(-0.347476\pi\)
0.461042 + 0.887378i \(0.347476\pi\)
\(824\) 0 0
\(825\) −0.0149388 + 0.0459769i −0.000520103 + 0.00160071i
\(826\) 0 0
\(827\) −7.44247 5.40727i −0.258800 0.188029i 0.450818 0.892616i \(-0.351132\pi\)
−0.709618 + 0.704587i \(0.751132\pi\)
\(828\) 0 0
\(829\) −5.12587 −0.178029 −0.0890144 0.996030i \(-0.528372\pi\)
−0.0890144 + 0.996030i \(0.528372\pi\)
\(830\) 0 0
\(831\) 3.25829 + 10.0280i 0.113029 + 0.347867i
\(832\) 0 0
\(833\) 26.2918 19.1021i 0.910958 0.661850i
\(834\) 0 0
\(835\) −1.90657 + 5.86783i −0.0659797 + 0.203065i
\(836\) 0 0
\(837\) 1.12289 + 3.45591i 0.0388129 + 0.119454i
\(838\) 0 0
\(839\) 4.60558 + 3.34615i 0.159002 + 0.115522i 0.664441 0.747340i \(-0.268670\pi\)
−0.505439 + 0.862862i \(0.668670\pi\)
\(840\) 0 0
\(841\) −40.7292 29.5915i −1.40445 1.02040i
\(842\) 0 0
\(843\) −2.21355 + 1.60824i −0.0762386 + 0.0553906i
\(844\) 0 0
\(845\) 5.91196 + 4.29529i 0.203378 + 0.147763i
\(846\) 0 0
\(847\) 10.8164 0.371654
\(848\) 0 0
\(849\) 1.04248 3.20842i 0.0357777 0.110113i
\(850\) 0 0
\(851\) 2.58823 + 7.96576i 0.0887235 + 0.273063i
\(852\) 0 0
\(853\) 9.42030 + 28.9927i 0.322545 + 0.992691i 0.972537 + 0.232750i \(0.0747723\pi\)
−0.649992 + 0.759941i \(0.725228\pi\)
\(854\) 0 0
\(855\) 7.43547 5.40218i 0.254288 0.184751i
\(856\) 0 0
\(857\) −4.74436 + 14.6016i −0.162064 + 0.498782i −0.998808 0.0488124i \(-0.984456\pi\)
0.836744 + 0.547595i \(0.184456\pi\)
\(858\) 0 0
\(859\) 2.52808 1.83676i 0.0862570 0.0626694i −0.543821 0.839201i \(-0.683023\pi\)
0.630078 + 0.776532i \(0.283023\pi\)
\(860\) 0 0
\(861\) 0.107512 2.74598i 0.00366399 0.0935829i
\(862\) 0 0
\(863\) −22.0631 + 16.0298i −0.751038 + 0.545661i −0.896148 0.443755i \(-0.853646\pi\)
0.145111 + 0.989415i \(0.453646\pi\)
\(864\) 0 0
\(865\) 6.33218 19.4884i 0.215301 0.662627i
\(866\) 0 0
\(867\) 4.24571 3.08469i 0.144192 0.104762i
\(868\) 0 0
\(869\) −0.373815 1.15048i −0.0126808 0.0390275i
\(870\) 0 0
\(871\) 15.1428 + 46.6048i 0.513094 + 1.57914i
\(872\) 0 0
\(873\) −1.30324 + 4.01095i −0.0441079 + 0.135750i
\(874\) 0 0
\(875\) 0.984406 0.0332790
\(876\) 0 0
\(877\) −41.0301 29.8101i −1.38549 1.00661i −0.996344 0.0854374i \(-0.972771\pi\)
−0.389143 0.921177i \(-0.627229\pi\)
\(878\) 0 0
\(879\) 1.96591 1.42832i 0.0663085 0.0481760i
\(880\) 0 0
\(881\) −19.8506 14.4223i −0.668782 0.485899i 0.200835 0.979625i \(-0.435635\pi\)
