Properties

Label 820.2.u.a.221.6
Level $820$
Weight $2$
Character 820.221
Analytic conductor $6.548$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 221.6
Character \(\chi\) \(=\) 820.221
Dual form 820.2.u.a.141.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.42987 q^{3} +(-0.809017 - 0.587785i) q^{5} +(0.903746 + 2.78144i) q^{7} +2.90425 q^{9} +(2.41720 - 1.75620i) q^{11} +(-1.03961 + 3.19958i) q^{13} +(-1.96580 - 1.42824i) q^{15} +(4.80955 - 3.49434i) q^{17} +(0.971064 + 2.98863i) q^{19} +(2.19598 + 6.75854i) q^{21} +(1.16123 - 3.57390i) q^{23} +(0.309017 + 0.951057i) q^{25} -0.232654 q^{27} +(2.21438 + 1.60884i) q^{29} +(-6.26976 + 4.55525i) q^{31} +(5.87348 - 4.26733i) q^{33} +(0.903746 - 2.78144i) q^{35} +(9.04450 + 6.57121i) q^{37} +(-2.52611 + 7.77456i) q^{39} +(-4.16856 - 4.86036i) q^{41} +(3.10622 - 9.55998i) q^{43} +(-2.34959 - 1.70708i) q^{45} +(-1.85022 + 5.69440i) q^{47} +(-1.25655 + 0.912939i) q^{49} +(11.6866 - 8.49078i) q^{51} +(-0.451093 - 0.327738i) q^{53} -2.98782 q^{55} +(2.35956 + 7.26197i) q^{57} +(-1.46341 + 4.50392i) q^{59} +(-3.95004 - 12.1570i) q^{61} +(2.62471 + 8.07801i) q^{63} +(2.72173 - 1.97745i) q^{65} +(-6.99129 - 5.07947i) q^{67} +(2.82164 - 8.68411i) q^{69} +(5.52700 - 4.01560i) q^{71} -10.7242 q^{73} +(0.750870 + 2.31094i) q^{75} +(7.06930 + 5.13615i) q^{77} -2.77926 q^{79} -9.27808 q^{81} -10.8048 q^{83} -5.94493 q^{85} +(5.38065 + 3.90927i) q^{87} +(1.24721 + 3.83851i) q^{89} -9.83900 q^{91} +(-15.2347 + 11.0686i) q^{93} +(0.971064 - 2.98863i) q^{95} +(-2.35673 - 1.71226i) q^{97} +(7.02016 - 5.10045i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{3} - 6 q^{5} + 5 q^{7} + 18 q^{9} - 7 q^{11} - 5 q^{13} + 2 q^{15} + 3 q^{17} - q^{19} + 2 q^{21} + 20 q^{23} - 6 q^{25} + 20 q^{27} - 15 q^{29} - q^{31} - 6 q^{33} + 5 q^{35} + q^{37} + 28 q^{41}+ \cdots + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.42987 1.40288 0.701442 0.712726i \(-0.252540\pi\)
0.701442 + 0.712726i \(0.252540\pi\)
\(4\) 0 0
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 0 0
\(7\) 0.903746 + 2.78144i 0.341584 + 1.05129i 0.963387 + 0.268114i \(0.0864002\pi\)
−0.621804 + 0.783173i \(0.713600\pi\)
\(8\) 0 0
\(9\) 2.90425 0.968084
\(10\) 0 0
\(11\) 2.41720 1.75620i 0.728814 0.529514i −0.160374 0.987056i \(-0.551270\pi\)
0.889188 + 0.457542i \(0.151270\pi\)
\(12\) 0 0
\(13\) −1.03961 + 3.19958i −0.288335 + 0.887405i 0.697044 + 0.717028i \(0.254498\pi\)
−0.985379 + 0.170376i \(0.945502\pi\)
\(14\) 0 0
\(15\) −1.96580 1.42824i −0.507568 0.368770i
\(16\) 0 0
\(17\) 4.80955 3.49434i 1.16649 0.847502i 0.175903 0.984408i \(-0.443716\pi\)
0.990584 + 0.136905i \(0.0437156\pi\)
\(18\) 0 0
\(19\) 0.971064 + 2.98863i 0.222777 + 0.685638i 0.998510 + 0.0545762i \(0.0173808\pi\)
−0.775732 + 0.631062i \(0.782619\pi\)
\(20\) 0 0
\(21\) 2.19598 + 6.75854i 0.479203 + 1.47483i
\(22\) 0 0
\(23\) 1.16123 3.57390i 0.242134 0.745210i −0.753961 0.656919i \(-0.771859\pi\)
0.996095 0.0882914i \(-0.0281407\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) −0.232654 −0.0447743
\(28\) 0 0
\(29\) 2.21438 + 1.60884i 0.411200 + 0.298754i 0.774088 0.633079i \(-0.218209\pi\)
−0.362887 + 0.931833i \(0.618209\pi\)
\(30\) 0 0
\(31\) −6.26976 + 4.55525i −1.12608 + 0.818147i −0.985120 0.171868i \(-0.945020\pi\)
−0.140962 + 0.990015i \(0.545020\pi\)
\(32\) 0 0
\(33\) 5.87348 4.26733i 1.02244 0.742847i
\(34\) 0 0
\(35\) 0.903746 2.78144i 0.152761 0.470150i
\(36\) 0 0
\(37\) 9.04450 + 6.57121i 1.48691 + 1.08030i 0.975249 + 0.221111i \(0.0709683\pi\)
0.511657 + 0.859190i \(0.329032\pi\)
\(38\) 0 0
\(39\) −2.52611 + 7.77456i −0.404501 + 1.24493i
\(40\) 0 0
\(41\) −4.16856 4.86036i −0.651020 0.759060i
\(42\) 0 0
\(43\) 3.10622 9.55998i 0.473695 1.45788i −0.374015 0.927423i \(-0.622019\pi\)
0.847710 0.530460i \(-0.177981\pi\)
\(44\) 0 0
\(45\) −2.34959 1.70708i −0.350256 0.254476i
\(46\) 0 0
\(47\) −1.85022 + 5.69440i −0.269883 + 0.830614i 0.720645 + 0.693304i \(0.243846\pi\)
−0.990528 + 0.137310i \(0.956154\pi\)
