Properties

Label 820.2.u.b.141.8
Level $820$
Weight $2$
Character 820.141
Analytic conductor $6.548$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 141.8
Character \(\chi\) \(=\) 820.141
Dual form 820.2.u.b.221.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.85886 q^{3} +(0.809017 - 0.587785i) q^{5} +(0.237547 - 0.731093i) q^{7} +5.17308 q^{9} +(3.90892 + 2.84000i) q^{11} +(-1.47988 - 4.55461i) q^{13} +(2.31287 - 1.68040i) q^{15} +(-2.49705 - 1.81421i) q^{17} +(-2.20281 + 6.77956i) q^{19} +(0.679112 - 2.09009i) q^{21} +(-1.31630 - 4.05115i) q^{23} +(0.309017 - 0.951057i) q^{25} +6.21253 q^{27} +(-7.09820 + 5.15714i) q^{29} +(2.98213 + 2.16664i) q^{31} +(11.1751 + 8.11916i) q^{33} +(-0.237547 - 0.731093i) q^{35} +(2.70239 - 1.96340i) q^{37} +(-4.23077 - 13.0210i) q^{39} +(3.79994 - 5.15368i) q^{41} +(-2.62049 - 8.06504i) q^{43} +(4.18511 - 3.04066i) q^{45} +(1.65715 + 5.10018i) q^{47} +(5.18505 + 3.76716i) q^{49} +(-7.13871 - 5.18658i) q^{51} +(-6.27754 + 4.56090i) q^{53} +4.83169 q^{55} +(-6.29753 + 19.3818i) q^{57} +(3.58782 + 11.0422i) q^{59} +(3.31734 - 10.2097i) q^{61} +(1.22885 - 3.78200i) q^{63} +(-3.87438 - 2.81490i) q^{65} +(-12.7477 + 9.26177i) q^{67} +(-3.76311 - 11.5817i) q^{69} +(-2.67736 - 1.94521i) q^{71} -4.48201 q^{73} +(0.883436 - 2.71894i) q^{75} +(3.00485 - 2.18315i) q^{77} -2.91540 q^{79} +2.24151 q^{81} +9.10452 q^{83} -3.08652 q^{85} +(-20.2927 + 14.7435i) q^{87} +(1.37146 - 4.22092i) q^{89} -3.68138 q^{91} +(8.52549 + 6.19413i) q^{93} +(2.20281 + 6.77956i) q^{95} +(-8.25626 + 5.99852i) q^{97} +(20.2212 + 14.6915i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{3} + 8 q^{5} - 5 q^{7} + 46 q^{9} + q^{11} + q^{13} - 2 q^{15} + 7 q^{17} - 13 q^{19} - 6 q^{21} + 4 q^{23} - 8 q^{25} - 28 q^{27} + 3 q^{29} - q^{31} + 14 q^{33} + 5 q^{35} - 25 q^{37} + 26 q^{41}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.85886 1.65056 0.825282 0.564721i \(-0.191016\pi\)
0.825282 + 0.564721i \(0.191016\pi\)
\(4\) 0 0
\(5\) 0.809017 0.587785i 0.361803 0.262866i
\(6\) 0 0
\(7\) 0.237547 0.731093i 0.0897842 0.276327i −0.896075 0.443902i \(-0.853594\pi\)
0.985859 + 0.167575i \(0.0535937\pi\)
\(8\) 0 0
\(9\) 5.17308 1.72436
\(10\) 0 0
\(11\) 3.90892 + 2.84000i 1.17858 + 0.856292i 0.992011 0.126150i \(-0.0402619\pi\)
0.186573 + 0.982441i \(0.440262\pi\)
\(12\) 0 0
\(13\) −1.47988 4.55461i −0.410445 1.26322i −0.916262 0.400580i \(-0.868809\pi\)
0.505816 0.862641i \(-0.331191\pi\)
\(14\) 0 0
\(15\) 2.31287 1.68040i 0.597179 0.433876i
\(16\) 0 0
\(17\) −2.49705 1.81421i −0.605623 0.440011i 0.242247 0.970215i \(-0.422115\pi\)
−0.847870 + 0.530204i \(0.822115\pi\)
\(18\) 0 0
\(19\) −2.20281 + 6.77956i −0.505360 + 1.55534i 0.294805 + 0.955557i \(0.404745\pi\)
−0.800165 + 0.599780i \(0.795255\pi\)
\(20\) 0 0
\(21\) 0.679112 2.09009i 0.148194 0.456096i
\(22\) 0 0
\(23\) −1.31630 4.05115i −0.274467 0.844723i −0.989360 0.145489i \(-0.953524\pi\)
0.714893 0.699234i \(-0.246476\pi\)
\(24\) 0 0
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 0 0
\(27\) 6.21253 1.19560
\(28\) 0 0
\(29\) −7.09820 + 5.15714i −1.31810 + 0.957657i −0.318148 + 0.948041i \(0.603061\pi\)
−0.999954 + 0.00961602i \(0.996939\pi\)
\(30\) 0 0
\(31\) 2.98213 + 2.16664i 0.535606 + 0.389141i 0.822451 0.568836i \(-0.192606\pi\)
−0.286844 + 0.957977i \(0.592606\pi\)
\(32\) 0 0
\(33\) 11.1751 + 8.11916i 1.94533 + 1.41336i
\(34\) 0 0
\(35\) −0.237547 0.731093i −0.0401527 0.123577i
\(36\) 0 0
\(37\) 2.70239 1.96340i 0.444270 0.322781i −0.343060 0.939314i \(-0.611463\pi\)
0.787329 + 0.616533i \(0.211463\pi\)
\(38\) 0 0
\(39\) −4.23077 13.0210i −0.677466 2.08503i
\(40\) 0 0
\(41\) 3.79994 5.15368i 0.593451 0.804870i
\(42\) 0 0
\(43\) −2.62049 8.06504i −0.399621 1.22991i −0.925304 0.379226i \(-0.876190\pi\)
0.525683 0.850680i \(-0.323810\pi\)
\(44\) 0 0
\(45\) 4.18511 3.04066i 0.623879 0.453275i
\(46\) 0 0
\(47\) 1.65715 + 5.10018i 0.241720 + 0.743938i 0.996159 + 0.0875673i \(0.0279093\pi\)
−0.754438 + 0.656371i \(0.772091\pi\)
\(48\) 0 0
\(49\) 5.18505 + 3.76716i 0.740721 + 0.538166i
\(50\) 0 0
\(51\) −7.13871 5.18658i −0.999619 0.726266i
\(52\) 0 0
\(53\) −6.27754 + 4.56090i −0.862287 + 0.626488i −0.928506 0.371317i \(-0.878906\pi\)
0.0662193 + 0.997805i \(0.478906\pi\)
\(54\) 0 0
\(55\) 4.83169 0.651505
\(56\) 0 0
\(57\) −6.29753 + 19.3818i −0.834128 + 2.56718i
\(58\) 0 0
\(59\) 3.58782 + 11.0422i 0.467094 + 1.43757i 0.856330 + 0.516430i \(0.172739\pi\)
−0.389236 + 0.921138i \(0.627261\pi\)
\(60\) 0 0
\(61\) 3.31734 10.2097i 0.424742 1.30722i −0.478499 0.878088i \(-0.658819\pi\)
0.903241 0.429133i \(-0.141181\pi\)
\(62\) 0 0
\(63\) 1.22885 3.78200i 0.154820 0.476488i
\(64\) 0 0
\(65\) −3.87438 2.81490i −0.480558 0.349146i
\(66\) 0 0
\(67\) −12.7477 + 9.26177i −1.55738 + 1.13151i −0.619271 + 0.785177i \(0.712572\pi\)
−0.938113 + 0.346328i \(0.887428\pi\)
\(68\) 0 0
\(69\) −3.76311 11.5817i −0.453026 1.39427i
\(70\) 0 0
\(71\) −2.67736 1.94521i −0.317744 0.230855i 0.417468 0.908692i \(-0.362918\pi\)
−0.735212 + 0.677837i \(0.762918\pi\)
\(72\) 0 0
\(73\) −4.48201 −0.524580 −0.262290 0.964989i \(-0.584478\pi\)
−0.262290 + 0.964989i \(0.584478\pi\)
\(74\) 0 0
\(75\) 0.883436 2.71894i 0.102010 0.313956i
\(76\) 0 0