−0.869617 + 0.493726i \(0.835635\pi\)
\(882\) 0 0
\(883\) 8.87140 + 6.44545i 0.298547 + 0.216907i 0.726966 0.686673i \(-0.240930\pi\)
−0.428420 + 0.903580i \(0.640930\pi\)
\(884\) 0 0
\(885\) −1.27596 3.92699i −0.0428908 0.132004i
\(886\) 0 0
\(887\) 5.50387 16.9392i 0.184802 0.568762i −0.815143 0.579260i \(-0.803342\pi\)
0.999945 + 0.0104979i \(0.00334164\pi\)
\(888\) 0 0
\(889\) 14.3915 10.4561i 0.482677 0.350685i
\(890\) 0 0
\(891\) 0.251007 + 0.772519i 0.00840904 + 0.0258804i
\(892\) 0 0
\(893\) 7.23751 0.242194
\(894\) 0 0
\(895\) −9.07637 6.59437i −0.303390 0.220425i
\(896\) 0 0
\(897\) 4.51856 13.9067i 0.150870 0.464331i
\(898\) 0 0
\(899\) −12.7784 −0.426185
\(900\) 0 0
\(901\) 0.303781 0.0101204
\(902\) 0 0
\(903\) 4.23295 0.140864
\(904\) 0 0
\(905\) 21.9141 0.728448
\(906\) 0 0
\(907\) −6.70151 + 20.6251i −0.222520 + 0.684846i 0.776014 + 0.630716i \(0.217239\pi\)
−0.998534 + 0.0541302i \(0.982761\pi\)
\(908\) 0 0
\(909\) −0.210012 0.152582i −0.00696565 0.00506084i
\(910\) 0 0
\(911\) −12.6754 −0.419956 −0.209978 0.977706i \(-0.567339\pi\)
−0.209978 + 0.977706i \(0.567339\pi\)
\(912\) 0 0
\(913\) −0.0975972 0.300373i −0.00323000 0.00994091i
\(914\) 0 0
\(915\) 5.06238 3.67804i 0.167357 0.121592i
\(916\) 0 0
\(917\) 1.21463 3.73826i 0.0401107 0.123448i
\(918\) 0 0
\(919\) 5.06143 + 15.5775i 0.166961 + 0.513853i 0.999175 0.0406006i \(-0.0129271\pi\)
−0.832214 + 0.554454i \(0.812927\pi\)
\(920\) 0 0
\(921\) 6.86253 + 4.98592i 0.226128 + 0.164292i
\(922\) 0 0
\(923\) 23.2039 + 16.8586i 0.763765 + 0.554908i
\(924\) 0 0
\(925\) −0.910447 + 0.661479i −0.0299353 + 0.0217493i
\(926\) 0 0
\(927\) 25.9877 + 18.8811i 0.853547 + 0.620138i
\(928\) 0 0
\(929\) −12.4140 −0.407289 −0.203645 0.979045i \(-0.565279\pi\)
−0.203645 + 0.979045i \(0.565279\pi\)
\(930\) 0 0
\(931\) 6.09571 18.7607i 0.199779 0.614856i
\(932\) 0 0
\(933\) −3.70740 11.4102i −0.121375 0.373554i
\(934\) 0 0
\(935\) −0.184642 0.568268i −0.00603843 0.0185844i
\(936\) 0 0
\(937\) −23.1344 + 16.8081i −0.755769 + 0.549098i −0.897610 0.440791i \(-0.854698\pi\)
0.141841 + 0.989889i \(0.454698\pi\)
\(938\) 0 0
\(939\) 0.611854 1.88309i 0.0199671 0.0614524i
\(940\) 0 0
\(941\) 0.716841 0.520815i 0.0233683 0.0169781i −0.576040 0.817422i \(-0.695403\pi\)
0.599408 + 0.800444i \(0.295403\pi\)
\(942\) 0 0
\(943\) −44.7125 16.4883i −1.45604 0.536934i