\(48\) 0 0
\(49\) −1.25655 + 0.912939i −0.179508 + 0.130420i
\(50\) 0 0
\(51\) 11.6866 8.49078i 1.63645 1.18895i
\(52\) 0 0
\(53\) −0.451093 0.327738i −0.0619624 0.0450183i 0.556373 0.830933i \(-0.312193\pi\)
−0.618335 + 0.785914i \(0.712193\pi\)
\(54\) 0 0
\(55\) −2.98782 −0.402878
\(56\) 0 0
\(57\) 2.35956 + 7.26197i 0.312531 + 0.961871i
\(58\) 0 0
\(59\) −1.46341 + 4.50392i −0.190520 + 0.586360i −1.00000 0.000787735i \(-0.999749\pi\)
0.809480 + 0.587148i \(0.199749\pi\)
\(60\) 0 0
\(61\) −3.95004 12.1570i −0.505751 1.55654i −0.799504 0.600661i \(-0.794904\pi\)
0.293752 0.955882i \(-0.405096\pi\)
\(62\) 0 0
\(63\) 2.62471 + 8.07801i 0.330682 + 1.01773i
\(64\) 0 0
\(65\) 2.72173 1.97745i 0.337589 0.245273i
\(66\) 0 0
\(67\) −6.99129 5.07947i −0.854122 0.620556i 0.0721576 0.997393i \(-0.477012\pi\)
−0.926279 + 0.376837i \(0.877012\pi\)
\(68\) 0 0
\(69\) 2.82164 8.68411i 0.339685 1.04544i
\(70\) 0 0
\(71\) 5.52700 4.01560i 0.655934 0.476564i −0.209353 0.977840i \(-0.567136\pi\)
0.865287 + 0.501276i \(0.167136\pi\)
\(72\) 0 0
\(73\) −10.7242 −1.25517 −0.627586 0.778547i \(-0.715957\pi\)
−0.627586 + 0.778547i \(0.715957\pi\)
\(74\) 0 0
\(75\) 0.750870 + 2.31094i 0.0867030 + 0.266844i
\(76\) 0 0
\(77\) 7.06930 + 5.13615i 0.805622 + 0.585319i
\(78\) 0 0
\(79\) −2.77926 −0.312691 −0.156346 0.987702i \(-0.549971\pi\)
−0.156346 + 0.987702i \(0.549971\pi\)
\(80\) 0 0
\(81\) −9.27808 −1.03090
\(82\) 0 0
\(83\) −10.8048 −1.18598 −0.592989 0.805210i \(-0.702052\pi\)
−0.592989 + 0.805210i \(0.702052\pi\)
\(84\) 0 0
\(85\) −5.94493 −0.644818
\(86\) 0 0
\(87\) 5.38065 + 3.90927i 0.576866 + 0.419118i
\(88\) 0 0
\(89\) 1.24721 + 3.83851i 0.132204 + 0.406882i 0.995145 0.0984234i \(-0.0313799\pi\)
−0.862941 + 0.505305i \(0.831380\pi\)
\(90\) 0 0
\(91\) −9.83900 −1.03141
\(92\) 0 0
\(93\) −15.2347 + 11.0686i −1.57976 + 1.14777i
\(94\) 0 0
\(95\) 0.971064 2.98863i 0.0996291 0.306627i
\(96\) 0 0
\(97\) −2.35673 1.71226i −0.239289 0.173854i 0.461677 0.887048i \(-0.347248\pi\)
−0.700967 + 0.713194i \(0.747248\pi\)
\(98\) 0 0
\(99\) 7.02016 5.10045i 0.705553 0.512614i
\(100\) 0 0
\(101\) 0.769714 + 2.36894i 0.0765894 + 0.235718i 0.982020 0.188776i \(-0.0604520\pi\)
−0.905431 + 0.424494i \(0.860452\pi\)
\(102\) 0 0
\(103\) −5.74200 17.6721i −0.565776 1.74128i −0.665634 0.746278i \(-0.731839\pi\)
0.0998582 0.995002i \(-0.468161\pi\)
\(104\) 0 0
\(105\) 2.19598 6.75854i 0.214306 0.659566i
\(106\) 0 0
\(107\) 1.61264 + 4.96319i 0.155900 + 0.479810i 0.998251 0.0591190i \(-0.0188291\pi\)
−0.842351 + 0.538929i \(0.818829\pi\)
\(108\) 0 0
\(109\) −2.68726 −0.257393 −0.128697 0.991684i \(-0.541079\pi\)
−0.128697 + 0.991684i \(0.541079\pi\)
\(110\) 0 0
\(111\) 21.9769 + 15.9672i 2.08596 + 1.51554i
\(112\) 0 0
\(113\) 5.17135 3.75720i 0.486479 0.353448i −0.317349 0.948309i \(-0.602793\pi\)
0.803829 + 0.594861i \(0.202793\pi\)
\(114\) 0 0
\(115\) −3.04014 + 2.20879i −0.283495 + 0.205971i
\(116\) 0 0
\(117\) −3.01928 + 9.29240i −0.279133 + 0.859082i
\(118\) 0 0
\(119\) 14.0659 + 10.2195i 1.28942 + 0.936819i
\(120\) 0 0
\(121\) −0.640562 + 1.97145i −0.0582329 + 0.179223i
\(122\) 0 0
\(123\) −10.1291 11.8100i −0.913306 1.06487i
\(124\) 0 0
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) 0 0
\(127\) 15.5919 + 11.3282i 1.38356 + 1.00521i 0.996538 + 0.0831409i \(0.0264951\pi\)
0.387019 + 0.922072i \(0.373505\pi\)
\(128\) 0 0
\(129\) 7.54771 23.2295i 0.664539 2.04524i
\(130\) 0 0
\(131\) −2.85478 + 2.07412i −0.249423 + 0.181216i −0.705471 0.708739i \(-0.749265\pi\)
0.456048 + 0.889955i \(0.349265\pi\)
\(132\) 0 0
\(133\) −7.43511 + 5.40192i −0.644705 + 0.468406i
\(134\) 0 0
\(135\) 0.188221 + 0.136751i 0.0161995 + 0.0117696i
\(136\) 0 0
\(137\) 2.02362 0.172890 0.0864448 0.996257i \(-0.472449\pi\)
0.0864448 + 0.996257i \(0.472449\pi\)
\(138\) 0 0
\(139\) 1.76548 + 5.43358i 0.149746 + 0.460870i 0.997591 0.0693742i \(-0.0221003\pi\)
−0.847845 + 0.530244i \(0.822100\pi\)
\(140\) 0 0
\(141\) −4.49579 + 13.8366i −0.378614 + 1.16525i
\(142\) 0 0