\(77\) 3.00485 2.18315i 0.342435 0.248794i
\(78\) 0 0
\(79\) −2.91540 −0.328008 −0.164004 0.986460i \(-0.552441\pi\)
−0.164004 + 0.986460i \(0.552441\pi\)
\(80\) 0 0
\(81\) 2.24151 0.249057
\(82\) 0 0
\(83\) 9.10452 0.999351 0.499675 0.866213i \(-0.333453\pi\)
0.499675 + 0.866213i \(0.333453\pi\)
\(84\) 0 0
\(85\) −3.08652 −0.334780
\(86\) 0 0
\(87\) −20.2927 + 14.7435i −2.17561 + 1.58067i
\(88\) 0 0
\(89\) 1.37146 4.22092i 0.145375 0.447417i −0.851684 0.524055i \(-0.824419\pi\)
0.997059 + 0.0766380i \(0.0244186\pi\)
\(90\) 0 0
\(91\) −3.68138 −0.385914
\(92\) 0 0
\(93\) 8.52549 + 6.19413i 0.884052 + 0.642301i
\(94\) 0 0
\(95\) 2.20281 + 6.77956i 0.226004 + 0.695568i
\(96\) 0 0
\(97\) −8.25626 + 5.99852i −0.838296 + 0.609058i −0.921894 0.387442i \(-0.873359\pi\)
0.0835982 + 0.996500i \(0.473359\pi\)
\(98\) 0 0
\(99\) 20.2212 + 14.6915i 2.03230 + 1.47655i
\(100\) 0 0
\(101\) −2.05676 + 6.33007i −0.204656 + 0.629865i 0.795072 + 0.606515i \(0.207433\pi\)
−0.999727 + 0.0233499i \(0.992567\pi\)
\(102\) 0 0
\(103\) 2.04666 6.29897i 0.201663 0.620656i −0.798171 0.602431i \(-0.794199\pi\)
0.999834 0.0182242i \(-0.00580127\pi\)
\(104\) 0 0
\(105\) −0.679112 2.09009i −0.0662746 0.203972i
\(106\) 0 0
\(107\) 4.40636 13.5614i 0.425979 1.31103i −0.476075 0.879404i \(-0.657941\pi\)
0.902054 0.431623i \(-0.142059\pi\)
\(108\) 0 0
\(109\) −8.53169 −0.817188 −0.408594 0.912716i \(-0.633981\pi\)
−0.408594 + 0.912716i \(0.633981\pi\)
\(110\) 0 0
\(111\) 7.72574 5.61308i 0.733295 0.532770i
\(112\) 0 0
\(113\) 9.46434 + 6.87625i 0.890330 + 0.646863i 0.935964 0.352095i \(-0.114531\pi\)
−0.0456338 + 0.998958i \(0.514531\pi\)
\(114\) 0 0
\(115\) −3.44612 2.50375i −0.321352 0.233476i
\(116\) 0 0
\(117\) −7.65555 23.5613i −0.707755 2.17825i
\(118\) 0 0
\(119\) −1.91952 + 1.39461i −0.175962 + 0.127844i
\(120\) 0 0
\(121\) 3.81489 + 11.7410i 0.346809 + 1.06737i
\(122\) 0 0
\(123\) 10.8635 14.7337i 0.979529 1.32849i
\(124\) 0 0
\(125\) −0.309017 0.951057i −0.0276393 0.0850651i
\(126\) 0 0
\(127\) 8.06999 5.86319i 0.716096 0.520274i −0.169038 0.985609i \(-0.554066\pi\)
0.885135 + 0.465335i \(0.154066\pi\)
\(128\) 0 0
\(129\) −7.49161 23.0568i −0.659600 2.03004i
\(130\) 0 0
\(131\) −10.4631 7.60190i −0.914167 0.664181i 0.0278981 0.999611i \(-0.491119\pi\)
−0.942065 + 0.335429i \(0.891119\pi\)
\(132\) 0 0
\(133\) 4.43322 + 3.22092i 0.384409 + 0.279289i
\(134\) 0 0
\(135\) 5.02604 3.65163i 0.432573 0.314282i
\(136\) 0 0
\(137\) −7.33318 −0.626516 −0.313258 0.949668i \(-0.601420\pi\)
−0.313258 + 0.949668i \(0.601420\pi\)
\(138\) 0 0
\(139\) −4.05683 + 12.4857i −0.344096 + 1.05902i 0.617970 + 0.786202i \(0.287955\pi\)
−0.962066 + 0.272817i \(0.912045\pi\)
\(140\) 0 0
\(141\) 4.73756 + 14.5807i 0.398974 + 1.22792i
\(142\) 0 0
\(143\) 7.15033 22.0065i 0.597941 1.84027i
\(144\) 0 0
\(145\) −2.71127 + 8.34443i −0.225159 + 0.692967i
\(146\) 0 0
\(147\) 14.8233 + 10.7698i 1.22261 + 0.888276i
\(148\) 0 0
\(149\) 11.9389 8.67415i 0.978076 0.710614i 0.0207983 0.999784i \(-0.493379\pi\)
0.957278 + 0.289170i \(0.0933792\pi\)
\(150\) 0 0
\(151\) 0.566861 + 1.74462i 0.0461305 + 0.141975i 0.971469 0.237167i \(-0.0762190\pi\)
−0.925338 + 0.379143i \(0.876219\pi\)
\(152\) 0 0
\(153\) −12.9174 9.38506i −1.04431 0.758737i
\(154\) 0 0
\(155\) 3.68611 0.296076
\(156\) 0 0
\(157\) −7.56413 + 23.2800i −0.603683 + 1.85795i −0.0980825 + 0.995178i \(0.531271\pi\)
−0.505601 + 0.862768i \(0.668729\pi\)
\(158\) 0 0
\(159\) −17.9466 + 13.0390i −1.42326 + 1.03406i
\(160\) 0 0
\(161\) −3.27445 −0.258063
\(162\) 0 0
\(163\) −16.5063 −1.29287 −0.646435 0.762969i \(-0.723741\pi\)
−0.646435 + 0.762969i \(0.723741\pi\)
\(164\) 0 0
\(165\) 13.8131 1.07535
\(166\) 0 0
\(167\) −1.24532 −0.0963660 −0.0481830 0.998839i \(-0.515343\pi\)
−0.0481830 + 0.998839i \(0.515343\pi\)
\(168\) 0 0
\(169\) −8.03719 + 5.83936i −0.618245 + 0.449181i
\(170\) 0 0
\(171\) −11.3953 + 35.0712i −0.871422 + 2.68196i
\(172\) 0 0
\(173\) 9.03696 0.687067 0.343534 0.939140i \(-0.388376\pi\)
0.343534 + 0.939140i \(0.388376\pi\)
\(174\) 0 0
\(175\) −0.621905 0.451840i −0.0470116 0.0341559i
\(176\) 0 0
\(177\) 10.2571 + 31.5680i 0.770968 + 2.37280i
\(178\) 0 0
\(179\) 9.76620 7.09556i 0.729960 0.530347i −0.159591 0.987183i \(-0.551017\pi\)
0.889551 + 0.456836i \(0.151017\pi\)
\(180\) 0 0
\(181\) −14.2111 10.3250i −1.05631 0.767451i −0.0829045 0.996557i \(-0.526420\pi\)
−0.973401 + 0.229106i \(0.926420\pi\)
\(182\) 0 0
\(183\) 9.48381 29.1882i 0.701063 2.15765i
\(184\) 0 0
\(185\) 1.03222 3.17685i 0.0758903 0.233566i
\(186\) 0 0
\(187\) −4.60841 14.1832i −0.337000 1.03718i
\(188\) 0 0
\(189\) 1.47576 4.54194i 0.107346 0.330377i
\(190\) 0 0
\(191\) 8.79622 0.636472 0.318236 0.948012i \(-0.396910\pi\)
0.318236 + 0.948012i \(0.396910\pi\)
\(192\) 0 0
\(193\) −8.33429 + 6.05522i −0.599915 + 0.435864i −0.845849 0.533423i \(-0.820906\pi\)
0.245933 + 0.969287i \(0.420906\pi\)
\(194\) 0 0
\(195\) −11.0763 8.04741i −0.793191 0.576287i
\(196\) 0 0
\(197\) −5.65834 4.11102i −0.403140 0.292898i 0.367679 0.929953i \(-0.380153\pi\)
−0.770819 + 0.637055i \(0.780153\pi\)
\(198\) 0 0
\(199\) 0.904123 + 2.78261i 0.0640916 + 0.197254i 0.977975 0.208724i \(-0.0669310\pi\)
−0.913883 + 0.405978i \(0.866931\pi\)
\(200\) 0 0
