Properties

Label 820.2.u.b.201.1
Level $820$
Weight $2$
Character 820.201
Analytic conductor $6.548$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.1
Character \(\chi\) \(=\) 820.201
Dual form 820.2.u.b.461.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.30240 q^{3} +(-0.309017 + 0.951057i) q^{5} +(-1.74674 - 1.26908i) q^{7} +7.90585 q^{9} +(-0.472492 - 1.45418i) q^{11} +(1.40906 - 1.02374i) q^{13} +(1.02050 - 3.14077i) q^{15} +(-1.12456 - 3.46103i) q^{17} +(-1.89070 - 1.37367i) q^{19} +(5.76845 + 4.19102i) q^{21} +(0.714482 - 0.519102i) q^{23} +(-0.809017 - 0.587785i) q^{25} -16.2011 q^{27} +(-2.14284 + 6.59498i) q^{29} +(3.00788 + 9.25730i) q^{31} +(1.56036 + 4.80229i) q^{33} +(1.74674 - 1.26908i) q^{35} +(-0.114668 + 0.352911i) q^{37} +(-4.65327 + 3.38080i) q^{39} +(4.79946 + 4.23853i) q^{41} +(0.227859 - 0.165549i) q^{43} +(-2.44304 + 7.51891i) q^{45} +(-2.21228 + 1.60732i) q^{47} +(-0.722579 - 2.22387i) q^{49} +(3.71374 + 11.4297i) q^{51} +(-3.53558 + 10.8814i) q^{53} +1.52902 q^{55} +(6.24384 + 4.53642i) q^{57} +(-4.12440 + 2.99656i) q^{59} +(1.69291 + 1.22997i) q^{61} +(-13.8095 - 10.0332i) q^{63} +(0.538212 + 1.65645i) q^{65} +(-2.29947 + 7.07704i) q^{67} +(-2.35951 + 1.71428i) q^{69} +(-0.299474 - 0.921685i) q^{71} -5.21188 q^{73} +(2.67170 + 1.94110i) q^{75} +(-1.02015 + 3.13971i) q^{77} +12.9080 q^{79} +29.7849 q^{81} -14.4095 q^{83} +3.63915 q^{85} +(7.07651 - 21.7793i) q^{87} +(-13.5939 - 9.87655i) q^{89} -3.76047 q^{91} +(-9.93322 - 30.5713i) q^{93} +(1.89070 - 1.37367i) q^{95} +(-3.95010 + 12.1572i) q^{97} +(-3.73545 - 11.4965i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{3} + 8 q^{5} - 5 q^{7} + 46 q^{9} + q^{11} + q^{13} - 2 q^{15} + 7 q^{17} - 13 q^{19} - 6 q^{21} + 4 q^{23} - 8 q^{25} - 28 q^{27} + 3 q^{29} - q^{31} + 14 q^{33} + 5 q^{35} - 25 q^{37} + 26 q^{41}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.30240 −1.90664 −0.953321 0.301959i \(-0.902359\pi\)
−0.953321 + 0.301959i \(0.902359\pi\)
\(4\) 0 0
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) −1.74674 1.26908i −0.660207 0.479668i 0.206526 0.978441i \(-0.433784\pi\)
−0.866733 + 0.498773i \(0.833784\pi\)
\(8\) 0 0
\(9\) 7.90585 2.63528
\(10\) 0 0
\(11\) −0.472492 1.45418i −0.142462 0.438452i 0.854214 0.519921i \(-0.174039\pi\)
−0.996676 + 0.0814692i \(0.974039\pi\)
\(12\) 0 0
\(13\) 1.40906 1.02374i 0.390802 0.283934i −0.374982 0.927032i \(-0.622351\pi\)
0.765784 + 0.643098i \(0.222351\pi\)
\(14\) 0 0
\(15\) 1.02050 3.14077i 0.263491 0.810943i
\(16\) 0 0
\(17\) −1.12456 3.46103i −0.272745 0.839424i −0.989807 0.142414i \(-0.954513\pi\)
0.717062 0.697010i \(-0.245487\pi\)
\(18\) 0 0
\(19\) −1.89070 1.37367i −0.433756 0.315142i 0.349393 0.936976i \(-0.386388\pi\)
−0.783149 + 0.621834i \(0.786388\pi\)
\(20\) 0 0
\(21\) 5.76845 + 4.19102i 1.25878 + 0.914556i
\(22\) 0 0
\(23\) 0.714482 0.519102i 0.148980 0.108240i −0.510798 0.859700i \(-0.670650\pi\)
0.659778 + 0.751460i \(0.270650\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) 0 0
\(27\) −16.2011 −3.11790
\(28\) 0 0
\(29\) −2.14284 + 6.59498i −0.397915 + 1.22466i 0.528753 + 0.848776i \(0.322660\pi\)
−0.926668 + 0.375881i \(0.877340\pi\)
\(30\) 0 0
\(31\) 3.00788 + 9.25730i 0.540231 + 1.66266i 0.732066 + 0.681233i \(0.238556\pi\)
−0.191835 + 0.981427i \(0.561444\pi\)
\(32\) 0 0
\(33\) 1.56036 + 4.80229i 0.271623 + 0.835971i
\(34\) 0 0
\(35\) 1.74674 1.26908i 0.295254 0.214514i
\(36\) 0 0
\(37\) −0.114668 + 0.352911i −0.0188513 + 0.0580182i −0.960040 0.279864i \(-0.909711\pi\)
0.941188 + 0.337882i \(0.109711\pi\)
\(38\) 0 0
\(39\) −4.65327 + 3.38080i −0.745120 + 0.541361i
\(40\) 0 0
\(41\) 4.79946 + 4.23853i 0.749550 + 0.661947i
\(42\) 0 0
\(43\) 0.227859 0.165549i 0.0347481 0.0252460i −0.570276 0.821453i \(-0.693164\pi\)
0.605024 + 0.796207i \(0.293164\pi\)
\(44\) 0 0
\(45\) −2.44304 + 7.51891i −0.364187 + 1.12085i
\(46\) 0 0
\(47\) −2.21228 + 1.60732i −0.322694 + 0.234451i −0.737324 0.675539i \(-0.763911\pi\)
0.414630 + 0.909990i \(0.363911\pi\)
\(48\) 0 0
\(49\) −0.722579 2.22387i −0.103226 0.317696i
\(50\) 0 0
\(51\) 3.71374 + 11.4297i 0.520028 + 1.60048i
\(52\) 0 0
\(53\) −3.53558 + 10.8814i −0.485649 + 1.49468i 0.345389 + 0.938460i \(0.387747\pi\)
−0.831038 + 0.556216i \(0.812253\pi\)
\(54\) 0 0
\(55\) 1.52902 0.206173
\(56\) 0 0
\(57\) 6.24384 + 4.53642i 0.827017 + 0.600863i
\(58\) 0 0
\(59\) −4.12440 + 2.99656i −0.536952 + 0.390118i −0.822952 0.568111i \(-0.807674\pi\)
0.286000 + 0.958230i \(0.407674\pi\)
\(60\) 0 0
\(61\) 1.69291 + 1.22997i 0.216755 + 0.157482i 0.690865 0.722984i \(-0.257230\pi\)
−0.474110 + 0.880466i \(0.657230\pi\)
\(62\) 0 0
\(63\) −13.8095 10.0332i −1.73983 1.26406i
\(64\) 0 0
\(65\) 0.538212 + 1.65645i 0.0667570 + 0.205457i
\(66\) 0 0
\(67\) −2.29947 + 7.07704i −0.280925 + 0.864597i 0.706666 + 0.707547i \(0.250198\pi\)
−0.987591 + 0.157050i \(0.949802\pi\)
\(68\) 0 0
\(69\) −2.35951 + 1.71428i −0.284051 + 0.206375i
\(70\) 0 0
\(71\) −0.299474 0.921685i −0.0355410 0.109384i 0.931712 0.363198i \(-0.118315\pi\)
−0.967253 + 0.253814i \(0.918315\pi\)
\(72\) 0 0
\(73\) −5.21188 −0.610005 −0.305002 0.952352i \(-0.598657\pi\)
−0.305002 + 0.952352i \(0.598657\pi\)
\(74\) 0 0
\(75\) 2.67170 + 1.94110i 0.308501 + 0.224139i
\(76\) 0 0