\(944\) 0 0
\(945\) −2.01728 + 1.46564i −0.0656222 + 0.0476773i
\(946\) 0 0
\(947\) 11.4993 35.3913i 0.373678 1.15006i −0.570688 0.821167i \(-0.693323\pi\)
0.944366 0.328896i \(-0.106677\pi\)
\(948\) 0 0
\(949\) −0.476009 + 0.345841i −0.0154519 + 0.0112265i
\(950\) 0 0
\(951\) −2.63158 8.09918i −0.0853349 0.262634i
\(952\) 0 0
\(953\) −3.18358 9.79805i −0.103126 0.317390i 0.886160 0.463380i \(-0.153363\pi\)
−0.989286 + 0.145990i \(0.953363\pi\)
\(954\) 0 0
\(955\) −3.81676 + 11.7468i −0.123507 + 0.380117i
\(956\) 0 0
\(957\) 0.430617 0.0139199
\(958\) 0 0
\(959\) 17.2931 + 12.5642i 0.558425 + 0.405719i
\(960\) 0 0
\(961\) 23.4146 17.0117i 0.755309 0.548764i
\(962\) 0 0
\(963\) 44.3608 + 32.2300i 1.42951 + 1.03860i
\(964\) 0 0
\(965\) −5.49874 3.99507i −0.177011 0.128606i
\(966\) 0 0
\(967\) −10.2328 31.4933i −0.329065 1.01276i −0.969572 0.244805i \(-0.921276\pi\)
0.640508 0.767952i \(-0.278724\pi\)
\(968\) 0 0
\(969\) 2.37455 7.30811i 0.0762815 0.234770i
\(970\) 0 0
\(971\) −28.5684 + 20.7561i −0.916802 + 0.666096i −0.942726 0.333568i \(-0.891747\pi\)
0.0259239 + 0.999664i \(0.491747\pi\)
\(972\) 0 0
\(973\) −2.41511 7.43295i −0.0774250 0.238290i
\(974\) 0 0
\(975\) 1.96469 0.0629204
\(976\) 0 0
\(977\) −22.9814 16.6970i −0.735241 0.534184i 0.155976 0.987761i \(-0.450148\pi\)
−0.891217 + 0.453577i \(0.850148\pi\)
\(978\) 0 0
\(979\) −0.376881 + 1.15992i −0.0120452 + 0.0370713i
\(980\) 0 0
\(981\) −31.2082 −0.996401
\(982\) 0 0
\(983\) −2.11892 −0.0675829 −0.0337915 0.999429i \(-0.510758\pi\)
−0.0337915 + 0.999429i \(0.510758\pi\)
\(984\) 0 0
\(985\) −25.0830 −0.799211
\(986\) 0 0
\(987\) −0.949667 −0.0302282
\(988\) 0 0
\(989\) 22.6835 69.8127i 0.721294 2.21991i
\(990\) 0 0
\(991\) −35.5643 25.8390i −1.12974 0.820803i −0.144081 0.989566i \(-0.546023\pi\)
−0.985657 + 0.168763i \(0.946023\pi\)
\(992\) 0 0
\(993\) 0.925947 0.0293840
\(994\) 0 0
\(995\) 3.88661 + 11.9618i 0.123214 + 0.379214i
\(996\) 0 0
\(997\) −24.3916 + 17.7215i −0.772489 + 0.561246i −0.902716 0.430238i \(-0.858430\pi\)
0.130226 + 0.991484i \(0.458430\pi\)
\(998\) 0 0
\(999\) 0.880875 2.71106i 0.0278697 0.0857740i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.b.201.3 32
41.10 even 5 inner 820.2.u.b.461.3 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.b.201.3 32 1.1 even 1 trivial
820.2.u.b.461.3 yes 32 41.10 even 5 inner