\(201\) −36.4440 + 26.4781i −2.57056 + 1.86762i
\(202\) 0 0
\(203\) 2.08420 + 6.41450i 0.146282 + 0.450210i
\(204\) 0 0
\(205\) 0.0449576 6.40297i 0.00313998 0.447203i
\(206\) 0 0
\(207\) −6.80932 20.9569i −0.473280 1.45661i
\(208\) 0 0
\(209\) −27.8645 + 20.2448i −1.92743 + 1.40036i
\(210\) 0 0
\(211\) −0.603257 1.85663i −0.0415299 0.127816i 0.928142 0.372227i \(-0.121406\pi\)
−0.969672 + 0.244411i \(0.921406\pi\)
\(212\) 0 0
\(213\) −7.65419 5.56110i −0.524457 0.381040i
\(214\) 0 0
\(215\) −6.86053 4.98447i −0.467884 0.339938i
\(216\) 0 0
\(217\) 2.29241 1.66554i 0.155619 0.113064i
\(218\) 0 0
\(219\) −12.8134 −0.865852
\(220\) 0 0
\(221\) −4.56769 + 14.0579i −0.307256 + 0.945636i
\(222\) 0 0
\(223\) 3.92302 + 12.0738i 0.262705 + 0.808523i 0.992213 + 0.124551i \(0.0397490\pi\)
−0.729508 + 0.683972i \(0.760251\pi\)
\(224\) 0 0
\(225\) 1.59857 4.91989i 0.106571 0.327993i
\(226\) 0 0
\(227\) 6.57983 20.2506i 0.436718 1.34408i −0.454597 0.890697i \(-0.650217\pi\)
0.891315 0.453384i \(-0.149783\pi\)
\(228\) 0 0
\(229\) −7.55201 5.48686i −0.499051 0.362582i 0.309604 0.950866i \(-0.399804\pi\)
−0.808654 + 0.588284i \(0.799804\pi\)
\(230\) 0 0
\(231\) 8.59046 6.24133i 0.565211 0.410649i
\(232\) 0 0
\(233\) 2.31290 + 7.11839i 0.151523 + 0.466341i 0.997792 0.0664153i \(-0.0211562\pi\)
−0.846269 + 0.532756i \(0.821156\pi\)
\(234\) 0 0
\(235\) 4.33847 + 3.15209i 0.283011 + 0.205619i
\(236\) 0 0
\(237\) −8.33471 −0.541397
\(238\) 0 0
\(239\) 6.47632 19.9321i 0.418919 1.28930i −0.489780 0.871846i \(-0.662923\pi\)
0.908699 0.417453i \(-0.137077\pi\)
\(240\) 0 0
\(241\) −23.1567 + 16.8243i −1.49165 + 1.08375i −0.518091 + 0.855325i \(0.673357\pi\)
−0.973562 + 0.228424i \(0.926643\pi\)
\(242\) 0 0
\(243\) −12.2294 −0.784518
\(244\) 0 0
\(245\) 6.40907 0.409461
\(246\) 0 0
\(247\) 34.1381 2.17216
\(248\) 0 0
\(249\) 26.0285 1.64949
\(250\) 0 0
\(251\) 10.0298 7.28711i 0.633078 0.459958i −0.224387 0.974500i \(-0.572038\pi\)
0.857465 + 0.514542i \(0.172038\pi\)
\(252\) 0 0
\(253\) 6.35995 19.5739i 0.399847 1.23060i
\(254\) 0 0
\(255\) −8.82393 −0.552576
\(256\) 0 0
\(257\) −4.31119 3.13226i −0.268925 0.195385i 0.445148 0.895457i \(-0.353151\pi\)
−0.714072 + 0.700072i \(0.753151\pi\)
\(258\) 0 0
\(259\) −0.793485 2.44210i −0.0493047 0.151744i
\(260\) 0 0
\(261\) −36.7195 + 26.6783i −2.27288 + 1.65135i
\(262\) 0 0
\(263\) 4.25477 + 3.09127i 0.262360 + 0.190616i 0.711187 0.703003i \(-0.248158\pi\)
−0.448827 + 0.893619i \(0.648158\pi\)
\(264\) 0 0
\(265\) −2.39781 + 7.37969i −0.147296 + 0.453331i
\(266\) 0 0
\(267\) 3.92082 12.0670i 0.239950 0.738490i
\(268\) 0 0
\(269\) 2.78002 + 8.55604i 0.169501 + 0.521671i 0.999340 0.0363327i \(-0.0115676\pi\)
−0.829839 + 0.558003i \(0.811568\pi\)
\(270\) 0 0
\(271\) −0.825446 + 2.54046i −0.0501423 + 0.154322i −0.972992 0.230837i \(-0.925854\pi\)
0.922850 + 0.385159i \(0.125854\pi\)
\(272\) 0 0
\(273\) −10.5246 −0.636975
\(274\) 0 0
\(275\) 3.90892 2.84000i 0.235717 0.171258i
\(276\) 0 0
\(277\) −15.7299 11.4284i −0.945118 0.686668i 0.00452929 0.999990i \(-0.498558\pi\)
−0.949647 + 0.313321i \(0.898558\pi\)
\(278\) 0 0
\(279\) 15.4268 + 11.2082i 0.923578 + 0.671019i
\(280\) 0 0
\(281\) 7.65208 + 23.5507i 0.456485 + 1.40492i 0.869383 + 0.494139i \(0.164517\pi\)
−0.412898 + 0.910777i \(0.635483\pi\)
\(282\) 0 0
\(283\) 2.01111 1.46115i 0.119548 0.0868566i −0.526405 0.850234i \(-0.676460\pi\)
0.645953 + 0.763377i \(0.276460\pi\)
\(284\) 0 0
\(285\) 6.29753 + 19.3818i 0.373034 + 1.14808i
\(286\) 0 0
\(287\) −2.86516 4.00235i −0.169125 0.236251i
\(288\) 0 0
\(289\) −2.30940 7.10762i −0.135847 0.418095i
\(290\) 0 0
\(291\) −23.6035 + 17.1489i −1.38366 + 1.00529i
\(292\) 0 0
\(293\) 1.40531 + 4.32510i 0.0820992 + 0.252675i 0.983677 0.179941i \(-0.0575906\pi\)
−0.901578 + 0.432616i \(0.857591\pi\)
\(294\) 0 0
\(295\) 9.39303 + 6.82444i 0.546883 + 0.397334i
\(296\) 0 0
\(297\) 24.2843 + 17.6436i 1.40912 + 1.02378i
\(298\) 0 0
\(299\) −16.5034 + 11.9905i −0.954419 + 0.693426i
\(300\) 0 0
\(301\) −6.51878 −0.375736
\(302\) 0 0
\(303\) −5.88000 + 18.0968i −0.337797 + 1.03963i
\(304\) 0 0
\(305\) −3.31734 10.2097i −0.189950 0.584607i
\(306\) 0 0
\(307\) 9.56143 29.4270i 0.545699 1.67949i −0.173622 0.984812i \(-0.555547\pi\)
0.719321 0.694678i \(-0.244453\pi\)
\(308\) 0 0
\(309\) 5.85111 18.0079i 0.332858 1.02443i
\(310\) 0 0
\(311\) −19.1592 13.9200i −1.08642 0.789329i −0.107627 0.994191i \(-0.534325\pi\)
−0.978791 + 0.204863i \(0.934325\pi\)
\(312\) 0 0
\(313\) 5.81689 4.22621i 0.328790 0.238880i −0.411127 0.911578i \(-0.634865\pi\)
0.739917 + 0.672698i \(0.234865\pi\)
\(314\) 0 0
\(315\) −1.22885 3.78200i −0.0692377 0.213092i
\(316\) 0 0
\(317\) 9.88866 + 7.18453i 0.555403 + 0.403524i 0.829773 0.558100i \(-0.188470\pi\)
−0.274371 + 0.961624i \(0.588470\pi\)
\(318\) 0 0
\(319\) −42.3926 −2.37353
\(320\) 0 0
\(321\) 12.5972 38.7701i 0.703105 2.16393i
\(322\) 0 0
\(323\) 17.8001 12.9325i 0.990423 0.719584i
\(324\) 0 0
\(325\) −4.78900 −0.265646
\(326\) 0 0
\(327\) −24.3909 −1.34882
\(328\) 0 0
\(329\) 4.12236 0.227273
\(330\) 0 0
\(331\) 17.6997 0.972863 0.486431 0.873719i \(-0.338298\pi\)
0.486431 + 0.873719i \(0.338298\pi\)
\(332\) 0 0
\(333\) 13.9797 10.1568i 0.766081 0.556590i