\(77\) −1.02015 + 3.13971i −0.116257 + 0.357804i
\(78\) 0 0
\(79\) 12.9080 1.45226 0.726131 0.687556i \(-0.241317\pi\)
0.726131 + 0.687556i \(0.241317\pi\)
\(80\) 0 0
\(81\) 29.7849 3.30943
\(82\) 0 0
\(83\) −14.4095 −1.58164 −0.790822 0.612047i \(-0.790346\pi\)
−0.790822 + 0.612047i \(0.790346\pi\)
\(84\) 0 0
\(85\) 3.63915 0.394721
\(86\) 0 0
\(87\) 7.07651 21.7793i 0.758682 2.33498i
\(88\) 0 0
\(89\) −13.5939 9.87655i −1.44095 1.04691i −0.987843 0.155457i \(-0.950315\pi\)
−0.453109 0.891455i \(-0.649685\pi\)
\(90\) 0 0
\(91\) −3.76047 −0.394205
\(92\) 0 0
\(93\) −9.93322 30.5713i −1.03003 3.17010i
\(94\) 0 0
\(95\) 1.89070 1.37367i 0.193982 0.140936i
\(96\) 0 0
\(97\) −3.95010 + 12.1572i −0.401072 + 1.23437i 0.523059 + 0.852296i \(0.324791\pi\)
−0.924131 + 0.382076i \(0.875209\pi\)
\(98\) 0 0
\(99\) −3.73545 11.4965i −0.375427 1.15545i
\(100\) 0 0
\(101\) 5.57573 + 4.05101i 0.554806 + 0.403090i 0.829554 0.558426i \(-0.188595\pi\)
−0.274748 + 0.961516i \(0.588595\pi\)
\(102\) 0 0
\(103\) 12.6380 + 9.18205i 1.24526 + 0.904734i 0.997937 0.0641994i \(-0.0204494\pi\)
0.247322 + 0.968933i \(0.420449\pi\)
\(104\) 0 0
\(105\) −5.76845 + 4.19102i −0.562943 + 0.409002i
\(106\) 0 0
\(107\) 15.7137 + 11.4167i 1.51910 + 1.10369i 0.961931 + 0.273292i \(0.0881125\pi\)
0.557169 + 0.830399i \(0.311888\pi\)
\(108\) 0 0
\(109\) −12.5867 −1.20559 −0.602793 0.797898i \(-0.705945\pi\)
−0.602793 + 0.797898i \(0.705945\pi\)
\(110\) 0 0
\(111\) 0.378679 1.16545i 0.0359426 0.110620i
\(112\) 0 0
\(113\) 4.56119 + 14.0379i 0.429081 + 1.32057i 0.899032 + 0.437882i \(0.144271\pi\)
−0.469951 + 0.882692i \(0.655729\pi\)
\(114\) 0 0
\(115\) 0.272908 + 0.839924i 0.0254488 + 0.0783233i
\(116\) 0 0
\(117\) 11.1398 8.09353i 1.02987 0.748247i
\(118\) 0 0
\(119\) −2.42803 + 7.47270i −0.222577 + 0.685021i
\(120\) 0 0
\(121\) 7.00779 5.09146i 0.637072 0.462860i
\(122\) 0 0
\(123\) −15.8498 13.9973i −1.42912 1.26210i
\(124\) 0 0
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) 3.78591 11.6518i 0.335945 1.03393i −0.630309 0.776344i \(-0.717072\pi\)
0.966255 0.257589i \(-0.0829281\pi\)
\(128\) 0 0
\(129\) −0.752480 + 0.546709i −0.0662522 + 0.0481350i
\(130\) 0 0
\(131\) 2.77860 + 8.55166i 0.242768 + 0.747162i 0.995996 + 0.0894022i \(0.0284956\pi\)
−0.753228 + 0.657759i \(0.771504\pi\)
\(132\) 0 0
\(133\) 1.55926 + 4.79891i 0.135205 + 0.416118i
\(134\) 0 0
\(135\) 5.00640 15.4081i 0.430883 1.32612i
\(136\) 0 0
\(137\) 9.42455 0.805193 0.402597 0.915377i \(-0.368108\pi\)
0.402597 + 0.915377i \(0.368108\pi\)
\(138\) 0 0
\(139\) −14.3417 10.4198i −1.21644 0.883798i −0.220644 0.975354i \(-0.570816\pi\)
−0.995800 + 0.0915565i \(0.970816\pi\)
\(140\) 0 0
\(141\) 7.30584 5.30800i 0.615262 0.447014i
\(142\) 0 0
\(143\) −2.15447 1.56532i −0.180166 0.130898i
\(144\) 0 0
\(145\) −5.61002 4.07592i −0.465887 0.338487i
\(146\) 0 0
\(147\) 2.38624 + 7.34410i 0.196814 + 0.605732i
\(148\) 0 0
\(149\) 0.687223 2.11505i 0.0562995 0.173272i −0.918953 0.394368i \(-0.870963\pi\)
0.975252 + 0.221096i \(0.0709635\pi\)
\(150\) 0 0
\(151\) 6.20012 4.50465i 0.504559 0.366583i −0.306197 0.951968i \(-0.599057\pi\)
0.810756 + 0.585385i \(0.199057\pi\)
\(152\) 0 0
\(153\) −8.89058 27.3624i −0.718761 2.21212i
\(154\) 0 0
\(155\) −9.73370 −0.781830
\(156\) 0 0
\(157\) −10.7856 7.83620i −0.860785 0.625397i 0.0673135 0.997732i \(-0.478557\pi\)
−0.928098 + 0.372335i \(0.878557\pi\)
\(158\) 0 0
\(159\) 11.6759 35.9347i 0.925959 2.84981i
\(160\) 0 0
\(161\) −1.90680 −0.150277
\(162\) 0 0
\(163\) 13.3885 1.04867 0.524336 0.851511i \(-0.324314\pi\)
0.524336 + 0.851511i \(0.324314\pi\)
\(164\) 0 0
\(165\) −5.04942 −0.393097
\(166\) 0 0
\(167\) −16.3037 −1.26161 −0.630807 0.775940i \(-0.717276\pi\)
−0.630807 + 0.775940i \(0.717276\pi\)
\(168\) 0 0
\(169\) −3.07982 + 9.47872i −0.236909 + 0.729132i
\(170\) 0 0
\(171\) −14.9476 10.8600i −1.14307 0.830488i
\(172\) 0 0
\(173\) 9.23124 0.701838 0.350919 0.936406i \(-0.385869\pi\)
0.350919 + 0.936406i \(0.385869\pi\)
\(174\) 0 0
\(175\) 0.667197 + 2.05342i 0.0504353 + 0.155224i
\(176\) 0 0
\(177\) 13.6204 9.89582i 1.02377 0.743816i
\(178\) 0 0
\(179\) −1.32595 + 4.08085i −0.0991059 + 0.305017i −0.988302 0.152510i \(-0.951264\pi\)
0.889196 + 0.457526i \(0.151264\pi\)
\(180\) 0 0
\(181\) 1.96538 + 6.04881i 0.146085 + 0.449604i 0.997149 0.0754582i \(-0.0240419\pi\)
−0.851064 + 0.525063i \(0.824042\pi\)
\(182\) 0 0
\(183\) −5.59067 4.06186i −0.413274 0.300261i
\(184\) 0 0
\(185\) −0.300204 0.218111i −0.0220714 0.0160358i
\(186\) 0 0
\(187\) −4.50163 + 3.27062i −0.329191 + 0.239172i
\(188\) 0 0
\(189\) 28.2991 + 20.5605i 2.05846 + 1.49556i
\(190\) 0 0
\(191\) −17.3002 −1.25180 −0.625899 0.779904i \(-0.715268\pi\)
−0.625899 + 0.779904i \(0.715268\pi\)
\(192\) 0 0
\(193\) 5.84997 18.0044i 0.421090 1.29598i −0.485598 0.874182i \(-0.661398\pi\)
0.906689 0.421801i \(-0.138602\pi\)
\(194\) 0 0
\(195\) −1.77739 5.47025i −0.127282 0.391733i
\(196\) 0 0
\(197\) 4.54589 + 13.9908i 0.323881 + 0.996804i 0.971943 + 0.235216i \(0.0755798\pi\)
−0.648062 + 0.761588i \(0.724420\pi\)
\(198\) 0 0
\(199\) 2.88066 2.09293i 0.204205 0.148364i −0.480983 0.876730i \(-0.659720\pi\)
0.685188 + 0.728366i \(0.259720\pi\)
\(200\) 0 0
\(201\) 7.59376 23.3712i 0.535623 1.64848i