\(143\) 3.10616 + 9.55979i 0.259751 + 0.799430i
\(144\) 0 0
\(145\) −0.845818 2.60316i −0.0702414 0.216181i
\(146\) 0 0
\(147\) −3.05326 + 2.21832i −0.251828 + 0.182964i
\(148\) 0 0
\(149\) −17.0902 12.4168i −1.40009 1.01722i −0.994672 0.103089i \(-0.967127\pi\)
−0.405414 0.914133i \(-0.632873\pi\)
\(150\) 0 0
\(151\) −2.40533 + 7.40285i −0.195743 + 0.602435i 0.804224 + 0.594326i \(0.202581\pi\)
−0.999967 + 0.00810888i \(0.997419\pi\)
\(152\) 0 0
\(153\) 13.9681 10.1484i 1.12926 0.820453i
\(154\) 0 0
\(155\) 7.74985 0.622483
\(156\) 0 0
\(157\) −6.84680 21.0723i −0.546434 1.68175i −0.717556 0.696501i \(-0.754739\pi\)
0.171122 0.985250i \(-0.445261\pi\)
\(158\) 0 0
\(159\) −1.09610 0.796360i −0.0869260 0.0631555i
\(160\) 0 0
\(161\) 10.9901 0.866139
\(162\) 0 0
\(163\) 12.7651 0.999842 0.499921 0.866071i \(-0.333362\pi\)
0.499921 + 0.866071i \(0.333362\pi\)
\(164\) 0 0
\(165\) −7.26002 −0.565191
\(166\) 0 0
\(167\) −3.75917 −0.290894 −0.145447 0.989366i \(-0.546462\pi\)
−0.145447 + 0.989366i \(0.546462\pi\)
\(168\) 0 0
\(169\) 1.36067 + 0.988588i 0.104667 + 0.0760452i
\(170\) 0 0
\(171\) 2.82022 + 8.67973i 0.215667 + 0.663756i
\(172\) 0 0
\(173\) −18.3229 −1.39307 −0.696534 0.717524i \(-0.745275\pi\)
−0.696534 + 0.717524i \(0.745275\pi\)
\(174\) 0 0
\(175\) −2.36604 + 1.71903i −0.178856 + 0.129946i
\(176\) 0 0
\(177\) −3.55589 + 10.9439i −0.267277 + 0.822595i
\(178\) 0 0
\(179\) 4.23445 + 3.07651i 0.316497 + 0.229949i 0.734679 0.678414i \(-0.237333\pi\)
−0.418182 + 0.908363i \(0.637333\pi\)
\(180\) 0 0
\(181\) −0.691084 + 0.502102i −0.0513679 + 0.0373210i −0.613173 0.789949i \(-0.710107\pi\)
0.561805 + 0.827270i \(0.310107\pi\)
\(182\) 0 0
\(183\) −9.59808 29.5399i −0.709511 2.18365i
\(184\) 0 0
\(185\) −3.45469 10.6324i −0.253994 0.781713i
\(186\) 0 0
\(187\) 5.48889 16.8931i 0.401387 1.23534i
\(188\) 0 0
\(189\) −0.210260 0.647114i −0.0152942 0.0470707i
\(190\) 0 0
\(191\) −12.8274 −0.928156 −0.464078 0.885794i \(-0.653614\pi\)
−0.464078 + 0.885794i \(0.653614\pi\)
\(192\) 0 0
\(193\) −18.2973 13.2938i −1.31707 0.956909i −0.999964 0.00851939i \(-0.997288\pi\)
−0.317108 0.948389i \(-0.602712\pi\)
\(194\) 0 0
\(195\) 6.61344 4.80494i 0.473598 0.344089i
\(196\) 0 0
\(197\) −0.566766 + 0.411780i −0.0403804 + 0.0293381i −0.607792 0.794096i \(-0.707945\pi\)
0.567412 + 0.823434i \(0.307945\pi\)
\(198\) 0 0
\(199\) −0.113028 + 0.347865i −0.00801235 + 0.0246595i −0.954983 0.296661i \(-0.904127\pi\)
0.946970 + 0.321321i \(0.104127\pi\)
\(200\) 0 0
\(201\) −16.9879 12.3424i −1.19823 0.870568i
\(202\) 0 0
\(203\) −2.47367 + 7.61316i −0.173617 + 0.534339i
\(204\) 0 0
\(205\) 0.515592 + 6.38233i 0.0360105 + 0.445761i
\(206\) 0 0
\(207\) 3.37251 10.3795i 0.234406 0.721426i
\(208\) 0 0
\(209\) 7.59589 + 5.51873i 0.525418 + 0.381739i
\(210\) 0 0
\(211\) −3.96538 + 12.2042i −0.272988 + 0.840171i 0.716757 + 0.697323i \(0.245626\pi\)
−0.989745 + 0.142847i \(0.954374\pi\)
\(212\) 0 0
\(213\) 13.4299 9.75737i 0.920200 0.668564i
\(214\) 0 0
\(215\) −8.13220 + 5.90839i −0.554612 + 0.402949i
\(216\) 0 0
\(217\) −18.3364 13.3222i −1.24476 0.904370i
\(218\) 0 0
\(219\) −26.0584 −1.76086
\(220\) 0 0
\(221\) 6.18039 + 19.0213i 0.415738 + 1.27951i
\(222\) 0 0
\(223\) −1.12789 + 3.47128i −0.0755290 + 0.232454i −0.981692 0.190474i \(-0.938998\pi\)
0.906163 + 0.422928i \(0.138998\pi\)
\(224\) 0 0
\(225\) 0.897463 + 2.76211i 0.0598309 + 0.184141i
\(226\) 0 0
\(227\) −2.34934 7.23054i −0.155931 0.479908i 0.842323 0.538974i \(-0.181188\pi\)
−0.998254 + 0.0590660i \(0.981188\pi\)
\(228\) 0 0
\(229\) −1.32391 + 0.961880i −0.0874867 + 0.0635628i −0.630669 0.776052i \(-0.717219\pi\)
0.543182 + 0.839615i \(0.317219\pi\)
\(230\) 0 0
\(231\) 17.1775 + 12.4802i 1.13019 + 0.821134i
\(232\) 0 0
\(233\) 3.76293 11.5811i 0.246517 0.758703i −0.748866 0.662722i \(-0.769401\pi\)
0.995383 0.0959810i \(-0.0305988\pi\)
\(234\) 0 0
\(235\) 4.84395 3.51933i 0.315984 0.229576i
\(236\) 0 0
\(237\) −6.75323 −0.438669
\(238\) 0 0