\(334\) 0 0
\(335\) −4.86920 + 14.9859i −0.266033 + 0.818765i
\(336\) 0 0
\(337\) 11.2866 0.614823 0.307411 0.951577i \(-0.400537\pi\)
0.307411 + 0.951577i \(0.400537\pi\)
\(338\) 0 0
\(339\) 27.0572 + 19.6582i 1.46955 + 1.06769i
\(340\) 0 0
\(341\) 5.50365 + 16.9385i 0.298039 + 0.917270i
\(342\) 0 0
\(343\) 8.33917 6.05876i 0.450273 0.327142i
\(344\) 0 0
\(345\) −9.85196 7.15787i −0.530412 0.385367i
\(346\) 0 0
\(347\) −5.90342 + 18.1688i −0.316912 + 0.975355i 0.658048 + 0.752976i \(0.271382\pi\)
−0.974960 + 0.222379i \(0.928618\pi\)
\(348\) 0 0
\(349\) 0.322827 0.993558i 0.0172805 0.0531839i −0.942044 0.335488i \(-0.891099\pi\)
0.959325 + 0.282304i \(0.0910988\pi\)
\(350\) 0 0
\(351\) −9.19381 28.2956i −0.490729 1.51031i
\(352\) 0 0
\(353\) 4.56574 14.0519i 0.243010 0.747907i −0.752948 0.658081i \(-0.771369\pi\)
0.995957 0.0898269i \(-0.0286314\pi\)
\(354\) 0 0
\(355\) −3.30940 −0.175645
\(356\) 0 0
\(357\) −5.48765 + 3.98701i −0.290437 + 0.211015i
\(358\) 0 0
\(359\) 25.6545 + 18.6391i 1.35399 + 0.983732i 0.998802 + 0.0489381i \(0.0155837\pi\)
0.355190 + 0.934794i \(0.384416\pi\)
\(360\) 0 0
\(361\) −25.7387 18.7003i −1.35467 0.984224i
\(362\) 0 0
\(363\) 10.9062 + 33.5660i 0.572429 + 1.76176i
\(364\) 0 0
\(365\) −3.62602 + 2.63446i −0.189795 + 0.137894i
\(366\) 0 0
\(367\) 1.53396 + 4.72106i 0.0800723 + 0.246437i 0.983077 0.183194i \(-0.0586436\pi\)
−0.903004 + 0.429631i \(0.858644\pi\)
\(368\) 0 0
\(369\) 19.6574 26.6604i 1.02332 1.38789i
\(370\) 0 0
\(371\) 1.84324 + 5.67290i 0.0956960 + 0.294522i
\(372\) 0 0
\(373\) −6.92187 + 5.02903i −0.358401 + 0.260393i −0.752385 0.658724i \(-0.771097\pi\)
0.393984 + 0.919117i \(0.371097\pi\)
\(374\) 0 0
\(375\) −0.883436 2.71894i −0.0456205 0.140405i
\(376\) 0 0
\(377\) 33.9932 + 24.6975i 1.75074 + 1.27199i
\(378\) 0 0
\(379\) 8.38669 + 6.09329i 0.430796 + 0.312991i 0.781967 0.623320i \(-0.214217\pi\)
−0.351171 + 0.936311i \(0.614217\pi\)
\(380\) 0 0
\(381\) 23.0710 16.7620i 1.18196 0.858746i
\(382\) 0 0
\(383\) 30.6127 1.56424 0.782118 0.623130i \(-0.214139\pi\)
0.782118 + 0.623130i \(0.214139\pi\)
\(384\) 0 0
\(385\) 1.14775 3.53242i 0.0584949 0.180029i
\(386\) 0 0
\(387\) −13.5560 41.7211i −0.689090 2.12080i
\(388\) 0 0
\(389\) 4.00929 12.3393i 0.203279 0.625628i −0.796501 0.604637i \(-0.793318\pi\)
0.999780 0.0209905i \(-0.00668197\pi\)
\(390\) 0 0
\(391\) −4.06278 + 12.5040i −0.205464 + 0.632353i
\(392\) 0 0
\(393\) −29.9126 21.7328i −1.50889 1.09627i
\(394\) 0 0
\(395\) −2.35860 + 1.71363i −0.118674 + 0.0862219i
\(396\) 0 0
\(397\) −6.13128 18.8701i −0.307720 0.947065i −0.978648 0.205543i \(-0.934104\pi\)
0.670928 0.741523i \(-0.265896\pi\)
\(398\) 0 0
\(399\) 12.6739 + 9.20816i 0.634491 + 0.460985i
\(400\) 0 0
\(401\) 30.2977 1.51299 0.756497 0.653997i \(-0.226909\pi\)
0.756497 + 0.653997i \(0.226909\pi\)
\(402\) 0 0
\(403\) 5.45501 16.7888i 0.271734 0.836310i
\(404\) 0 0
\(405\) 1.81342 1.31753i 0.0901095 0.0654684i
\(406\) 0 0
\(407\) 16.1395 0.800004
\(408\) 0 0
\(409\) 32.6573 1.61480 0.807400 0.590005i \(-0.200874\pi\)
0.807400 + 0.590005i \(0.200874\pi\)
\(410\) 0 0
\(411\) −20.9645 −1.03410
\(412\) 0 0
\(413\) 8.92513 0.439177
\(414\) 0 0
\(415\) 7.36571 5.35150i 0.361569 0.262695i
\(416\) 0 0
\(417\) −11.5979 + 35.6947i −0.567953 + 1.74798i
\(418\) 0 0
\(419\) 25.1426 1.22830 0.614149 0.789190i \(-0.289499\pi\)
0.614149 + 0.789190i \(0.289499\pi\)
\(420\) 0 0
\(421\) 24.8867 + 18.0813i 1.21290 + 0.881227i 0.995491 0.0948528i \(-0.0302380\pi\)
0.217413 + 0.976080i \(0.430238\pi\)
\(422\) 0 0
\(423\) 8.57257 + 26.3836i 0.416812 + 1.28282i
\(424\) 0 0
\(425\) −2.49705 + 1.81421i −0.121125 + 0.0880022i
\(426\) 0 0
\(427\) −6.67624 4.85057i −0.323086 0.234736i
\(428\) 0 0
\(429\) 20.4418 62.9134i 0.986940 3.03749i
\(430\) 0 0
\(431\) 8.42087 25.9168i 0.405619 1.24837i −0.514759 0.857335i \(-0.672118\pi\)
0.920377 0.391031i \(-0.127882\pi\)
\(432\) 0 0
\(433\) −0.117735 0.362351i −0.00565798 0.0174135i 0.948188 0.317711i \(-0.102914\pi\)
−0.953846 + 0.300297i \(0.902914\pi\)
\(434\) 0 0
\(435\) −7.75114 + 23.8556i −0.371639 + 1.14379i
\(436\) 0 0
\(437\) 30.3646 1.45253
\(438\) 0 0
\(439\) −8.78334 + 6.38147i −0.419206 + 0.304571i −0.777318 0.629108i \(-0.783420\pi\)
0.358112 + 0.933678i \(0.383420\pi\)
\(440\) 0 0
\(441\) 26.8227 + 19.4878i 1.27727 + 0.927991i
\(442\) 0 0
\(443\) −4.27995 3.10957i −0.203347 0.147740i 0.481452 0.876473i \(-0.340110\pi\)
−0.684798 + 0.728733i \(0.740110\pi\)
\(444\) 0 0
\(445\) −1.37146 4.22092i −0.0650135 0.200091i
\(446\) 0 0
\(447\) 34.1318 24.7982i 1.61438 1.17291i
\(448\) 0 0
\(449\) −0.762554 2.34690i −0.0359872 0.110757i 0.931449 0.363871i \(-0.118545\pi\)
−0.967436 + 0.253114i \(0.918545\pi\)
\(450\) 0 0
\(451\) 29.4901 9.35352i 1.38864 0.440440i
\(452\) 0 0
\(453\) 1.62058 + 4.98762i 0.0761414 + 0.234339i
\(454\) 0 0
\(455\) −2.97830 + 2.16386i −0.139625 + 0.101443i
\(456\) 0 0
\(457\) −5.92546 18.2367i −0.277181 0.853076i −0.988634 0.150342i \(-0.951962\pi\)
0.711453 0.702734i \(-0.248038\pi\)
\(458\) 0 0
\(459\) −15.5130 11.2708i −0.724084 0.526078i
\(460\) 0 0
\(461\) 9.70209 + 7.04898i 0.451871 + 0.328304i 0.790334 0.612676i \(-0.209907\pi\)
−0.338463 + 0.940980i \(0.609907\pi\)
\(462\) 0 0