\(202\) 0 0
\(203\) 12.1126 8.80030i 0.850136 0.617660i
\(204\) 0 0
\(205\) −5.51420 + 3.25478i −0.385128 + 0.227324i
\(206\) 0 0
\(207\) 5.64859 4.10394i 0.392604 0.285243i
\(208\) 0 0
\(209\) −1.10423 + 3.39847i −0.0763811 + 0.235077i
\(210\) 0 0
\(211\) 5.08774 3.69646i 0.350254 0.254475i −0.398721 0.917072i \(-0.630546\pi\)
0.748976 + 0.662597i \(0.230546\pi\)
\(212\) 0 0
\(213\) 0.988982 + 3.04377i 0.0677639 + 0.208556i
\(214\) 0 0
\(215\) 0.0870342 + 0.267864i 0.00593569 + 0.0182682i
\(216\) 0 0
\(217\) 6.49429 19.9874i 0.440861 1.35683i
\(218\) 0 0
\(219\) 17.2117 1.16306
\(220\) 0 0
\(221\) −5.12777 3.72554i −0.344931 0.250607i
\(222\) 0 0
\(223\) −11.0086 + 7.99821i −0.737190 + 0.535600i −0.891830 0.452371i \(-0.850578\pi\)
0.154640 + 0.987971i \(0.450578\pi\)
\(224\) 0 0
\(225\) −6.39596 4.64694i −0.426398 0.309796i
\(226\) 0 0
\(227\) 3.17445 + 2.30638i 0.210696 + 0.153080i 0.688129 0.725589i \(-0.258433\pi\)
−0.477433 + 0.878668i \(0.658433\pi\)
\(228\) 0 0
\(229\) 1.15072 + 3.54154i 0.0760415 + 0.234032i 0.981851 0.189653i \(-0.0607364\pi\)
−0.905810 + 0.423685i \(0.860736\pi\)
\(230\) 0 0
\(231\) 3.36896 10.3686i 0.221661 0.682203i
\(232\) 0 0
\(233\) 0.0120704 0.00876962i 0.000790755 0.000574517i −0.587390 0.809304i \(-0.699844\pi\)
0.588181 + 0.808730i \(0.299844\pi\)
\(234\) 0 0
\(235\) −0.845016 2.60069i −0.0551228 0.169650i
\(236\) 0 0
\(237\) −42.6273 −2.76894
\(238\) 0 0
\(239\) 15.2276 + 11.0635i 0.984993 + 0.715640i 0.958819 0.284018i \(-0.0916675\pi\)
0.0261744 + 0.999657i \(0.491667\pi\)
\(240\) 0 0
\(241\) −0.430412 + 1.32467i −0.0277253 + 0.0853297i −0.963962 0.266041i \(-0.914284\pi\)
0.936236 + 0.351371i \(0.114284\pi\)
\(242\) 0 0
\(243\) −49.7583 −3.19200
\(244\) 0 0
\(245\) 2.33831 0.149389
\(246\) 0 0
\(247\) −4.07039 −0.258992
\(248\) 0 0
\(249\) 47.5858 3.01563
\(250\) 0 0
\(251\) −7.07655 + 21.7794i −0.446668 + 1.37470i 0.433976 + 0.900925i \(0.357110\pi\)
−0.880644 + 0.473779i \(0.842890\pi\)
\(252\) 0 0
\(253\) −1.09246 0.793715i −0.0686821 0.0499004i
\(254\) 0 0
\(255\) −12.0179 −0.752591
\(256\) 0 0
\(257\) 3.66057 + 11.2661i 0.228340 + 0.702758i 0.997935 + 0.0642260i \(0.0204579\pi\)
−0.769596 + 0.638532i \(0.779542\pi\)
\(258\) 0 0
\(259\) 0.648169 0.470922i 0.0402752 0.0292617i
\(260\) 0 0
\(261\) −16.9410 + 52.1389i −1.04862 + 3.22732i
\(262\) 0 0
\(263\) 8.38938 + 25.8199i 0.517311 + 1.59212i 0.779037 + 0.626978i \(0.215709\pi\)
−0.261725 + 0.965142i \(0.584291\pi\)
\(264\) 0 0
\(265\) −9.25627 6.72508i −0.568608 0.413118i
\(266\) 0 0
\(267\) 44.8925 + 32.6163i 2.74738 + 1.99609i
\(268\) 0 0
\(269\) −21.8461 + 15.8721i −1.33198 + 0.967740i −0.332281 + 0.943180i \(0.607818\pi\)
−0.999698 + 0.0245596i \(0.992182\pi\)
\(270\) 0 0
\(271\) −1.85459 1.34744i −0.112658 0.0818509i 0.530030 0.847979i \(-0.322181\pi\)
−0.642688 + 0.766128i \(0.722181\pi\)
\(272\) 0 0
\(273\) 12.4186 0.751607
\(274\) 0 0
\(275\) −0.472492 + 1.45418i −0.0284923 + 0.0876904i
\(276\) 0 0
\(277\) 1.14027 + 3.50940i 0.0685125 + 0.210860i 0.979451 0.201683i \(-0.0646409\pi\)
−0.910938 + 0.412542i \(0.864641\pi\)
\(278\) 0 0
\(279\) 23.7798 + 73.1868i 1.42366 + 4.38158i
\(280\) 0 0
\(281\) −3.56351 + 2.58904i −0.212581 + 0.154449i −0.688981 0.724780i \(-0.741942\pi\)
0.476400 + 0.879229i \(0.341942\pi\)
\(282\) 0 0
\(283\) −6.67840 + 20.5540i −0.396989 + 1.22181i 0.530412 + 0.847740i \(0.322037\pi\)
−0.927401 + 0.374068i \(0.877963\pi\)
\(284\) 0 0
\(285\) −6.24384 + 4.53642i −0.369853 + 0.268714i
\(286\) 0 0
\(287\) −3.00439 13.4945i −0.177343 0.796558i
\(288\) 0 0
\(289\) 3.03916 2.20808i 0.178774 0.129887i
\(290\) 0 0
\(291\) 13.0448 40.1478i 0.764700 2.35350i
\(292\) 0 0
\(293\) 10.8513 7.88391i 0.633938 0.460583i −0.223824 0.974629i \(-0.571854\pi\)
0.857762 + 0.514047i \(0.171854\pi\)
\(294\) 0 0
\(295\) −1.57538 4.84853i −0.0917223 0.282292i
\(296\) 0 0
\(297\) 7.65488 + 23.5593i 0.444181 + 1.36705i
\(298\) 0 0
\(299\) 0.475321 1.46289i 0.0274885 0.0846010i
\(300\) 0 0
\(301\) −0.608106 −0.0350507
\(302\) 0 0
\(303\) −18.4133 13.3780i −1.05782 0.768549i
\(304\) 0 0
\(305\) −1.69291 + 1.22997i −0.0969358 + 0.0704280i
\(306\) 0 0
\(307\) −8.78398 6.38193i −0.501328 0.364236i 0.308196 0.951323i \(-0.400275\pi\)
−0.809524 + 0.587087i \(0.800275\pi\)
\(308\) 0 0
\(309\) −41.7357 30.3228i −2.37426 1.72500i
\(310\) 0 0
\(311\) 8.72777 + 26.8613i 0.494907 + 1.52317i 0.817102 + 0.576493i \(0.195579\pi\)
−0.322195 + 0.946673i \(0.604421\pi\)
\(312\) 0 0
\(313\) 2.85368 8.78271i 0.161299 0.496428i −0.837445 0.546521i \(-0.815952\pi\)
0.998745 + 0.0500930i \(0.0159518\pi\)
\(314\) 0 0
\(315\) 13.8095 10.0332i 0.778076 0.565306i
\(316\) 0 0
\(317\) 2.90492 + 8.94042i 0.163157 + 0.502144i 0.998896 0.0469824i \(-0.0149605\pi\)
−0.835739 + 0.549127i \(0.814960\pi\)
\(318\) 0 0
\(319\) 10.6028 0.593641
\(320\) 0 0
\(321\) −51.8929 37.7024i −2.89638 2.10434i
\(322\) 0 0
\(323\) −2.62813 + 8.08854i −0.146233 + 0.450059i
\(324\) 0 0
\(325\) −1.74169 −0.0966116
\(326\) 0 0
\(327\) 41.5662 2.29862
\(328\) 0 0
\(329\) 5.90410 0.325504
\(330\) 0 0
\(331\) 29.0334 1.59582 0.797910 0.602776i \(-0.205939\pi\)
0.797910 + 0.602776i \(0.205939\pi\)
\(332\) 0 0
\(333\) −0.906545 + 2.79006i −0.0496784 + 0.152894i
\(334\) 0 0