\(239\) 8.99150 + 27.6730i 0.581612 + 1.79002i 0.612471 + 0.790493i \(0.290176\pi\)
−0.0308587 + 0.999524i \(0.509824\pi\)
\(240\) 0 0
\(241\) 7.04891 + 5.12133i 0.454060 + 0.329894i 0.791197 0.611562i \(-0.209458\pi\)
−0.337137 + 0.941456i \(0.609458\pi\)
\(242\) 0 0
\(243\) −21.8465 −1.40146
\(244\) 0 0
\(245\) 1.55318 0.0992293
\(246\) 0 0
\(247\) −10.5719 −0.672673
\(248\) 0 0
\(249\) −26.2542 −1.66379
\(250\) 0 0
\(251\) 17.1585 + 12.4664i 1.08304 + 0.786871i 0.978210 0.207619i \(-0.0665715\pi\)
0.104826 + 0.994491i \(0.466572\pi\)
\(252\) 0 0
\(253\) −3.46956 10.6782i −0.218129 0.671332i
\(254\) 0 0
\(255\) −14.4454 −0.904605
\(256\) 0 0
\(257\) −19.0601 + 13.8480i −1.18894 + 0.863814i −0.993152 0.116833i \(-0.962726\pi\)
−0.195786 + 0.980647i \(0.562726\pi\)
\(258\) 0 0
\(259\) −10.1035 + 31.0955i −0.627803 + 1.93218i
\(260\) 0 0
\(261\) 6.43112 + 4.67248i 0.398076 + 0.289219i
\(262\) 0 0
\(263\) −7.57870 + 5.50624i −0.467322 + 0.339530i −0.796397 0.604774i \(-0.793263\pi\)
0.329074 + 0.944304i \(0.393263\pi\)
\(264\) 0 0
\(265\) 0.172302 + 0.530292i 0.0105844 + 0.0325756i
\(266\) 0 0
\(267\) 3.03055 + 9.32708i 0.185467 + 0.570808i
\(268\) 0 0
\(269\) 8.06023 24.8068i 0.491441 1.51250i −0.330991 0.943634i \(-0.607383\pi\)
0.822431 0.568865i \(-0.192617\pi\)
\(270\) 0 0
\(271\) 3.25433 + 10.0158i 0.197687 + 0.608417i 0.999935 + 0.0114262i \(0.00363715\pi\)
−0.802248 + 0.596991i \(0.796363\pi\)
\(272\) 0 0
\(273\) −23.9075 −1.44695
\(274\) 0 0
\(275\) 2.41720 + 1.75620i 0.145763 + 0.105903i
\(276\) 0 0
\(277\) −9.59857 + 6.97377i −0.576722 + 0.419013i −0.837541 0.546375i \(-0.816008\pi\)
0.260819 + 0.965388i \(0.416008\pi\)
\(278\) 0 0
\(279\) −18.2090 + 13.2296i −1.09014 + 0.792035i
\(280\) 0 0
\(281\) 9.14679 28.1509i 0.545652 1.67934i −0.173783 0.984784i \(-0.555599\pi\)
0.719435 0.694560i \(-0.244401\pi\)
\(282\) 0 0
\(283\) −10.7044 7.77720i −0.636310 0.462306i 0.222270 0.974985i \(-0.428653\pi\)
−0.858581 + 0.512679i \(0.828653\pi\)
\(284\) 0 0
\(285\) 2.35956 7.26197i 0.139768 0.430162i
\(286\) 0 0
\(287\) 9.75149 15.9872i 0.575612 0.943692i
\(288\) 0 0
\(289\) 5.66804 17.4444i 0.333414 1.02614i
\(290\) 0 0
\(291\) −5.72653 4.16057i −0.335695 0.243897i
\(292\) 0 0
\(293\) 9.33102 28.7179i 0.545124 1.67772i −0.175572 0.984467i \(-0.556177\pi\)
0.720696 0.693252i \(-0.243823\pi\)
\(294\) 0 0
\(295\) 3.83126 2.78357i 0.223065 0.162066i
\(296\) 0 0
\(297\) −0.562372 + 0.408587i −0.0326321 + 0.0237086i
\(298\) 0 0
\(299\) 10.2278 + 7.43091i 0.591487 + 0.429741i
\(300\) 0 0
\(301\) 29.3978 1.69446
\(302\) 0 0
\(303\) 1.87030 + 5.75620i 0.107446 + 0.330685i
\(304\) 0 0
\(305\) −3.95004 + 12.1570i −0.226179 + 0.696107i
\(306\) 0 0
\(307\) −9.61293 29.5856i −0.548639 1.68854i −0.712177 0.702000i \(-0.752291\pi\)
0.163539 0.986537i \(-0.447709\pi\)
\(308\) 0 0
\(309\) −13.9523 42.9408i −0.793718 2.44281i
\(310\) 0 0
\(311\) 9.92227 7.20895i 0.562640 0.408782i −0.269784 0.962921i \(-0.586952\pi\)
0.832424 + 0.554139i \(0.186952\pi\)
\(312\) 0 0
\(313\) 11.1573 + 8.10627i 0.630649 + 0.458194i 0.856625 0.515939i \(-0.172557\pi\)
−0.225976 + 0.974133i \(0.572557\pi\)
\(314\) 0 0
\(315\) 2.62471 8.07801i 0.147885 0.455145i
\(316\) 0 0
\(317\) −1.52629 + 1.10891i −0.0857248 + 0.0622827i −0.629822 0.776739i \(-0.716872\pi\)
0.544097 + 0.839022i \(0.316872\pi\)
\(318\) 0 0
\(319\) 8.17805 0.457883
\(320\) 0 0
\(321\) 3.91850 + 12.0599i 0.218709 + 0.673118i
\(322\) 0 0
\(323\) 15.1137 + 10.9807i 0.840947 + 0.610984i
\(324\) 0 0
\(325\) −3.36424 −0.186614
\(326\) 0 0
\(327\) −6.52970 −0.361093
\(328\) 0 0
\(329\) −17.5108 −0.965401
\(330\) 0 0
\(331\) 2.63183 0.144658 0.0723292 0.997381i \(-0.476957\pi\)
0.0723292 + 0.997381i \(0.476957\pi\)
\(332\) 0 0
\(333\) 26.2675 + 19.0845i 1.43945 + 1.04582i
\(334\) 0 0
\(335\) 2.67043 + 8.21875i 0.145901 + 0.449038i
\(336\) 0 0
\(337\) 14.3912 0.783937 0.391968 0.919979i \(-0.371794\pi\)
0.391968 + 0.919979i \(0.371794\pi\)
\(338\) 0 0
\(339\) 12.5657 9.12950i 0.682474 0.495846i
\(340\) 0 0