\(463\) 6.80707 4.94563i 0.316351 0.229843i −0.418266 0.908325i \(-0.637362\pi\)
0.734617 + 0.678482i \(0.237362\pi\)
\(464\) 0 0
\(465\) 10.5381 0.488692
\(466\) 0 0
\(467\) −4.52619 + 13.9302i −0.209447 + 0.644611i 0.790054 + 0.613037i \(0.210052\pi\)
−0.999501 + 0.0315748i \(0.989948\pi\)
\(468\) 0 0
\(469\) 3.74304 + 11.5199i 0.172837 + 0.531939i
\(470\) 0 0
\(471\) −21.6248 + 66.5542i −0.996417 + 3.06666i
\(472\) 0 0
\(473\) 12.6614 38.9678i 0.582172 1.79174i
\(474\) 0 0
\(475\) 5.76704 + 4.19000i 0.264610 + 0.192250i
\(476\) 0 0
\(477\) −32.4742 + 23.5939i −1.48689 + 1.08029i
\(478\) 0 0
\(479\) −10.4977 32.3087i −0.479654 1.47622i −0.839576 0.543242i \(-0.817197\pi\)
0.359922 0.932982i \(-0.382803\pi\)
\(480\) 0 0
\(481\) −12.9417 9.40271i −0.590092 0.428727i
\(482\) 0 0
\(483\) −9.36120 −0.425949
\(484\) 0 0
\(485\) −3.15361 + 9.70581i −0.143198 + 0.440718i
\(486\) 0 0
\(487\) 3.66282 2.66119i 0.165978 0.120590i −0.501695 0.865044i \(-0.667290\pi\)
0.667674 + 0.744454i \(0.267290\pi\)
\(488\) 0 0
\(489\) −47.1891 −2.13396
\(490\) 0 0
\(491\) 14.4510 0.652163 0.326081 0.945342i \(-0.394272\pi\)
0.326081 + 0.945342i \(0.394272\pi\)
\(492\) 0 0
\(493\) 27.0807 1.21965
\(494\) 0 0
\(495\) 24.9947 1.12343
\(496\) 0 0
\(497\) −2.05813 + 1.49532i −0.0923198 + 0.0670742i
\(498\) 0 0
\(499\) −4.77435 + 14.6939i −0.213729 + 0.657791i 0.785512 + 0.618846i \(0.212400\pi\)
−0.999241 + 0.0389449i \(0.987600\pi\)
\(500\) 0 0
\(501\) −3.56021 −0.159058
\(502\) 0 0
\(503\) −6.13857 4.45993i −0.273705 0.198859i 0.442462 0.896787i \(-0.354105\pi\)
−0.716167 + 0.697929i \(0.754105\pi\)
\(504\) 0 0
\(505\) 2.05676 + 6.33007i 0.0915248 + 0.281684i
\(506\) 0 0
\(507\) −22.9772 + 16.6939i −1.02045 + 0.741402i
\(508\) 0 0
\(509\) −26.6896 19.3912i −1.18300 0.859498i −0.190491 0.981689i \(-0.561008\pi\)
−0.992507 + 0.122191i \(0.961008\pi\)
\(510\) 0 0
\(511\) −1.06469 + 3.27677i −0.0470990 + 0.144956i
\(512\) 0 0
\(513\) −13.6850 + 42.1182i −0.604209 + 1.85956i
\(514\) 0 0
\(515\) −2.04666 6.29897i −0.0901865 0.277566i
\(516\) 0 0
\(517\) −8.00684 + 24.6425i −0.352140 + 1.08378i
\(518\) 0 0
\(519\) 25.8354 1.13405
\(520\) 0 0
\(521\) 15.6809 11.3929i 0.686994 0.499130i −0.188677 0.982039i \(-0.560420\pi\)
0.875670 + 0.482909i \(0.160420\pi\)
\(522\) 0 0
\(523\) 26.8776 + 19.5277i 1.17528 + 0.853888i 0.991631 0.129104i \(-0.0412102\pi\)
0.183645 + 0.982993i \(0.441210\pi\)
\(524\) 0 0
\(525\) −1.77794 1.29175i −0.0775956 0.0563765i
\(526\) 0 0
\(527\) −3.51577 10.8204i −0.153149 0.471345i
\(528\) 0 0
\(529\) 3.92821 2.85401i 0.170792 0.124087i
\(530\) 0 0
\(531\) 18.5601 + 57.1220i 0.805438 + 2.47888i
\(532\) 0 0
\(533\) −29.0965 9.68040i −1.26031 0.419305i
\(534\) 0 0
\(535\) −4.40636 13.5614i −0.190503 0.586309i
\(536\) 0 0
\(537\) 27.9202 20.2852i 1.20485 0.875371i
\(538\) 0 0
\(539\) 9.56923 + 29.4511i 0.412176 + 1.26855i
\(540\) 0 0
\(541\) 7.95819 + 5.78197i 0.342149 + 0.248586i 0.745568 0.666429i \(-0.232178\pi\)
−0.403419 + 0.915015i \(0.632178\pi\)
\(542\) 0 0
\(543\) −40.6277 29.5177i −1.74350 1.26673i
\(544\) 0 0
\(545\) −6.90228 + 5.01480i −0.295661 + 0.214811i
\(546\) 0 0
\(547\) −8.06669 −0.344907 −0.172453 0.985018i \(-0.555169\pi\)
−0.172453 + 0.985018i \(0.555169\pi\)
\(548\) 0 0
\(549\) 17.1609 52.8157i 0.732408 2.25412i
\(550\) 0 0
\(551\) −19.3271 59.4828i −0.823364 2.53405i
\(552\) 0 0
\(553\) −0.692542 + 2.13143i −0.0294499 + 0.0906374i
\(554\) 0 0
\(555\) 2.95097 9.08216i 0.125262 0.385516i
\(556\) 0 0
\(557\) −10.2008 7.41131i −0.432221 0.314027i 0.350315 0.936632i \(-0.386074\pi\)
−0.782536 + 0.622605i \(0.786074\pi\)
\(558\) 0 0
\(559\) −32.8551 + 23.8706i −1.38962 + 1.00962i
\(560\) 0 0
\(561\) −13.1748 40.5478i −0.556240 1.71193i
\(562\) 0 0
\(563\) 6.21103 + 4.51258i 0.261764 + 0.190182i 0.710924 0.703269i \(-0.248277\pi\)
−0.449161 + 0.893451i \(0.648277\pi\)
\(564\) 0 0
\(565\) 11.6986 0.492163
\(566\) 0 0
\(567\) 0.532463 1.63875i 0.0223613 0.0688211i
\(568\) 0 0
\(569\) 14.6695 10.6580i 0.614978 0.446807i −0.236186 0.971708i \(-0.575897\pi\)
0.851164 + 0.524900i \(0.175897\pi\)
\(570\) 0 0
\(571\) 2.95700 0.123747 0.0618734 0.998084i \(-0.480293\pi\)
0.0618734 + 0.998084i \(0.480293\pi\)
\(572\) 0 0
\(573\) 25.1471 1.05054
\(574\) 0 0
\(575\) −4.25963 −0.177639
\(576\) 0 0
\(577\) 43.7372 1.82080 0.910401 0.413726i \(-0.135773\pi\)
0.910401 + 0.413726i \(0.135773\pi\)
\(578\) 0 0
\(579\) −23.8266 + 17.3110i −0.990198 + 0.719421i
\(580\) 0 0
\(581\) 2.16275 6.65625i 0.0897259 0.276148i
\(582\) 0 0
\(583\) −37.4914 −1.55273
\(584\) 0 0
\(585\) −20.0425 14.5617i −0.828655 0.602053i
\(586\) 0 0
\(587\) 5.28254 + 16.2580i 0.218034 + 0.671039i 0.998924 + 0.0463708i \(0.0147656\pi\)
−0.780891 + 0.624668i \(0.785234\pi\)
\(588\) 0 0
\(589\) −21.2580 + 15.4448i −0.875919 + 0.636392i
\(590\) 0 0
\(591\) −16.1764 11.7528i −0.665408 0.483447i
\(592\) 0 0
\(593\) 4.95975 15.2645i 0.203672 0.626839i −0.796093 0.605175i \(-0.793103\pi\)
0.999765 0.0216648i \(-0.00689667\pi\)
\(594\) 0 0
\(595\) −0.733192 + 2.25653i −0.0300580 + 0.0925089i
\(596\) 0 0
\(597\) 2.58476 + 7.95508i 0.105787 + 0.325580i
\(598\) 0 0
\(599\) −11.0064 + 33.8743i −0.449710 + 1.38407i 0.427524 + 0.904004i \(0.359386\pi\)