\(335\) −6.02009 4.37385i −0.328912 0.238969i
\(336\) 0 0
\(337\) −23.9996 −1.30734 −0.653670 0.756780i \(-0.726771\pi\)
−0.653670 + 0.756780i \(0.726771\pi\)
\(338\) 0 0
\(339\) −15.0629 46.3588i −0.818103 2.51786i
\(340\) 0 0
\(341\) 12.0406 8.74800i 0.652035 0.473731i
\(342\) 0 0
\(343\) −6.23049 + 19.1755i −0.336415 + 1.03538i
\(344\) 0 0
\(345\) −0.901251 2.77377i −0.0485217 0.149335i
\(346\) 0 0
\(347\) 16.6450 + 12.0933i 0.893553 + 0.649204i 0.936802 0.349860i \(-0.113771\pi\)
−0.0432493 + 0.999064i \(0.513771\pi\)
\(348\) 0 0
\(349\) −24.1019 17.5111i −1.29015 0.937346i −0.290337 0.956924i \(-0.593768\pi\)
−0.999808 + 0.0195786i \(0.993768\pi\)
\(350\) 0 0
\(351\) −22.8282 + 16.5857i −1.21848 + 0.885278i
\(352\) 0 0
\(353\) −6.19005 4.49733i −0.329463 0.239369i 0.410740 0.911753i \(-0.365270\pi\)
−0.740203 + 0.672384i \(0.765270\pi\)
\(354\) 0 0
\(355\) 0.969117 0.0514354
\(356\) 0 0
\(357\) 8.01831 24.6778i 0.424374 1.30609i
\(358\) 0 0
\(359\) −7.76293 23.8919i −0.409712 1.26096i −0.916896 0.399126i \(-0.869314\pi\)
0.507184 0.861838i \(-0.330686\pi\)
\(360\) 0 0
\(361\) −4.18356 12.8757i −0.220187 0.677667i
\(362\) 0 0
\(363\) −23.1425 + 16.8140i −1.21467 + 0.882508i
\(364\) 0 0
\(365\) 1.61056 4.95679i 0.0843006 0.259450i
\(366\) 0 0
\(367\) 9.62649 6.99406i 0.502499 0.365087i −0.307472 0.951557i \(-0.599483\pi\)
0.809971 + 0.586470i \(0.199483\pi\)
\(368\) 0 0
\(369\) 37.9438 + 33.5092i 1.97528 + 1.74442i
\(370\) 0 0
\(371\) 19.9852 14.5201i 1.03758 0.753844i
\(372\) 0 0
\(373\) 6.57605 20.2390i 0.340495 1.04794i −0.623457 0.781858i \(-0.714272\pi\)
0.963952 0.266078i \(-0.0857278\pi\)
\(374\) 0 0
\(375\) −2.67170 + 1.94110i −0.137966 + 0.100238i
\(376\) 0 0
\(377\) 3.73216 + 11.4864i 0.192216 + 0.591581i
\(378\) 0 0
\(379\) −3.56511 10.9723i −0.183127 0.563608i 0.816784 0.576944i \(-0.195755\pi\)
−0.999911 + 0.0133362i \(0.995755\pi\)
\(380\) 0 0
\(381\) −12.5026 + 38.4790i −0.640527 + 1.97134i
\(382\) 0 0
\(383\) −3.75355 −0.191797 −0.0958987 0.995391i \(-0.530572\pi\)
−0.0958987 + 0.995391i \(0.530572\pi\)
\(384\) 0 0
\(385\) −2.67080 1.94045i −0.136117 0.0988945i
\(386\) 0 0
\(387\) 1.80142 1.30880i 0.0915711 0.0665303i
\(388\) 0 0
\(389\) −1.12975 0.820815i −0.0572808 0.0416170i 0.558776 0.829318i \(-0.311271\pi\)
−0.616057 + 0.787701i \(0.711271\pi\)
\(390\) 0 0
\(391\) −2.60011 1.88909i −0.131493 0.0955352i
\(392\) 0 0
\(393\) −9.17605 28.2410i −0.462871 1.42457i
\(394\) 0 0
\(395\) −3.98879 + 12.2762i −0.200698 + 0.617684i
\(396\) 0 0
\(397\) 19.1096 13.8839i 0.959081 0.696813i 0.00614378 0.999981i \(-0.498044\pi\)
0.952937 + 0.303168i \(0.0980444\pi\)
\(398\) 0 0
\(399\) −5.14930 15.8479i −0.257787 0.793388i
\(400\) 0 0
\(401\) −18.8000 −0.938827 −0.469414 0.882978i \(-0.655535\pi\)
−0.469414 + 0.882978i \(0.655535\pi\)
\(402\) 0 0
\(403\) 13.7153 + 9.96478i 0.683210 + 0.496381i
\(404\) 0 0
\(405\) −9.20403 + 28.3271i −0.457352 + 1.40758i
\(406\) 0 0
\(407\) 0.567376 0.0281238
\(408\) 0 0
\(409\) 21.6983 1.07291 0.536456 0.843928i \(-0.319763\pi\)
0.536456 + 0.843928i \(0.319763\pi\)
\(410\) 0 0
\(411\) −31.1236 −1.53522
\(412\) 0 0
\(413\) 11.0072 0.541627
\(414\) 0 0
\(415\) 4.45277 13.7042i 0.218578 0.672713i
\(416\) 0 0
\(417\) 47.3619 + 34.4104i 2.31932 + 1.68509i
\(418\) 0 0
\(419\) −15.3866 −0.751685 −0.375843 0.926683i \(-0.622647\pi\)
−0.375843 + 0.926683i \(0.622647\pi\)
\(420\) 0 0
\(421\) −9.55590 29.4100i −0.465726 1.43336i −0.858067 0.513538i \(-0.828335\pi\)
0.392341 0.919820i \(-0.371665\pi\)
\(422\) 0 0
\(423\) −17.4899 + 12.7072i −0.850390 + 0.617845i
\(424\) 0 0
\(425\) −1.12456 + 3.46103i −0.0545491 + 0.167885i
\(426\) 0 0
\(427\) −1.39614 4.29689i −0.0675642 0.207941i
\(428\) 0 0
\(429\) 7.11493 + 5.16930i 0.343512 + 0.249576i
\(430\) 0 0
\(431\) −2.79875 2.03341i −0.134811 0.0979460i 0.518336 0.855177i \(-0.326552\pi\)
−0.653147 + 0.757231i \(0.726552\pi\)
\(432\) 0 0
\(433\) 10.3196 7.49763i 0.495928 0.360313i −0.311531 0.950236i \(-0.600842\pi\)
0.807460 + 0.589923i \(0.200842\pi\)
\(434\) 0 0
\(435\) 18.5265 + 13.4603i 0.888280 + 0.645373i
\(436\) 0 0
\(437\) −2.06395 −0.0987319
\(438\) 0 0
\(439\) −8.50095 + 26.1632i −0.405728 + 1.24870i 0.514558 + 0.857456i \(0.327956\pi\)
−0.920286 + 0.391247i \(0.872044\pi\)
\(440\) 0 0
\(441\) −5.71260 17.5816i −0.272028 0.837217i
\(442\) 0 0
\(443\) 2.65221 + 8.16268i 0.126011 + 0.387820i 0.994084 0.108616i \(-0.0346417\pi\)
−0.868073 + 0.496436i \(0.834642\pi\)
\(444\) 0 0
\(445\) 13.5939 9.87655i 0.644413 0.468193i
\(446\) 0 0
\(447\) −2.26949 + 6.98476i −0.107343 + 0.330368i
\(448\) 0 0
\(449\) −19.4666 + 14.1433i −0.918685 + 0.667464i −0.943196 0.332236i \(-0.892197\pi\)
0.0245113 + 0.999700i \(0.492197\pi\)
\(450\) 0 0
\(451\) 3.89588 8.98196i 0.183450 0.422944i
\(452\) 0 0
\(453\) −20.4753 + 14.8762i −0.962013 + 0.698943i
\(454\) 0 0
\(455\) 1.16205 3.57642i 0.0544778 0.167665i
\(456\) 0 0
\(457\) −32.9515 + 23.9406i −1.54140 + 1.11990i −0.591958 + 0.805969i \(0.701645\pi\)
−0.949447 + 0.313927i \(0.898355\pi\)
\(458\) 0 0
\(459\) 18.2190 + 56.0724i 0.850392 + 2.61724i
\(460\) 0 0
\(461\) −0.834423 2.56809i −0.0388629 0.119608i 0.929743 0.368209i \(-0.120029\pi\)
−0.968606 + 0.248602i \(0.920029\pi\)
\(462\) 0 0