\(341\) −7.15535 + 22.0219i −0.387484 + 1.19255i
\(342\) 0 0
\(343\) 12.8874 + 9.36322i 0.695852 + 0.505566i
\(344\) 0 0
\(345\) −7.38714 + 5.36707i −0.397710 + 0.288954i
\(346\) 0 0
\(347\) −1.57802 4.85665i −0.0847126 0.260719i 0.899724 0.436460i \(-0.143768\pi\)
−0.984436 + 0.175741i \(0.943768\pi\)
\(348\) 0 0
\(349\) 5.18691 + 15.9637i 0.277649 + 0.854515i 0.988506 + 0.151179i \(0.0483071\pi\)
−0.710857 + 0.703336i \(0.751693\pi\)
\(350\) 0 0
\(351\) 0.241869 0.744396i 0.0129100 0.0397329i
\(352\) 0 0
\(353\) −1.02191 3.14512i −0.0543908 0.167398i 0.920171 0.391517i \(-0.128050\pi\)
−0.974562 + 0.224119i \(0.928050\pi\)
\(354\) 0 0
\(355\) −6.83175 −0.362592
\(356\) 0 0
\(357\) 34.1783 + 24.8320i 1.80891 + 1.31425i
\(358\) 0 0
\(359\) 8.48454 6.16438i 0.447797 0.325343i −0.340929 0.940089i \(-0.610741\pi\)
0.788725 + 0.614746i \(0.210741\pi\)
\(360\) 0 0
\(361\) 7.38239 5.36362i 0.388547 0.282296i
\(362\) 0 0
\(363\) −1.55648 + 4.79036i −0.0816941 + 0.251428i
\(364\) 0 0
\(365\) 8.67606 + 6.30353i 0.454126 + 0.329942i
\(366\) 0 0
\(367\) −6.24762 + 19.2282i −0.326123 + 1.00370i 0.644808 + 0.764345i \(0.276937\pi\)
−0.970931 + 0.239359i \(0.923063\pi\)
\(368\) 0 0
\(369\) −12.1066 14.1157i −0.630242 0.734834i
\(370\) 0 0
\(371\) 0.503912 1.55088i 0.0261618 0.0805178i
\(372\) 0 0
\(373\) 15.9753 + 11.6067i 0.827168 + 0.600973i 0.918757 0.394824i \(-0.129194\pi\)
−0.0915885 + 0.995797i \(0.529194\pi\)
\(374\) 0 0
\(375\) 0.750870 2.31094i 0.0387748 0.119336i
\(376\) 0 0
\(377\) −7.44971 + 5.41253i −0.383680 + 0.278760i
\(378\) 0 0
\(379\) 18.1388 13.1786i 0.931725 0.676938i −0.0146895 0.999892i \(-0.504676\pi\)
0.946415 + 0.322954i \(0.104676\pi\)
\(380\) 0 0
\(381\) 37.8862 + 27.5259i 1.94097 + 1.41020i
\(382\) 0 0
\(383\) 17.4033 0.889267 0.444633 0.895713i \(-0.353334\pi\)
0.444633 + 0.895713i \(0.353334\pi\)
\(384\) 0 0
\(385\) −2.70023 8.31047i −0.137617 0.423541i
\(386\) 0 0
\(387\) 9.02126 27.7646i 0.458576 1.41135i
\(388\) 0 0
\(389\) −2.02795 6.24139i −0.102821 0.316451i 0.886392 0.462936i \(-0.153204\pi\)
−0.989213 + 0.146485i \(0.953204\pi\)
\(390\) 0 0
\(391\) −6.90344 21.2466i −0.349122 1.07449i
\(392\) 0 0
\(393\) −6.93673 + 5.03983i −0.349912 + 0.254226i
\(394\) 0 0
\(395\) 2.24847 + 1.63361i 0.113133 + 0.0821957i
\(396\) 0 0
\(397\) −1.76964 + 5.44640i −0.0888158 + 0.273347i −0.985593 0.169136i \(-0.945902\pi\)
0.896777 + 0.442483i \(0.145902\pi\)
\(398\) 0 0
\(399\) −18.0663 + 13.1259i −0.904447 + 0.657119i
\(400\) 0 0
\(401\) 27.3307 1.36483 0.682416 0.730964i \(-0.260929\pi\)
0.682416 + 0.730964i \(0.260929\pi\)
\(402\) 0 0
\(403\) −8.05680 24.7963i −0.401338 1.23519i
\(404\) 0 0
\(405\) 7.50612 + 5.45352i 0.372982 + 0.270987i
\(406\) 0 0
\(407\) 33.4027 1.65571
\(408\) 0 0
\(409\) 23.6163 1.16775 0.583875 0.811844i \(-0.301536\pi\)
0.583875 + 0.811844i \(0.301536\pi\)
\(410\) 0 0
\(411\) 4.91713 0.242544
\(412\) 0 0
\(413\) −13.8499 −0.681511
\(414\) 0 0
\(415\) 8.74125 + 6.35089i 0.429091 + 0.311753i
\(416\) 0 0
\(417\) 4.28987 + 13.2029i 0.210076 + 0.646547i
\(418\) 0 0
\(419\) 5.20618 0.254339 0.127169 0.991881i \(-0.459411\pi\)
0.127169 + 0.991881i \(0.459411\pi\)
\(420\) 0 0
\(421\) −29.2568 + 21.2563i −1.42589 + 1.03597i −0.435123 + 0.900371i \(0.643295\pi\)
−0.990764 + 0.135597i \(0.956705\pi\)
\(422\) 0 0
\(423\) −5.37351 + 16.5380i −0.261269 + 0.804104i
\(424\) 0 0
\(425\) 4.80955 + 3.49434i 0.233297 + 0.169500i
\(426\) 0 0
\(427\) 30.2441 21.9737i 1.46362 1.06338i
\(428\) 0 0
\(429\) 7.54757 + 23.2290i 0.364400 + 1.12151i
\(430\) 0 0
\(431\) 9.00463 + 27.7134i 0.433738 + 1.33491i 0.894375 + 0.447319i \(0.147621\pi\)
−0.460637 + 0.887589i \(0.652379\pi\)
\(432\) 0 0
\(433\) −3.90455 + 12.0170i −0.187640 + 0.577498i −0.999984 0.00568143i \(-0.998192\pi\)
0.812343 + 0.583179i \(0.198192\pi\)
\(434\) 0 0
\(435\) −2.05523 6.32533i −0.0985405 0.303277i
\(436\) 0 0
\(437\) 11.8087 0.564887
\(438\) 0 0
\(439\) 14.1868 + 10.3073i 0.677097 + 0.491940i 0.872393 0.488804i \(-0.162567\pi\)