−0.877235 + 0.480062i \(0.840614\pi\)
\(600\) 0 0
\(601\) −1.16368 −0.0474675 −0.0237337 0.999718i \(-0.507555\pi\)
−0.0237337 + 0.999718i \(0.507555\pi\)
\(602\) 0 0
\(603\) −65.9451 + 47.9119i −2.68549 + 1.95112i
\(604\) 0 0
\(605\) 9.98752 + 7.25636i 0.406050 + 0.295013i
\(606\) 0 0
\(607\) −34.0081 24.7083i −1.38035 1.00288i −0.996848 0.0793386i \(-0.974719\pi\)
−0.383498 0.923542i \(-0.625281\pi\)
\(608\) 0 0
\(609\) 5.95843 + 18.3382i 0.241448 + 0.743100i
\(610\) 0 0
\(611\) 20.7769 15.0953i 0.840545 0.610692i
\(612\) 0 0
\(613\) 12.1793 + 37.4840i 0.491917 + 1.51397i 0.821706 + 0.569911i \(0.193022\pi\)
−0.329789 + 0.944055i \(0.606978\pi\)
\(614\) 0 0
\(615\) 0.128527 18.3052i 0.00518273 0.738136i
\(616\) 0 0
\(617\) 4.09822 + 12.6130i 0.164988 + 0.507782i 0.999035 0.0439115i \(-0.0139820\pi\)
−0.834047 + 0.551693i \(0.813982\pi\)
\(618\) 0 0
\(619\) −35.8815 + 26.0694i −1.44220 + 1.04782i −0.454620 + 0.890686i \(0.650225\pi\)
−0.987578 + 0.157132i \(0.949775\pi\)
\(620\) 0 0
\(621\) −8.17754 25.1679i −0.328153 1.00995i
\(622\) 0 0
\(623\) −2.76010 2.00533i −0.110581 0.0803419i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 0 0
\(627\) −79.6608 + 57.8770i −3.18135 + 2.31138i
\(628\) 0 0
\(629\) −10.3100 −0.411087
\(630\) 0 0
\(631\) 6.58660 20.2715i 0.262208 0.806995i −0.730115 0.683324i \(-0.760534\pi\)
0.992323 0.123670i \(-0.0394665\pi\)
\(632\) 0 0
\(633\) −1.72463 5.30786i −0.0685478 0.210968i
\(634\) 0 0
\(635\) 3.08246 9.48685i 0.122324 0.376474i
\(636\) 0 0
\(637\) 9.48467 29.1908i 0.375796 1.15658i
\(638\) 0 0
\(639\) −13.8502 10.0627i −0.547905 0.398076i
\(640\) 0 0
\(641\) 2.96977 2.15767i 0.117299 0.0852227i −0.527589 0.849500i \(-0.676904\pi\)
0.644888 + 0.764277i \(0.276904\pi\)
\(642\) 0 0
\(643\) −14.7333 45.3444i −0.581024 1.78821i −0.614684 0.788774i \(-0.710716\pi\)
0.0336601 0.999433i \(-0.489284\pi\)
\(644\) 0 0
\(645\) −19.6133 14.2499i −0.772273 0.561089i
\(646\) 0 0
\(647\) −0.401346 −0.0157785 −0.00788926 0.999969i \(-0.502511\pi\)
−0.00788926 + 0.999969i \(0.502511\pi\)
\(648\) 0 0
\(649\) −17.3352 + 53.3524i −0.680467 + 2.09426i
\(650\) 0 0
\(651\) 6.55369 4.76153i 0.256859 0.186619i
\(652\) 0 0
\(653\) −25.6655 −1.00437 −0.502185 0.864760i \(-0.667470\pi\)
−0.502185 + 0.864760i \(0.667470\pi\)
\(654\) 0 0
\(655\) −12.9331 −0.505339
\(656\) 0 0
\(657\) −23.1858 −0.904564
\(658\) 0 0
\(659\) 11.0251 0.429477 0.214739 0.976672i \(-0.431110\pi\)
0.214739 + 0.976672i \(0.431110\pi\)
\(660\) 0 0
\(661\) −9.70799 + 7.05327i −0.377597 + 0.274340i −0.760354 0.649509i \(-0.774975\pi\)
0.382757 + 0.923849i \(0.374975\pi\)
\(662\) 0 0
\(663\) −13.0584 + 40.1895i −0.507145 + 1.56083i
\(664\) 0 0
\(665\) 5.47976 0.212496
\(666\) 0 0
\(667\) 30.2357 + 21.9675i 1.17073 + 0.850586i
\(668\) 0 0
\(669\) 11.2154 + 34.5174i 0.433611 + 1.33452i
\(670\) 0 0
\(671\) 41.9628 30.4878i 1.61996 1.17697i
\(672\) 0 0
\(673\) 39.9527 + 29.0273i 1.54006 + 1.11892i 0.950297 + 0.311345i \(0.100780\pi\)
0.589765 + 0.807575i \(0.299220\pi\)
\(674\) 0 0
\(675\) 1.91978 5.90846i 0.0738922 0.227417i
\(676\) 0 0
\(677\) −8.93493 + 27.4989i −0.343397 + 1.05687i 0.619039 + 0.785360i \(0.287522\pi\)
−0.962436 + 0.271508i \(0.912478\pi\)
\(678\) 0 0
\(679\) 2.42423 + 7.46102i 0.0930335 + 0.286328i
\(680\) 0 0
\(681\) 18.8108 57.8937i 0.720831 2.21849i
\(682\) 0 0
\(683\) 23.6128 0.903518 0.451759 0.892140i \(-0.350797\pi\)
0.451759 + 0.892140i \(0.350797\pi\)
\(684\) 0 0
\(685\) −5.93267 + 4.31033i −0.226676 + 0.164689i
\(686\) 0 0
\(687\) −21.5901 15.6862i −0.823715 0.598464i
\(688\) 0 0
\(689\) 30.0631 + 21.8422i 1.14531 + 0.832120i
\(690\) 0 0
\(691\) 1.56863 + 4.82775i 0.0596735 + 0.183656i 0.976450 0.215745i \(-0.0692180\pi\)
−0.916776 + 0.399401i \(0.869218\pi\)
\(692\) 0 0
\(693\) 15.5443 11.2936i 0.590481 0.429010i
\(694\) 0 0
\(695\) 4.05683 + 12.4857i 0.153884 + 0.473608i
\(696\) 0 0
\(697\) −18.8385 + 5.97510i −0.713559 + 0.226323i
\(698\) 0 0
\(699\) 6.61227 + 20.3505i 0.250099 + 0.769725i
\(700\) 0 0
\(701\) −26.6110 + 19.3340i −1.00508 + 0.730235i −0.963172 0.268886i \(-0.913344\pi\)
−0.0419103 + 0.999121i \(0.513344\pi\)
\(702\) 0 0
\(703\) 7.35813 + 22.6460i 0.277517 + 0.854110i
\(704\) 0 0
\(705\) 12.4031 + 9.01137i 0.467127 + 0.339388i
\(706\) 0 0
\(707\) 4.13929 + 3.00737i 0.155674 + 0.113104i
\(708\) 0 0
\(709\) 36.0213 26.1710i 1.35281 0.982873i 0.353942 0.935267i \(-0.384841\pi\)
0.998866 0.0476055i \(-0.0151590\pi\)
\(710\) 0 0
\(711\) −15.0816 −0.565603
\(712\) 0 0
\(713\) 4.85203 14.9330i 0.181710 0.559246i
\(714\) 0 0
\(715\) −7.15033 22.0065i −0.267407 0.822995i
\(716\) 0 0
\(717\) 18.5149 56.9830i 0.691452 2.12807i
\(718\) 0 0
\(719\) 12.6548 38.9475i 0.471945 1.45250i −0.378090 0.925769i \(-0.623419\pi\)
0.850034 0.526727i \(-0.176581\pi\)
\(720\) 0 0
\(721\) −4.11895 2.99260i −0.153398 0.111450i
\(722\) 0 0
\(723\) −66.2017 + 48.0983i −2.46207 + 1.78880i
\(724\) 0 0
\(725\) 2.71127 + 8.34443i 0.100694 + 0.309904i
\(726\) 0 0
\(727\) 2.66747 + 1.93803i 0.0989310 + 0.0718776i 0.636151 0.771565i \(-0.280526\pi\)
−0.537220 + 0.843442i \(0.680526\pi\)
\(728\) 0 0
\(729\) −41.6867 −1.54395
\(730\) 0 0
\(731\) −8.08819 + 24.8929i −0.299153 + 0.920697i
\(732\) 0 0