\(463\) 4.93980 15.2031i 0.229572 0.706550i −0.768223 0.640182i \(-0.778859\pi\)
0.997795 0.0663679i \(-0.0211411\pi\)
\(464\) 0 0
\(465\) 32.1446 1.49067
\(466\) 0 0
\(467\) −4.00501 2.90981i −0.185330 0.134650i 0.491252 0.871017i \(-0.336539\pi\)
−0.676582 + 0.736368i \(0.736539\pi\)
\(468\) 0 0
\(469\) 12.9979 9.44355i 0.600189 0.436063i
\(470\) 0 0
\(471\) 35.6184 + 25.8783i 1.64121 + 1.19241i
\(472\) 0 0
\(473\) −0.348400 0.253127i −0.0160194 0.0116388i
\(474\) 0 0
\(475\) 0.722182 + 2.22265i 0.0331360 + 0.101982i
\(476\) 0 0
\(477\) −27.9518 + 86.0267i −1.27982 + 3.93889i
\(478\) 0 0
\(479\) 18.6249 13.5318i 0.850992 0.618282i −0.0744270 0.997226i \(-0.523713\pi\)
0.925420 + 0.378944i \(0.123713\pi\)
\(480\) 0 0
\(481\) 0.199716 + 0.614662i 0.00910625 + 0.0280262i
\(482\) 0 0
\(483\) 6.29702 0.286524
\(484\) 0 0
\(485\) −10.3415 7.51353i −0.469583 0.341172i
\(486\) 0 0
\(487\) −0.151748 + 0.467033i −0.00687637 + 0.0211633i −0.954436 0.298416i \(-0.903542\pi\)
0.947559 + 0.319580i \(0.103542\pi\)
\(488\) 0 0
\(489\) −44.2143 −1.99944
\(490\) 0 0
\(491\) −32.5978 −1.47112 −0.735560 0.677460i \(-0.763081\pi\)
−0.735560 + 0.677460i \(0.763081\pi\)
\(492\) 0 0
\(493\) 25.2352 1.13654
\(494\) 0 0
\(495\) 12.0882 0.543323
\(496\) 0 0
\(497\) −0.646592 + 1.99000i −0.0290036 + 0.0892639i
\(498\) 0 0
\(499\) −21.6664 15.7416i −0.969921 0.704689i −0.0144874 0.999895i \(-0.504612\pi\)
−0.955434 + 0.295206i \(0.904612\pi\)
\(500\) 0 0
\(501\) 53.8412 2.40545
\(502\) 0 0
\(503\) −11.5053 35.4096i −0.512995 1.57884i −0.786900 0.617080i \(-0.788315\pi\)
0.273905 0.961757i \(-0.411685\pi\)
\(504\) 0 0
\(505\) −5.57573 + 4.05101i −0.248117 + 0.180267i
\(506\) 0 0
\(507\) 10.1708 31.3025i 0.451701 1.39019i
\(508\) 0 0
\(509\) −12.5764 38.7062i −0.557440 1.71562i −0.689411 0.724370i \(-0.742131\pi\)
0.131971 0.991254i \(-0.457869\pi\)
\(510\) 0 0
\(511\) 9.10382 + 6.61431i 0.402729 + 0.292600i
\(512\) 0 0
\(513\) 30.6313 + 22.2550i 1.35241 + 0.982580i
\(514\) 0 0
\(515\) −12.6380 + 9.18205i −0.556897 + 0.404609i
\(516\) 0 0
\(517\) 3.38261 + 2.45761i 0.148767 + 0.108086i
\(518\) 0 0
\(519\) −30.4852 −1.33815
\(520\) 0 0
\(521\) −5.03281 + 15.4894i −0.220492 + 0.678603i 0.778226 + 0.627984i \(0.216120\pi\)
−0.998718 + 0.0506196i \(0.983880\pi\)
\(522\) 0 0
\(523\) 7.39916 + 22.7723i 0.323543 + 0.995761i 0.972094 + 0.234591i \(0.0753750\pi\)
−0.648552 + 0.761171i \(0.724625\pi\)
\(524\) 0 0
\(525\) −2.20335 6.78122i −0.0961621 0.295956i
\(526\) 0 0
\(527\) 28.6573 20.8207i 1.24833 0.906966i
\(528\) 0 0
\(529\) −6.86637 + 21.1325i −0.298538 + 0.918805i
\(530\) 0 0
\(531\) −32.6069 + 23.6903i −1.41502 + 1.02807i
\(532\) 0 0
\(533\) 11.1019 + 1.05893i 0.480876 + 0.0458673i
\(534\) 0 0
\(535\) −15.7137 + 11.4167i −0.679362 + 0.493586i
\(536\) 0 0
\(537\) 4.37881 13.4766i 0.188960 0.581558i
\(538\) 0 0
\(539\) −2.89250 + 2.10152i −0.124589 + 0.0905189i
\(540\) 0 0
\(541\) 8.75631 + 26.9492i 0.376463 + 1.15864i 0.942486 + 0.334245i \(0.108481\pi\)
−0.566023 + 0.824390i \(0.691519\pi\)
\(542\) 0 0
\(543\) −6.49046 19.9756i −0.278532 0.857234i
\(544\) 0 0
\(545\) 3.88950 11.9706i 0.166608 0.512766i
\(546\) 0 0
\(547\) 5.68506 0.243075 0.121538 0.992587i \(-0.461217\pi\)
0.121538 + 0.992587i \(0.461217\pi\)
\(548\) 0 0
\(549\) 13.3839 + 9.72397i 0.571211 + 0.415009i
\(550\) 0 0
\(551\) 13.1108 9.52556i 0.558539 0.405802i
\(552\) 0 0
\(553\) −22.5469 16.3813i −0.958793 0.696604i
\(554\) 0 0
\(555\) 0.991394 + 0.720290i 0.0420823 + 0.0305746i
\(556\) 0 0
\(557\) −4.45465 13.7100i −0.188750 0.580912i 0.811243 0.584709i \(-0.198791\pi\)
−0.999993 + 0.00379736i \(0.998791\pi\)
\(558\) 0 0
\(559\) 0.151587 0.466536i 0.00641144 0.0197324i
\(560\) 0 0
\(561\) 14.8662 10.8009i 0.627650 0.456015i
\(562\) 0 0
\(563\) −1.70470 5.24653i −0.0718445 0.221115i 0.908686 0.417479i \(-0.137086\pi\)
−0.980531 + 0.196365i \(0.937086\pi\)
\(564\) 0 0
\(565\) −14.7603 −0.620971
\(566\) 0 0
\(567\) −52.0265 37.7995i −2.18491 1.58743i
\(568\) 0 0
\(569\) 6.09885 18.7703i 0.255677 0.786893i −0.738018 0.674781i \(-0.764238\pi\)
0.993695 0.112113i \(-0.0357618\pi\)
\(570\) 0 0
\(571\) −23.9200 −1.00102 −0.500511 0.865730i \(-0.666854\pi\)
−0.500511 + 0.865730i \(0.666854\pi\)
\(572\) 0 0
\(573\) 57.1321 2.38673
\(574\) 0 0
\(575\) −0.883149 −0.0368298
\(576\) 0 0
\(577\) −37.2918 −1.55248 −0.776240 0.630438i \(-0.782875\pi\)
−0.776240 + 0.630438i \(0.782875\pi\)
\(578\) 0 0
\(579\) −19.3189 + 59.4576i −0.802868 + 2.47097i
\(580\) 0 0
\(581\) 25.1696 + 18.2868i 1.04421 + 0.758664i
\(582\) 0 0
\(583\) 17.4941 0.724530
\(584\) 0 0
\(585\) 4.25502 + 13.0956i 0.175924 + 0.541437i
\(586\) 0 0
\(587\) 19.8838 14.4464i 0.820691 0.596267i −0.0962194 0.995360i \(-0.530675\pi\)
0.916910 + 0.399093i \(0.130675\pi\)
\(588\) 0 0
\(589\) 7.02951 21.6346i 0.289646 0.891438i
\(590\) 0 0
\(591\) −15.0123 46.2032i −0.617525 1.90055i
\(592\) 0 0
\(593\) 24.4257 + 17.7463i 1.00304 + 0.728754i 0.962739 0.270434i \(-0.0871671\pi\)
0.0403048 + 0.999187i \(0.487167\pi\)
\(594\) 0 0
\(595\) −6.35666 4.61838i −0.260597 0.189335i
\(596\) 0 0
\(597\) −9.51311 + 6.91168i −0.389346 + 0.282876i
\(598\) 0 0
\(599\) −18.8428 13.6901i −0.769895 0.559361i 0.132035 0.991245i \(-0.457849\pi\)