−0.195296 + 0.980744i \(0.562567\pi\)
\(440\) 0 0
\(441\) −3.64935 + 2.65141i −0.173778 + 0.126257i
\(442\) 0 0
\(443\) 29.5266 21.4523i 1.40285 1.01923i 0.408538 0.912741i \(-0.366039\pi\)
0.994314 0.106490i \(-0.0339612\pi\)
\(444\) 0 0
\(445\) 1.24721 3.83851i 0.0591234 0.181963i
\(446\) 0 0
\(447\) −41.5270 30.1711i −1.96416 1.42704i
\(448\) 0 0
\(449\) −3.46321 + 10.6586i −0.163439 + 0.503013i −0.998918 0.0465095i \(-0.985190\pi\)
0.835479 + 0.549522i \(0.185190\pi\)
\(450\) 0 0
\(451\) −18.6120 4.42763i −0.876405 0.208489i
\(452\) 0 0
\(453\) −5.84463 + 17.9879i −0.274605 + 0.845147i
\(454\) 0 0
\(455\) 7.95992 + 5.78322i 0.373167 + 0.271121i
\(456\) 0 0
\(457\) −4.01464 + 12.3558i −0.187797 + 0.577979i −0.999985 0.00541588i \(-0.998276\pi\)
0.812189 + 0.583395i \(0.198276\pi\)
\(458\) 0 0
\(459\) −1.11896 + 0.812973i −0.0522287 + 0.0379463i
\(460\) 0 0
\(461\) −15.9984 + 11.6236i −0.745122 + 0.541363i −0.894311 0.447446i \(-0.852334\pi\)
0.149189 + 0.988809i \(0.452334\pi\)
\(462\) 0 0
\(463\) −1.65610 1.20323i −0.0769654 0.0559186i 0.548637 0.836061i \(-0.315147\pi\)
−0.625603 + 0.780142i \(0.715147\pi\)
\(464\) 0 0
\(465\) 18.8311 0.873272
\(466\) 0 0
\(467\) 3.91612 + 12.0526i 0.181217 + 0.557727i 0.999863 0.0165710i \(-0.00527496\pi\)
−0.818646 + 0.574298i \(0.805275\pi\)
\(468\) 0 0
\(469\) 7.80991 24.0364i 0.360628 1.10990i
\(470\) 0 0
\(471\) −16.6368 51.2028i −0.766584 2.35930i
\(472\) 0 0
\(473\) −9.28085 28.5635i −0.426734 1.31335i
\(474\) 0 0
\(475\) −2.54228 + 1.84707i −0.116648 + 0.0847496i
\(476\) 0 0
\(477\) −1.31009 0.951834i −0.0599848 0.0435815i
\(478\) 0 0
\(479\) 5.11786 15.7511i 0.233841 0.719688i −0.763432 0.645888i \(-0.776487\pi\)
0.997273 0.0738001i \(-0.0235127\pi\)
\(480\) 0 0
\(481\) −30.4279 + 22.1071i −1.38739 + 1.00800i
\(482\) 0 0
\(483\) 26.7044 1.21509
\(484\) 0 0
\(485\) 0.900190 + 2.77050i 0.0408755 + 0.125802i
\(486\) 0 0
\(487\) 6.81614 + 4.95221i 0.308869 + 0.224406i 0.731411 0.681937i \(-0.238862\pi\)
−0.422542 + 0.906343i \(0.638862\pi\)
\(488\) 0 0
\(489\) 31.0176 1.40266
\(490\) 0 0
\(491\) 39.6606 1.78986 0.894928 0.446210i \(-0.147227\pi\)
0.894928 + 0.446210i \(0.147227\pi\)
\(492\) 0 0
\(493\) 16.2720 0.732855
\(494\) 0 0
\(495\) −8.67740 −0.390020
\(496\) 0 0
\(497\) 16.1642 + 11.7440i 0.725062 + 0.526788i
\(498\) 0 0
\(499\) 7.18321 + 22.1076i 0.321564 + 0.989674i 0.972968 + 0.230942i \(0.0741807\pi\)
−0.651403 + 0.758732i \(0.725819\pi\)
\(500\) 0 0
\(501\) −9.13429 −0.408090
\(502\) 0 0
\(503\) −21.7517 + 15.8036i −0.969861 + 0.704646i −0.955420 0.295250i \(-0.904597\pi\)
−0.0144415 + 0.999896i \(0.504597\pi\)
\(504\) 0 0
\(505\) 0.769714 2.36894i 0.0342518 0.105416i
\(506\) 0 0
\(507\) 3.30626 + 2.40214i 0.146836 + 0.106683i
\(508\) 0 0
\(509\) −6.64686 + 4.82923i −0.294617 + 0.214052i −0.725268 0.688467i \(-0.758284\pi\)
0.430651 + 0.902519i \(0.358284\pi\)
\(510\) 0 0
\(511\) −9.69195 29.8288i −0.428747 1.31955i
\(512\) 0 0
\(513\) −0.225922 0.695317i −0.00997471 0.0306990i
\(514\) 0 0
\(515\) −5.74200 + 17.6721i −0.253023 + 0.778724i
\(516\) 0 0
\(517\) 5.52814 + 17.0139i 0.243127 + 0.748269i
\(518\) 0 0
\(519\) −44.5223 −1.95431
\(520\) 0 0
\(521\) 13.0467 + 9.47895i 0.571584 + 0.415280i 0.835680 0.549216i \(-0.185074\pi\)
−0.264096 + 0.964496i \(0.585074\pi\)
\(522\) 0 0
\(523\) −11.5433 + 8.38671i −0.504754 + 0.366725i −0.810830 0.585282i \(-0.800984\pi\)
0.306076 + 0.952007i \(0.400984\pi\)
\(524\) 0 0
\(525\) −5.74916 + 4.17701i −0.250914 + 0.182299i
\(526\) 0 0
\(527\) −14.2371 + 43.8174i −0.620179 + 1.90871i
\(528\) 0 0
\(529\) 7.18306 + 5.21880i 0.312307 + 0.226904i
\(530\) 0 0
\(531\) −4.25012 + 13.0805i −0.184439 + 0.567646i
\(532\) 0 0
\(533\) 19.8848 8.28480i 0.861306 0.358854i
\(534\) 0 0
\(535\) 1.61264 4.96319i 0.0697205 0.214578i
\(536\) 0 0
\(537\) 10.2891 + 7.47550i 0.444009 + 0.322592i
\(538\) 0 0
\(539\) −1.43404 + 4.41351i −0.0617684 + 0.190104i
\(540\) 0 0
\(541\) −9.42529 + 6.84788i −0.405225 + 0.294413i −0.771666 0.636028i \(-0.780576\pi\)