\(733\) −23.2465 + 16.8896i −0.858630 + 0.623831i −0.927512 0.373794i \(-0.878057\pi\)
0.0688822 + 0.997625i \(0.478057\pi\)
\(734\) 0 0
\(735\) 18.3226 0.675841
\(736\) 0 0
\(737\) −76.1333 −2.80441
\(738\) 0 0
\(739\) −47.8558 −1.76040 −0.880202 0.474599i \(-0.842593\pi\)
−0.880202 + 0.474599i \(0.842593\pi\)
\(740\) 0 0
\(741\) 97.5961 3.58528
\(742\) 0 0
\(743\) −11.8645 + 8.62004i −0.435265 + 0.316239i −0.783751 0.621075i \(-0.786696\pi\)
0.348486 + 0.937314i \(0.386696\pi\)
\(744\) 0 0
\(745\) 4.56027 14.0351i 0.167075 0.514205i
\(746\) 0 0
\(747\) 47.0984 1.72324
\(748\) 0 0
\(749\) −8.86791 6.44292i −0.324026 0.235419i
\(750\) 0 0
\(751\) −7.39232 22.7512i −0.269750 0.830204i −0.990561 0.137073i \(-0.956231\pi\)
0.720811 0.693131i \(-0.243769\pi\)
\(752\) 0 0
\(753\) 28.6739 20.8328i 1.04494 0.759190i
\(754\) 0 0
\(755\) 1.48406 + 1.07823i 0.0540106 + 0.0392410i
\(756\) 0 0
\(757\) 7.48111 23.0245i 0.271906 0.836839i −0.718116 0.695923i \(-0.754995\pi\)
0.990022 0.140916i \(-0.0450047\pi\)
\(758\) 0 0
\(759\) 18.1822 55.9591i 0.659972 2.03119i
\(760\) 0 0
\(761\) −15.2468 46.9248i −0.552696 1.70102i −0.701951 0.712225i \(-0.747687\pi\)
0.149255 0.988799i \(-0.452313\pi\)
\(762\) 0 0
\(763\) −2.02667 + 6.23746i −0.0733705 + 0.225811i
\(764\) 0 0
\(765\) −15.9668 −0.577281
\(766\) 0 0
\(767\) 44.9832 32.6822i 1.62425 1.18009i
\(768\) 0 0
\(769\) −13.3559 9.70366i −0.481627 0.349923i 0.320328 0.947307i \(-0.396207\pi\)
−0.801955 + 0.597384i \(0.796207\pi\)
\(770\) 0 0
\(771\) −12.3251 8.95470i −0.443877 0.322496i
\(772\) 0 0
\(773\) −3.91253 12.0415i −0.140724 0.433104i 0.855712 0.517452i \(-0.173119\pi\)
−0.996436 + 0.0843478i \(0.973119\pi\)
\(774\) 0 0
\(775\) 2.98213 2.16664i 0.107121 0.0778281i
\(776\) 0 0
\(777\) −2.26846 6.98161i −0.0813806 0.250464i
\(778\) 0 0
\(779\) 26.5691 + 37.1145i 0.951938 + 1.32977i
\(780\) 0 0
\(781\) −4.94118 15.2074i −0.176809 0.544163i
\(782\) 0 0
\(783\) −44.0977 + 32.0389i −1.57592 + 1.14498i
\(784\) 0 0
\(785\) 7.56413 + 23.2800i 0.269975 + 0.830899i
\(786\) 0 0
\(787\) 3.21073 + 2.33273i 0.114450 + 0.0831530i 0.643538 0.765414i \(-0.277466\pi\)
−0.529088 + 0.848567i \(0.677466\pi\)
\(788\) 0 0
\(789\) 12.1638 + 8.83751i 0.433042 + 0.314624i
\(790\) 0 0
\(791\) 7.27540 5.28589i 0.258683 0.187945i
\(792\) 0 0
\(793\) −51.4106 −1.82564
\(794\) 0 0
\(795\) −6.85500 + 21.0975i −0.243122 + 0.748252i
\(796\) 0 0
\(797\) 12.3019 + 37.8613i 0.435755 + 1.34111i 0.892311 + 0.451421i \(0.149083\pi\)
−0.456557 + 0.889694i \(0.650917\pi\)
\(798\) 0 0
\(799\) 5.11483 15.7418i 0.180950 0.556906i
\(800\) 0 0
\(801\) 7.09468 21.8352i 0.250678 0.771508i
\(802\) 0 0
\(803\) −17.5198 12.7289i −0.618262 0.449193i
\(804\) 0 0
\(805\) −2.64909 + 1.92467i −0.0933680 + 0.0678359i
\(806\) 0 0
\(807\) 7.94770 + 24.4605i 0.279772 + 0.861051i
\(808\) 0 0
\(809\) 2.60692 + 1.89404i 0.0916545 + 0.0665909i 0.632669 0.774423i \(-0.281959\pi\)
−0.541014 + 0.841013i \(0.681959\pi\)
\(810\) 0 0
\(811\) 11.5120 0.404240 0.202120 0.979361i \(-0.435217\pi\)
0.202120 + 0.979361i \(0.435217\pi\)
\(812\) 0 0
\(813\) −2.35984 + 7.26283i −0.0827630 + 0.254718i
\(814\) 0 0
\(815\) −13.3538 + 9.70213i −0.467765 + 0.339851i
\(816\) 0 0
\(817\) 60.4498 2.11487
\(818\) 0 0
\(819\) −19.0441 −0.665454
\(820\) 0 0
\(821\) 39.4540 1.37695 0.688477 0.725258i \(-0.258280\pi\)
0.688477 + 0.725258i \(0.258280\pi\)
\(822\) 0 0
\(823\) 20.5703 0.717035 0.358518 0.933523i \(-0.383282\pi\)
0.358518 + 0.933523i \(0.383282\pi\)
\(824\) 0 0
\(825\) 11.1751 8.11916i 0.389066 0.282673i
\(826\) 0 0
\(827\) −12.9536 + 39.8672i −0.450442 + 1.38632i 0.425961 + 0.904741i \(0.359936\pi\)
−0.876403 + 0.481578i \(0.840064\pi\)
\(828\) 0 0
\(829\) −45.6016 −1.58381 −0.791904 0.610645i \(-0.790910\pi\)
−0.791904 + 0.610645i \(0.790910\pi\)
\(830\) 0 0
\(831\) −44.9696 32.6723i −1.55998 1.13339i
\(832\) 0 0
\(833\) −6.11289 18.8136i −0.211799 0.651851i
\(834\) 0 0
\(835\) −1.00749 + 0.731983i −0.0348656 + 0.0253313i
\(836\) 0 0
\(837\) 18.5266 + 13.4603i 0.640372 + 0.465257i
\(838\) 0 0
\(839\) 3.08417 9.49209i 0.106477 0.327703i −0.883597 0.468248i \(-0.844885\pi\)
0.990074 + 0.140545i \(0.0448854\pi\)
\(840\) 0 0
\(841\) 14.8268 45.6322i 0.511268 1.57352i
\(842\) 0 0
\(843\) 21.8762 + 67.3281i 0.753457 + 2.31890i
\(844\) 0 0
\(845\) −3.06993 + 9.44828i −0.105609 + 0.325031i
\(846\) 0 0
\(847\) 9.49001 0.326080
\(848\) 0 0
\(849\) 5.74947 4.17723i 0.197321 0.143362i
\(850\) 0 0
\(851\) −11.5112 8.36336i −0.394598 0.286692i
\(852\) 0 0
\(853\) 13.5655 + 9.85591i 0.464474 + 0.337460i 0.795284 0.606238i \(-0.207322\pi\)
−0.330810 + 0.943697i \(0.607322\pi\)
\(854\) 0 0
\(855\) 11.3953 + 35.0712i 0.389712 + 1.19941i
\(856\) 0 0
\(857\) −15.6121 + 11.3429i −0.533300 + 0.387465i −0.821591 0.570078i \(-0.806913\pi\)
0.288291 + 0.957543i \(0.406913\pi\)
\(858\) 0 0
\(859\) −1.36305 4.19505i −0.0465068 0.143133i 0.925107 0.379707i \(-0.123975\pi\)
−0.971613 + 0.236574i \(0.923975\pi\)
\(860\) 0 0
\(861\) −8.19109 11.4422i −0.279152 0.389948i
\(862\) 0 0
\(863\) 5.69115 + 17.5156i 0.193729 + 0.596237i 0.999989 + 0.00467541i \(0.00148824\pi\)
−0.806260 + 0.591561i \(0.798512\pi\)
\(864\) 0 0
\(865\) 7.31105 5.31179i 0.248583 0.180606i