−0.901929 + 0.431884i \(0.857849\pi\)
\(600\) 0 0
\(601\) 47.2012 1.92538 0.962688 0.270613i \(-0.0872263\pi\)
0.962688 + 0.270613i \(0.0872263\pi\)
\(602\) 0 0
\(603\) −18.1792 + 55.9499i −0.740316 + 2.27846i
\(604\) 0 0
\(605\) 2.67674 + 8.23815i 0.108825 + 0.334929i
\(606\) 0 0
\(607\) −13.7550 42.3336i −0.558299 1.71827i −0.687067 0.726594i \(-0.741102\pi\)
0.128768 0.991675i \(-0.458898\pi\)
\(608\) 0 0
\(609\) −40.0005 + 29.0621i −1.62090 + 1.17766i
\(610\) 0 0
\(611\) −1.47176 + 4.52960i −0.0595409 + 0.183248i
\(612\) 0 0
\(613\) −21.0786 + 15.3145i −0.851355 + 0.618546i −0.925519 0.378700i \(-0.876371\pi\)
0.0741641 + 0.997246i \(0.476371\pi\)
\(614\) 0 0
\(615\) 18.2101 10.7486i 0.734302 0.433425i
\(616\) 0 0
\(617\) −31.5386 + 22.9142i −1.26970 + 0.922489i −0.999191 0.0402285i \(-0.987191\pi\)
−0.270507 + 0.962718i \(0.587191\pi\)
\(618\) 0 0
\(619\) 7.32585 22.5467i 0.294451 0.906227i −0.688954 0.724805i \(-0.741930\pi\)
0.983405 0.181422i \(-0.0580700\pi\)
\(620\) 0 0
\(621\) −11.5754 + 8.41000i −0.464504 + 0.337482i
\(622\) 0 0
\(623\) 11.2109 + 34.5036i 0.449155 + 1.38236i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) 0 0
\(627\) 3.64661 11.2231i 0.145631 0.448207i
\(628\) 0 0
\(629\) 1.35039 0.0538435
\(630\) 0 0
\(631\) 38.9150 + 28.2734i 1.54918 + 1.12555i 0.944230 + 0.329286i \(0.106808\pi\)
0.604953 + 0.796262i \(0.293192\pi\)
\(632\) 0 0
\(633\) −16.8017 + 12.2072i −0.667809 + 0.485192i
\(634\) 0 0
\(635\) 9.91165 + 7.20123i 0.393332 + 0.285772i
\(636\) 0 0
\(637\) −3.29482 2.39383i −0.130545 0.0948468i
\(638\) 0 0
\(639\) −2.36759 7.28670i −0.0936605 0.288257i
\(640\) 0 0
\(641\) 1.80300 5.54907i 0.0712144 0.219175i −0.909115 0.416546i \(-0.863240\pi\)
0.980329 + 0.197371i \(0.0632404\pi\)
\(642\) 0 0
\(643\) 33.0871 24.0392i 1.30483 0.948014i 0.304839 0.952404i \(-0.401397\pi\)
0.999990 + 0.00438945i \(0.00139721\pi\)
\(644\) 0 0
\(645\) −0.287422 0.884594i −0.0113172 0.0348308i
\(646\) 0 0
\(647\) −36.1489 −1.42116 −0.710581 0.703616i \(-0.751568\pi\)
−0.710581 + 0.703616i \(0.751568\pi\)
\(648\) 0 0
\(649\) 6.30628 + 4.58178i 0.247543 + 0.179851i
\(650\) 0 0
\(651\) −21.4468 + 66.0063i −0.840565 + 2.58699i
\(652\) 0 0
\(653\) −4.01574 −0.157148 −0.0785740 0.996908i \(-0.525037\pi\)
−0.0785740 + 0.996908i \(0.525037\pi\)
\(654\) 0 0
\(655\) −8.99174 −0.351336
\(656\) 0 0
\(657\) −41.2043 −1.60753
\(658\) 0 0
\(659\) −14.8327 −0.577800 −0.288900 0.957359i \(-0.593290\pi\)
−0.288900 + 0.957359i \(0.593290\pi\)
\(660\) 0 0
\(661\) 7.41044 22.8070i 0.288233 0.887089i −0.697178 0.716898i \(-0.745561\pi\)
0.985411 0.170191i \(-0.0544386\pi\)
\(662\) 0 0
\(663\) 16.9339 + 12.3032i 0.657660 + 0.477818i
\(664\) 0 0
\(665\) −5.04587 −0.195670
\(666\) 0 0
\(667\) 1.89245 + 5.82435i 0.0732758 + 0.225520i
\(668\) 0 0
\(669\) 36.3548 26.4133i 1.40556 1.02120i
\(670\) 0 0
\(671\) 0.988715 3.04295i 0.0381689 0.117472i
\(672\) 0 0
\(673\) −6.55118 20.1625i −0.252529 0.777205i −0.994306 0.106559i \(-0.966017\pi\)
0.741777 0.670647i \(-0.233983\pi\)
\(674\) 0 0
\(675\) 13.1069 + 9.52275i 0.504486 + 0.366531i
\(676\) 0 0
\(677\) −5.69162 4.13520i −0.218747 0.158929i 0.473016 0.881054i \(-0.343165\pi\)
−0.691762 + 0.722125i \(0.743165\pi\)
\(678\) 0 0
\(679\) 22.3283 16.2224i 0.856880 0.622560i
\(680\) 0 0
\(681\) −10.4833 7.61658i −0.401722 0.291868i
\(682\) 0 0
\(683\) −2.70453 −0.103486 −0.0517430 0.998660i \(-0.516478\pi\)
−0.0517430 + 0.998660i \(0.516478\pi\)
\(684\) 0 0
\(685\) −2.91235 + 8.96328i −0.111275 + 0.342469i
\(686\) 0 0
\(687\) −3.80013 11.6956i −0.144984 0.446214i
\(688\) 0 0
\(689\) 6.15789 + 18.9520i 0.234597 + 0.722015i
\(690\) 0 0
\(691\) −20.1820 + 14.6631i −0.767758 + 0.557809i −0.901280 0.433237i \(-0.857371\pi\)
0.133522 + 0.991046i \(0.457371\pi\)
\(692\) 0 0
\(693\) −8.06519 + 24.8221i −0.306371 + 0.942913i
\(694\) 0 0
\(695\) 14.3417 10.4198i 0.544010 0.395246i
\(696\) 0 0
\(697\) 9.27242 21.3776i 0.351218 0.809734i
\(698\) 0 0
\(699\) −0.0398611 + 0.0289608i −0.00150769 + 0.00109540i
\(700\) 0 0
\(701\) 0.246251 0.757884i 0.00930079 0.0286249i −0.946298 0.323294i \(-0.895210\pi\)
0.955599 + 0.294670i \(0.0952096\pi\)
\(702\) 0 0
\(703\) 0.701586 0.509732i 0.0264608 0.0192249i
\(704\) 0 0
\(705\) 2.79058 + 8.58852i 0.105099 + 0.323463i
\(706\) 0 0
\(707\) −4.59831 14.1521i −0.172937 0.532246i
\(708\) 0 0
\(709\) −13.8822 + 42.7251i −0.521358 + 1.60457i 0.250050 + 0.968233i \(0.419553\pi\)
−0.771408 + 0.636341i \(0.780447\pi\)
\(710\) 0 0
\(711\) 102.049 3.82712
\(712\) 0 0
\(713\) 6.95456 + 5.05278i 0.260450 + 0.189228i
\(714\) 0 0
\(715\) 2.15447 1.56532i 0.0805727 0.0585395i
\(716\) 0 0
\(717\) −50.2877 36.5362i −1.87803 1.36447i
\(718\) 0 0
\(719\) 4.13794 + 3.00639i 0.154319 + 0.112120i 0.662265 0.749269i \(-0.269595\pi\)
−0.507946 + 0.861389i \(0.669595\pi\)
\(720\) 0 0
\(721\) −10.4226 32.0774i −0.388157 1.19462i
\(722\) 0 0
\(723\) 1.42139 4.37460i 0.0528622 0.162693i
\(724\) 0 0
\(725\) 5.61002 4.07592i 0.208351 0.151376i
\(726\) 0 0
\(727\) 4.98964 + 15.3565i 0.185055 + 0.569542i 0.999949 0.0100681i \(-0.00320484\pi\)
−0.814894 + 0.579610i \(0.803205\pi\)
\(728\) 0 0
\(729\) 74.9673 2.77657
\(730\) 0 0
\(731\) −0.829211 0.602457i −0.0306695 0.0222827i
\(732\) 0 0