0.366441 + 0.930441i \(0.380576\pi\)
\(542\) 0 0
\(543\) −1.67924 + 1.22004i −0.0720632 + 0.0523570i
\(544\) 0 0
\(545\) 2.17404 + 1.57953i 0.0931258 + 0.0676598i
\(546\) 0 0
\(547\) −42.4768 −1.81618 −0.908089 0.418778i \(-0.862459\pi\)
−0.908089 + 0.418778i \(0.862459\pi\)
\(548\) 0 0
\(549\) −11.4719 35.3070i −0.489610 1.50686i
\(550\) 0 0
\(551\) −2.65792 + 8.18025i −0.113231 + 0.348490i
\(552\) 0 0
\(553\) −2.51174 7.73035i −0.106810 0.328728i
\(554\) 0 0
\(555\) −8.39444 25.8354i −0.356324 1.09665i
\(556\) 0 0
\(557\) 32.8452 23.8634i 1.39170 1.01113i 0.396018 0.918243i \(-0.370392\pi\)
0.995677 0.0928833i \(-0.0296084\pi\)
\(558\) 0 0
\(559\) 27.3587 + 19.8772i 1.15715 + 0.840718i
\(560\) 0 0
\(561\) 13.3373 41.0479i 0.563100 1.73304i
\(562\) 0 0
\(563\) 2.24203 1.62893i 0.0944904 0.0686513i −0.539537 0.841962i \(-0.681401\pi\)
0.634027 + 0.773311i \(0.281401\pi\)
\(564\) 0 0
\(565\) −6.39213 −0.268919
\(566\) 0 0
\(567\) −8.38502 25.8064i −0.352138 1.08377i
\(568\) 0 0
\(569\) 11.7266 + 8.51988i 0.491605 + 0.357172i 0.805801 0.592186i \(-0.201735\pi\)
−0.314196 + 0.949358i \(0.601735\pi\)
\(570\) 0 0
\(571\) −20.9078 −0.874965 −0.437482 0.899227i \(-0.644130\pi\)
−0.437482 + 0.899227i \(0.644130\pi\)
\(572\) 0 0
\(573\) −31.1688 −1.30210
\(574\) 0 0
\(575\) 3.75782 0.156712
\(576\) 0 0
\(577\) −16.9709 −0.706510 −0.353255 0.935527i \(-0.614925\pi\)
−0.353255 + 0.935527i \(0.614925\pi\)
\(578\) 0 0
\(579\) −44.4601 32.3022i −1.84770 1.34243i
\(580\) 0 0
\(581\) −9.76478 30.0529i −0.405111 1.24680i
\(582\) 0 0
\(583\) −1.66596 −0.0689968
\(584\) 0 0
\(585\) 7.90458 5.74302i 0.326814 0.237444i
\(586\) 0 0
\(587\) 10.3437 31.8347i 0.426932 1.31396i −0.474201 0.880417i \(-0.657263\pi\)
0.901132 0.433544i \(-0.142737\pi\)
\(588\) 0 0
\(589\) −19.7023 14.3145i −0.811819 0.589821i
\(590\) 0 0
\(591\) −1.37717 + 1.00057i −0.0566490 + 0.0411579i
\(592\) 0 0
\(593\) −7.94846 24.4628i −0.326404 1.00457i −0.970803 0.239879i \(-0.922892\pi\)
0.644399 0.764690i \(-0.277108\pi\)
\(594\) 0 0
\(595\) −5.37270 16.5355i −0.220259 0.677889i
\(596\) 0 0
\(597\) −0.274643 + 0.845265i −0.0112404 + 0.0345944i
\(598\) 0 0
\(599\) 7.26133 + 22.3481i 0.296690 + 0.913118i 0.982649 + 0.185477i \(0.0593831\pi\)
−0.685959 + 0.727641i \(0.740617\pi\)
\(600\) 0 0
\(601\) 9.25090 0.377352 0.188676 0.982039i \(-0.439580\pi\)
0.188676 + 0.982039i \(0.439580\pi\)
\(602\) 0 0
\(603\) −20.3045 14.7521i −0.826862 0.600750i
\(604\) 0 0
\(605\) 1.67701 1.21842i 0.0681803 0.0495359i
\(606\) 0 0
\(607\) −15.8204 + 11.4942i −0.642131 + 0.466535i −0.860582 0.509313i \(-0.829900\pi\)
0.218451 + 0.975848i \(0.429900\pi\)
\(608\) 0 0
\(609\) −6.01068 + 18.4990i −0.243565 + 0.749616i
\(610\) 0 0
\(611\) −16.2962 11.8399i −0.659274 0.478990i
\(612\) 0 0
\(613\) −14.7455 + 45.3819i −0.595564 + 1.83296i −0.0436666 + 0.999046i \(0.513904\pi\)
−0.551898 + 0.833912i \(0.686096\pi\)
\(614\) 0 0
\(615\) 1.25282 + 15.5082i 0.0505185 + 0.625352i
\(616\) 0 0
\(617\) −5.07963 + 15.6335i −0.204498 + 0.629381i 0.795235 + 0.606301i \(0.207347\pi\)
−0.999734 + 0.0230802i \(0.992653\pi\)
\(618\) 0 0
\(619\) 31.0324 + 22.5464i 1.24730 + 0.906215i 0.998062 0.0622283i \(-0.0198207\pi\)
0.249235 + 0.968443i \(0.419821\pi\)
\(620\) 0 0
\(621\) −0.270165 + 0.831484i −0.0108414 + 0.0333663i
\(622\) 0 0
\(623\) −9.54945 + 6.93808i −0.382591 + 0.277968i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) 18.4570 + 13.4098i 0.737101 + 0.535535i
\(628\) 0 0
\(629\) 66.4620 2.65001
\(630\) 0 0
\(631\) −12.2655 37.7492i −0.488280 1.50277i −0.827173 0.561948i \(-0.810052\pi\)
0.338892 0.940825i \(-0.389948\pi\)
\(632\) 0 0
\(633\) −9.63534 + 29.6545i −0.382971 + 1.17866i
\(634\) 0 0
\(635\) −5.95557 18.3294i −0.236340 0.727379i
\(636\) 0 0
\(637\) −1.61470 4.96954i −0.0639768 0.196900i
\(638\) 0 0
\(639\) 16.0518 11.6623i 0.635000 0.461354i
\(640\) 0 0
\(641\) 7.34918 + 5.33949i 0.290275 + 0.210897i 0.723387 0.690443i \(-0.242584\pi\)