\(866\) 0 0
\(867\) −6.60226 20.3197i −0.224225 0.690093i
\(868\) 0 0
\(869\) −11.3961 8.27972i −0.386585 0.280870i
\(870\) 0 0
\(871\) 61.0489 + 44.3546i 2.06856 + 1.50290i
\(872\) 0 0
\(873\) −42.7103 + 31.0308i −1.44552 + 1.05023i
\(874\) 0 0
\(875\) −0.768717 −0.0259874
\(876\) 0 0
\(877\) 15.4605 47.5825i 0.522064 1.60675i −0.247986 0.968764i \(-0.579769\pi\)
0.770050 0.637984i \(-0.220231\pi\)
\(878\) 0 0
\(879\) 4.01759 + 12.3649i 0.135510 + 0.417057i
\(880\) 0 0
\(881\) −12.0327 + 37.0328i −0.405392 + 1.24767i 0.515176 + 0.857084i \(0.327727\pi\)
−0.920568 + 0.390583i \(0.872273\pi\)
\(882\) 0 0
\(883\) −4.70968 + 14.4949i −0.158493 + 0.487792i −0.998498 0.0547868i \(-0.982552\pi\)
0.840005 + 0.542579i \(0.182552\pi\)
\(884\) 0 0
\(885\) 26.8534 + 19.5101i 0.902666 + 0.655825i
\(886\) 0 0
\(887\) −41.4598 + 30.1223i −1.39208 + 1.01141i −0.396451 + 0.918056i \(0.629758\pi\)
−0.995633 + 0.0933529i \(0.970242\pi\)
\(888\) 0 0
\(889\) −2.36954 7.29270i −0.0794719 0.244589i
\(890\) 0 0
\(891\) 8.76188 + 6.36588i 0.293534 + 0.213265i
\(892\) 0 0
\(893\) −38.2274 −1.27923
\(894\) 0 0
\(895\) 3.73036 11.4809i 0.124692 0.383763i
\(896\) 0 0
\(897\) −47.1810 + 34.2790i −1.57533 + 1.14454i
\(898\) 0 0
\(899\) −32.3414 −1.07865
\(900\) 0 0
\(901\) 23.9498 0.797882
\(902\) 0 0
\(903\) −18.6363 −0.620177
\(904\) 0 0
\(905\) −17.5659 −0.583912
\(906\) 0 0
\(907\) 38.6457 28.0777i 1.28321 0.932306i 0.283565 0.958953i \(-0.408483\pi\)
0.999645 + 0.0266469i \(0.00848299\pi\)
\(908\) 0 0
\(909\) −10.6398 + 32.7459i −0.352900 + 1.08611i
\(910\) 0 0
\(911\) 35.3139 1.17000 0.585001 0.811033i \(-0.301094\pi\)
0.585001 + 0.811033i \(0.301094\pi\)
\(912\) 0 0
\(913\) 35.5889 + 25.8568i 1.17782 + 0.855736i
\(914\) 0 0
\(915\) −9.48381 29.1882i −0.313525 0.964931i
\(916\) 0 0
\(917\) −8.04318 + 5.84371i −0.265609 + 0.192976i
\(918\) 0 0
\(919\) 19.3568 + 14.0635i 0.638521 + 0.463913i 0.859342 0.511402i \(-0.170874\pi\)
−0.220821 + 0.975314i \(0.570874\pi\)
\(920\) 0 0
\(921\) 27.3348 84.1278i 0.900711 2.77210i
\(922\) 0 0
\(923\) −4.89752 + 15.0730i −0.161204 + 0.496134i
\(924\) 0 0
\(925\) −1.03222 3.17685i −0.0339392 0.104454i
\(926\) 0 0
\(927\) 10.5875 32.5850i 0.347740 1.07023i
\(928\) 0 0
\(929\) 29.2048 0.958178 0.479089 0.877766i \(-0.340967\pi\)
0.479089 + 0.877766i \(0.340967\pi\)
\(930\) 0 0
\(931\) −36.9614 + 26.8540i −1.21136 + 0.880104i
\(932\) 0 0
\(933\) −54.7734 39.7952i −1.79320 1.30284i
\(934\) 0 0
\(935\) −12.0650 8.76571i −0.394567 0.286669i
\(936\) 0 0
\(937\) −8.80009 27.0839i −0.287487 0.884793i −0.985642 0.168847i \(-0.945996\pi\)
0.698156 0.715946i \(-0.254004\pi\)
\(938\) 0 0
\(939\) 16.6297 12.0822i 0.542688 0.394286i
\(940\) 0 0
\(941\) 17.0072 + 52.3428i 0.554419 + 1.70633i 0.697472 + 0.716612i \(0.254308\pi\)
−0.143053 + 0.989715i \(0.545692\pi\)
\(942\) 0 0
\(943\) −25.8802 8.61035i −0.842776 0.280391i
\(944\) 0 0
\(945\) −1.47576 4.54194i −0.0480066 0.147749i
\(946\) 0 0
\(947\) −2.68564 + 1.95123i −0.0872714 + 0.0634064i −0.630565 0.776136i \(-0.717177\pi\)
0.543294 + 0.839543i \(0.317177\pi\)
\(948\) 0 0
\(949\) 6.63285 + 20.4138i 0.215311 + 0.662660i
\(950\) 0 0
\(951\) 28.2703 + 20.5396i 0.916727 + 0.666041i
\(952\) 0 0
\(953\) 27.3380 + 19.8622i 0.885566 + 0.643401i 0.934718 0.355390i \(-0.115652\pi\)
−0.0491524 + 0.998791i \(0.515652\pi\)
\(954\) 0 0
\(955\) 7.11629 5.17029i 0.230278 0.167307i
\(956\) 0 0
\(957\) −121.194 −3.91766
\(958\) 0 0
\(959\) −1.74197 + 5.36124i −0.0562512 + 0.173123i
\(960\) 0 0
\(961\) −5.38078 16.5603i −0.173573 0.534204i
\(962\) 0 0
\(963\) 22.7944 70.1541i 0.734540 2.26068i
\(964\) 0 0
\(965\) −3.18342 + 9.79755i −0.102478 + 0.315394i
\(966\) 0 0
\(967\) −20.1668 14.6521i −0.648522 0.471179i 0.214245 0.976780i \(-0.431271\pi\)
−0.862767 + 0.505601i \(0.831271\pi\)
\(968\) 0 0
\(969\) 50.8879 36.9722i 1.63476 1.18772i
\(970\) 0 0
\(971\) −6.75308 20.7838i −0.216717 0.666985i −0.999027 0.0440968i \(-0.985959\pi\)
0.782311 0.622889i \(-0.214041\pi\)
\(972\) 0 0
\(973\) 8.16449 + 5.93185i 0.261741 + 0.190166i
\(974\) 0 0
\(975\) −13.6911 −0.438465
\(976\) 0 0
\(977\) 6.78881 20.8938i 0.217193 0.668452i −0.781797 0.623533i \(-0.785697\pi\)
0.998991 0.0449196i \(-0.0143032\pi\)
\(978\) 0 0
\(979\) 17.3484 12.6043i 0.554456 0.402836i
\(980\) 0 0
\(981\) −44.1351 −1.40913
\(982\) 0 0
\(983\) 60.9624 1.94440 0.972200 0.234153i \(-0.0752315\pi\)
0.972200 + 0.234153i \(0.0752315\pi\)
\(984\) 0 0
\(985\) −6.99409 −0.222850
\(986\) 0 0
\(987\) 11.7852 0.375129
\(988\) 0 0
\(989\) −29.2233 + 21.2320i −0.929248 + 0.675138i
\(990\) 0 0
\(991\) −2.86246 + 8.80976i −0.0909292 + 0.279851i −0.986171 0.165729i \(-0.947002\pi\)
0.895242 + 0.445580i \(0.147002\pi\)
\(992\) 0 0
\(993\) 50.6009 1.60577
\(994\) 0 0
\(995\) 2.36703 + 1.71974i 0.0750398 + 0.0545196i
\(996\) 0 0
\(997\) 12.3868 + 38.1225i 0.392292 + 1.20735i 0.931050 + 0.364891i \(0.118894\pi\)
−0.538758 + 0.842461i \(0.681106\pi\)
\(998\) 0 0
\(999\) 16.7887 12.1977i 0.531169 0.385917i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.b.141.8 32
41.16 even 5 inner 820.2.u.b.221.8 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.b.141.8 32 1.1 even 1 trivial
820.2.u.b.221.8 yes 32 41.16 even 5 inner