\(733\) −0.442215 + 1.36100i −0.0163336 + 0.0502696i −0.958891 0.283774i \(-0.908413\pi\)
0.942558 + 0.334044i \(0.108413\pi\)
\(734\) 0 0
\(735\) −7.72205 −0.284832
\(736\) 0 0
\(737\) 11.3778 0.419106
\(738\) 0 0
\(739\) 41.8742 1.54037 0.770184 0.637822i \(-0.220164\pi\)
0.770184 + 0.637822i \(0.220164\pi\)
\(740\) 0 0
\(741\) 13.4420 0.493806
\(742\) 0 0
\(743\) −0.527711 + 1.62413i −0.0193598 + 0.0595835i −0.960270 0.279074i \(-0.909973\pi\)
0.940910 + 0.338657i \(0.109973\pi\)
\(744\) 0 0
\(745\) 1.79917 + 1.30718i 0.0659166 + 0.0478912i
\(746\) 0 0
\(747\) −113.919 −4.16808
\(748\) 0 0
\(749\) −12.9591 39.8840i −0.473515 1.45733i
\(750\) 0 0
\(751\) −17.6645 + 12.8340i −0.644585 + 0.468319i −0.861422 0.507889i \(-0.830426\pi\)
0.216837 + 0.976208i \(0.430426\pi\)
\(752\) 0 0
\(753\) 23.3696 71.9243i 0.851636 2.62107i
\(754\) 0 0
\(755\) 2.36824 + 7.28868i 0.0861889 + 0.265262i
\(756\) 0 0
\(757\) −35.8170 26.0226i −1.30179 0.945808i −0.301821 0.953364i \(-0.597595\pi\)
−0.999971 + 0.00755667i \(0.997595\pi\)
\(758\) 0 0
\(759\) 3.60772 + 2.62116i 0.130952 + 0.0951423i
\(760\) 0 0
\(761\) −15.8661 + 11.5274i −0.575145 + 0.417867i −0.836971 0.547248i \(-0.815675\pi\)
0.261826 + 0.965115i \(0.415675\pi\)
\(762\) 0 0
\(763\) 21.9857 + 15.9735i 0.795936 + 0.578281i
\(764\) 0 0
\(765\) 28.7705 1.04020
\(766\) 0 0
\(767\) −2.74383 + 8.44464i −0.0990739 + 0.304918i
\(768\) 0 0
\(769\) −3.24291 9.98065i −0.116942 0.359911i 0.875405 0.483390i \(-0.160595\pi\)
−0.992347 + 0.123479i \(0.960595\pi\)
\(770\) 0 0
\(771\) −12.0887 37.2050i −0.435362 1.33991i
\(772\) 0 0
\(773\) −30.6579 + 22.2743i −1.10269 + 0.801150i −0.981497 0.191479i \(-0.938672\pi\)
−0.121192 + 0.992629i \(0.538672\pi\)
\(774\) 0 0
\(775\) 3.00788 9.25730i 0.108046 0.332532i
\(776\) 0 0
\(777\) −2.14051 + 1.55517i −0.0767904 + 0.0557915i
\(778\) 0 0
\(779\) −3.25199 14.6067i −0.116514 0.523338i
\(780\) 0 0
\(781\) −1.19880 + 0.870978i −0.0428964 + 0.0311660i
\(782\) 0 0
\(783\) 34.7163 106.846i 1.24066 3.81835i
\(784\) 0 0
\(785\) 10.7856 7.83620i 0.384955 0.279686i
\(786\) 0 0
\(787\) −1.24088 3.81902i −0.0442324 0.136133i 0.926501 0.376291i \(-0.122801\pi\)
−0.970734 + 0.240158i \(0.922801\pi\)
\(788\) 0 0
\(789\) −27.7051 85.2675i −0.986327 3.03560i
\(790\) 0 0
\(791\) 9.84804 30.3091i 0.350156 1.07767i
\(792\) 0 0
\(793\) 3.64458 0.129423
\(794\) 0 0
\(795\) 30.5679 + 22.2089i 1.08413 + 0.787668i
\(796\) 0 0
\(797\) 40.8885 29.7072i 1.44835 1.05228i 0.462131 0.886811i \(-0.347085\pi\)
0.986214 0.165473i \(-0.0529152\pi\)
\(798\) 0 0
\(799\) 8.05081 + 5.84926i 0.284817 + 0.206932i
\(800\) 0 0
\(801\) −107.471 78.0825i −3.79731 2.75891i
\(802\) 0 0
\(803\) 2.46257 + 7.57902i 0.0869023 + 0.267458i
\(804\) 0 0
\(805\) 0.589234 1.81348i 0.0207678 0.0639166i
\(806\) 0 0
\(807\) 72.1445 52.4161i 2.53961 1.84513i
\(808\) 0 0
\(809\) −0.987386 3.03886i −0.0347147 0.106841i 0.932198 0.361949i \(-0.117889\pi\)
−0.966912 + 0.255109i \(0.917889\pi\)
\(810\) 0 0
\(811\) 11.9643 0.420124 0.210062 0.977688i \(-0.432633\pi\)
0.210062 + 0.977688i \(0.432633\pi\)
\(812\) 0 0
\(813\) 6.12459 + 4.44977i 0.214799 + 0.156060i
\(814\) 0 0
\(815\) −4.13729 + 12.7333i −0.144923 + 0.446027i
\(816\) 0 0
\(817\) −0.658222 −0.0230283
\(818\) 0 0
\(819\) −29.7297 −1.03884
\(820\) 0 0
\(821\) 41.0569 1.43289 0.716447 0.697641i \(-0.245767\pi\)
0.716447 + 0.697641i \(0.245767\pi\)
\(822\) 0 0
\(823\) 51.8741 1.80822 0.904109 0.427302i \(-0.140536\pi\)
0.904109 + 0.427302i \(0.140536\pi\)
\(824\) 0 0
\(825\) 1.56036 4.80229i 0.0543247 0.167194i
\(826\) 0 0
\(827\) 36.6611 + 26.6359i 1.27483 + 0.926220i 0.999384 0.0350960i \(-0.0111737\pi\)
0.275448 + 0.961316i \(0.411174\pi\)
\(828\) 0 0
\(829\) 19.3744 0.672900 0.336450 0.941701i \(-0.390774\pi\)
0.336450 + 0.941701i \(0.390774\pi\)
\(830\) 0 0
\(831\) −3.76564 11.5895i −0.130629 0.402034i
\(832\) 0 0
\(833\) −6.88430 + 5.00174i −0.238527 + 0.173300i
\(834\) 0 0
\(835\) 5.03811 15.5057i 0.174351 0.536597i
\(836\) 0 0
\(837\) −48.7309 149.978i −1.68438 5.18400i
\(838\) 0 0
\(839\) 13.2915 + 9.65683i 0.458873 + 0.333391i 0.793089 0.609106i \(-0.208472\pi\)
−0.334216 + 0.942496i \(0.608472\pi\)
\(840\) 0 0
\(841\) −15.4405 11.2182i −0.532431 0.386834i
\(842\) 0 0
\(843\) 11.7681 8.55004i 0.405316 0.294479i
\(844\) 0 0
\(845\) −8.06308 5.85817i −0.277378 0.201527i
\(846\) 0 0
\(847\) −18.7023 −0.642619
\(848\) 0 0
\(849\) 22.0547 67.8775i 0.756917 2.32955i
\(850\) 0 0
\(851\) 0.101269 + 0.311673i 0.00347144 + 0.0106840i
\(852\) 0 0
\(853\) 1.98453 + 6.10774i 0.0679489 + 0.209125i 0.979265 0.202581i \(-0.0649330\pi\)
−0.911317 + 0.411706i \(0.864933\pi\)
\(854\) 0 0
\(855\) 14.9476 10.8600i 0.511196 0.371406i
\(856\) 0 0
\(857\) −9.41222 + 28.9678i −0.321515 + 0.989522i 0.651474 + 0.758671i \(0.274151\pi\)
−0.972989 + 0.230851i \(0.925849\pi\)
\(858\) 0 0
\(859\) 20.1980 14.6747i 0.689148 0.500695i −0.187232 0.982316i \(-0.559952\pi\)
0.876380 + 0.481621i \(0.159952\pi\)
\(860\) 0 0
\(861\) 9.92168 + 44.5644i 0.338130 + 1.51875i
\(862\) 0 0
\(863\) 16.7062 12.1378i 0.568687 0.413175i −0.265941 0.963989i \(-0.585683\pi\)
0.834628 + 0.550814i \(0.185683\pi\)
\(864\) 0 0
\(865\) −2.85261 + 8.77943i −0.0969916 + 0.298509i
\(866\) 0 0
\(867\) −10.0365 + 7.29197i −0.340859 + 0.247648i
\(868\) 0 0
\(869\) −6.09892 18.7706i −0.206892 0.636747i
\(870\) 0 0
\(871\) 4.00496 + 12.3260i 0.135703 + 0.417651i
\(872\) 0 0
\(873\) −31.2289 + 96.1126i −1.05694 + 3.25292i
\(874\) 0 0
\(875\) −2.15909 −0.0729907
\(876\) 0 0
\(877\) 15.2406 + 11.0729i 0.514638 + 0.373906i 0.814580 0.580051i \(-0.196967\pi\)
−0.299942 + 0.953957i \(0.596967\pi\)
\(878\) 0 0
\(879\) −35.8352 + 26.0358i −1.20869 + 0.878166i
\(880\) 0 0
\(881\) 8.44150 + 6.13311i 0.284401 + 0.206630i 0.720835 0.693107i \(-0.243759\pi\)
−0.436434 + 0.899736i \(0.643759\pi\)
\(882\) 0 0
\(883\) −41.5213 30.1670i −1.39730 1.01520i −0.995019 0.0996867i \(-0.968216\pi\)
−0.402285 0.915514i \(-0.631784\pi\)
\(884\) 0 0
\(885\) 5.20254 + 16.0118i 0.174882 + 0.538230i
\(886\) 0 0
\(887\) −10.4581 + 32.1866i −0.351147 + 1.08072i 0.607063 + 0.794654i \(0.292348\pi\)
−0.958210 + 0.286066i \(0.907652\pi\)
\(888\) 0 0
\(889\) −21.4002 + 15.5481i −0.717739 + 0.521468i
\(890\) 0 0
\(891\) −14.0731 43.3126i −0.471467 1.45103i
\(892\) 0 0
\(893\) 6.39068 0.213856
\(894\) 0 0
\(895\) −3.47137 2.52210i −0.116035 0.0843046i
\(896\) 0 0
\(897\) −1.56970 + 4.83104i −0.0524108 + 0.161304i
\(898\) 0 0
\(899\) −67.4971 −2.25115
\(900\) 0 0
\(901\) 41.6369 1.38713
\(902\) 0 0
\(903\) 2.00821 0.0668290
\(904\) 0 0
\(905\) −6.36009 −0.211417
\(906\) 0 0
\(907\) 3.65077 11.2359i 0.121222 0.373082i −0.871972 0.489556i \(-0.837159\pi\)
0.993194 + 0.116474i \(0.0371590\pi\)
\(908\) 0 0
\(909\) 44.0809 + 32.0266i 1.46207 + 1.06226i
\(910\) 0 0
\(911\) −10.6555 −0.353033 −0.176516 0.984298i \(-0.556483\pi\)
−0.176516 + 0.984298i \(0.556483\pi\)
\(912\) 0 0
\(913\) 6.80835 + 20.9540i 0.225324 + 0.693475i
\(914\) 0 0
\(915\) 5.59067 4.06186i 0.184822 0.134281i
\(916\) 0 0
\(917\) 5.99926 18.4638i 0.198113 0.609729i
\(918\) 0 0
\(919\) 6.72826 + 20.7075i 0.221945 + 0.683076i 0.998587 + 0.0531345i \(0.0169212\pi\)
−0.776642 + 0.629942i \(0.783079\pi\)
\(920\) 0 0
\(921\) 29.0082 + 21.0757i 0.955853 + 0.694468i
\(922\) 0 0
\(923\) −1.36554 0.992124i −0.0449473 0.0326562i
\(924\) 0 0
\(925\) 0.300204 0.218111i 0.00987065 0.00717144i
\(926\) 0 0
\(927\) 99.9141 + 72.5918i 3.28161 + 2.38423i
\(928\) 0 0
\(929\) −47.4688 −1.55740 −0.778700 0.627397i \(-0.784120\pi\)
−0.778700 + 0.627397i \(0.784120\pi\)
\(930\) 0 0
\(931\) −1.68869 + 5.19725i −0.0553445 + 0.170333i
\(932\) 0 0
\(933\) −28.8226 88.7069i −0.943610 2.90413i
\(934\) 0 0
\(935\) −1.71947 5.29198i −0.0562326 0.173066i
\(936\) 0 0
\(937\) −8.65163 + 6.28578i −0.282636 + 0.205347i −0.720067 0.693905i \(-0.755889\pi\)
0.437430 + 0.899252i \(0.355889\pi\)
\(938\) 0 0
\(939\) −9.42398 + 29.0040i −0.307540 + 0.946511i
\(940\) 0 0
\(941\) 18.0296 13.0993i 0.587748 0.427024i −0.253761 0.967267i \(-0.581668\pi\)
0.841509 + 0.540243i \(0.181668\pi\)
\(942\) 0 0
\(943\) 5.62936 + 0.536944i 0.183317 + 0.0174853i
\(944\) 0 0
\(945\) −28.2991 + 20.5605i −0.920570 + 0.668833i
\(946\) 0 0
\(947\) −8.76722 + 26.9827i −0.284896 + 0.876821i 0.701533 + 0.712637i \(0.252499\pi\)
−0.986430 + 0.164184i \(0.947501\pi\)
\(948\) 0 0
\(949\) −7.34384 + 5.33561i −0.238391 + 0.173201i
\(950\) 0 0
\(951\) −9.59321 29.5249i −0.311081 0.957409i
\(952\) 0 0
\(953\) 2.22591 + 6.85064i 0.0721042 + 0.221914i 0.980614 0.195950i \(-0.0627789\pi\)
−0.908510 + 0.417864i \(0.862779\pi\)
\(954\) 0 0
\(955\) 5.34605 16.4535i 0.172994 0.532421i
\(956\) 0 0
\(957\) −35.0146 −1.13186
\(958\) 0 0
\(959\) −16.4623 11.9605i −0.531594 0.386226i
\(960\) 0 0
\(961\) −51.5708 + 37.4684i −1.66357 + 1.20866i
\(962\) 0 0
\(963\) 124.230 + 90.2584i 4.00326 + 2.90854i
\(964\) 0 0
\(965\) 15.3154 + 11.1273i 0.493021 + 0.358201i
\(966\) 0 0
\(967\) 3.94717 + 12.1482i 0.126933 + 0.390658i 0.994248 0.107100i \(-0.0341566\pi\)
−0.867316 + 0.497759i \(0.834157\pi\)
\(968\) 0 0
\(969\) 8.67913 26.7116i 0.278814 0.858100i
\(970\) 0 0
\(971\) 35.2456 25.6074i 1.13109 0.821782i 0.145233 0.989397i \(-0.453607\pi\)
0.985852 + 0.167616i \(0.0536067\pi\)
\(972\) 0 0
\(973\) 11.8276 + 36.4015i 0.379175 + 1.16698i
\(974\) 0 0
\(975\) 5.75176 0.184204
\(976\) 0 0
\(977\) 6.92773 + 5.03329i 0.221638 + 0.161029i 0.693064 0.720877i \(-0.256261\pi\)
−0.471426 + 0.881906i \(0.656261\pi\)
\(978\) 0 0
\(979\) −7.93928 + 24.4346i −0.253741 + 0.780933i
\(980\) 0 0
\(981\) −99.5083 −3.17706
\(982\) 0 0
\(983\) −30.1015 −0.960089 −0.480044 0.877244i \(-0.659379\pi\)
−0.480044 + 0.877244i \(0.659379\pi\)
\(984\) 0 0
\(985\) −14.7108 −0.468725
\(986\) 0 0
\(987\) −19.4977 −0.620619
\(988\) 0 0
\(989\) 0.0768642 0.236564i 0.00244414 0.00752228i
\(990\) 0 0
\(991\) −45.2272 32.8595i −1.43669 1.04382i −0.988722 0.149765i \(-0.952148\pi\)
−0.447967 0.894050i \(-0.647852\pi\)
\(992\) 0 0
\(993\) −95.8799 −3.04266
\(994\) 0 0
\(995\) 1.10032 + 3.38642i 0.0348824 + 0.107357i
\(996\) 0 0
\(997\) 24.5313 17.8230i 0.776915 0.564462i −0.127137 0.991885i \(-0.540579\pi\)
0.904051 + 0.427424i \(0.140579\pi\)
\(998\) 0 0
\(999\) 1.85774 5.71753i 0.0587763 0.180895i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.b.201.1 32
41.10 even 5 inner 820.2.u.b.461.1 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.b.201.1 32 1.1 even 1 trivial
820.2.u.b.461.1 yes 32 41.10 even 5 inner