−0.433112 + 0.901340i \(0.642584\pi\)
\(642\) 0 0
\(643\) 6.75698 20.7959i 0.266469 0.820108i −0.724882 0.688873i \(-0.758106\pi\)
0.991351 0.131235i \(-0.0418943\pi\)
\(644\) 0 0
\(645\) −19.7602 + 14.3566i −0.778056 + 0.565291i
\(646\) 0 0
\(647\) 16.0803 0.632182 0.316091 0.948729i \(-0.397629\pi\)
0.316091 + 0.948729i \(0.397629\pi\)
\(648\) 0 0
\(649\) 4.37242 + 13.4569i 0.171632 + 0.528230i
\(650\) 0 0
\(651\) −44.5551 32.3712i −1.74625 1.26873i
\(652\) 0 0
\(653\) −2.15603 −0.0843718 −0.0421859 0.999110i \(-0.513432\pi\)
−0.0421859 + 0.999110i \(0.513432\pi\)
\(654\) 0 0
\(655\) 3.52870 0.137878
\(656\) 0 0
\(657\) −31.1458 −1.21511
\(658\) 0 0
\(659\) −35.5478 −1.38475 −0.692373 0.721540i \(-0.743435\pi\)
−0.692373 + 0.721540i \(0.743435\pi\)
\(660\) 0 0
\(661\) −0.662322 0.481205i −0.0257613 0.0187167i 0.574830 0.818273i \(-0.305068\pi\)
−0.600591 + 0.799556i \(0.705068\pi\)
\(662\) 0 0
\(663\) 15.0175 + 46.2192i 0.583233 + 1.79501i
\(664\) 0 0
\(665\) 9.19030 0.356384
\(666\) 0 0
\(667\) 8.32125 6.04575i 0.322200 0.234092i
\(668\) 0 0
\(669\) −2.74062 + 8.43476i −0.105958 + 0.326107i
\(670\) 0 0
\(671\) −30.8981 22.4488i −1.19281 0.866627i
\(672\) 0 0
\(673\) 12.4809 9.06789i 0.481102 0.349541i −0.320650 0.947198i \(-0.603901\pi\)
0.801752 + 0.597656i \(0.203901\pi\)
\(674\) 0 0
\(675\) −0.0718941 0.221267i −0.00276721 0.00851658i
\(676\) 0 0
\(677\) −8.65310 26.6315i −0.332566 1.02353i −0.967909 0.251302i \(-0.919141\pi\)
0.635343 0.772230i \(-0.280859\pi\)
\(678\) 0 0
\(679\) 2.63268 8.10255i 0.101033 0.310947i
\(680\) 0 0
\(681\) −5.70859 17.5692i −0.218754 0.673255i
\(682\) 0 0
\(683\) 14.5474 0.556639 0.278320 0.960488i \(-0.410223\pi\)
0.278320 + 0.960488i \(0.410223\pi\)
\(684\) 0 0
\(685\) −1.63714 1.18945i −0.0625520 0.0454467i
\(686\) 0 0
\(687\) −3.21694 + 2.33724i −0.122734 + 0.0891713i
\(688\) 0 0
\(689\) 1.51759 1.10259i 0.0578154 0.0420053i
\(690\) 0 0
\(691\) −2.39129 + 7.35963i −0.0909689 + 0.279973i −0.986182 0.165665i \(-0.947023\pi\)
0.895213 + 0.445638i \(0.147023\pi\)
\(692\) 0 0
\(693\) 20.5310 + 14.9167i 0.779910 + 0.566638i
\(694\) 0 0
\(695\) 1.76548 5.43358i 0.0669683 0.206107i
\(696\) 0 0
\(697\) −37.0327 8.80974i −1.40271 0.333693i
\(698\) 0 0
\(699\) 9.14341 28.1405i 0.345836 1.06437i
\(700\) 0 0
\(701\) −29.1893 21.2072i −1.10246 0.800987i −0.121003 0.992652i \(-0.538611\pi\)
−0.981460 + 0.191665i \(0.938611\pi\)
\(702\) 0 0
\(703\) −10.8561 + 33.4117i −0.409446 + 1.26015i
\(704\) 0 0
\(705\) 11.7701 8.55151i 0.443289 0.322068i
\(706\) 0 0
\(707\) −5.89344 + 4.28183i −0.221646 + 0.161035i
\(708\) 0 0
\(709\) 12.6064 + 9.15909i 0.473443 + 0.343977i 0.798782 0.601621i \(-0.205478\pi\)
−0.325338 + 0.945598i \(0.605478\pi\)
\(710\) 0 0
\(711\) −8.07167 −0.302711
\(712\) 0 0
\(713\) 8.99937 + 27.6972i 0.337029 + 1.03727i
\(714\) 0 0
\(715\) 3.10616 9.55979i 0.116164 0.357516i
\(716\) 0 0
\(717\) 21.8481 + 67.2417i 0.815934 + 2.51119i
\(718\) 0 0
\(719\) 2.89718 + 8.91660i 0.108047 + 0.332533i 0.990433 0.137992i \(-0.0440647\pi\)
−0.882387 + 0.470525i \(0.844065\pi\)
\(720\) 0 0
\(721\) 43.9645 31.9421i 1.63732 1.18959i
\(722\) 0 0
\(723\) 17.1279 + 12.4442i 0.636994 + 0.462803i
\(724\) 0 0
\(725\) −0.845818 + 2.60316i −0.0314129 + 0.0966790i
\(726\) 0 0
\(727\) 13.9172 10.1114i 0.516160 0.375012i −0.298995 0.954255i \(-0.596652\pi\)
0.815155 + 0.579242i \(0.196652\pi\)
\(728\) 0 0
\(729\) −25.2499 −0.935182
\(730\) 0 0
\(731\) −18.4663 56.8334i −0.683000 2.10206i
\(732\) 0 0
\(733\) 12.8489 + 9.33530i 0.474587 + 0.344807i 0.799226 0.601031i \(-0.205243\pi\)
−0.324640 + 0.945838i \(0.605243\pi\)
\(734\) 0 0
\(735\) 3.77403 0.139207
\(736\) 0 0
\(737\) −25.8199 −0.951089
\(738\) 0 0
\(739\) −33.0056 −1.21413 −0.607065 0.794652i \(-0.707653\pi\)
−0.607065 + 0.794652i \(0.707653\pi\)
\(740\) 0 0
\(741\) −25.6883 −0.943683
\(742\) 0 0
\(743\) 13.1267 + 9.53707i 0.481570 + 0.349881i 0.801933 0.597414i \(-0.203805\pi\)
−0.320363 + 0.947295i \(0.603805\pi\)
\(744\) 0 0
\(745\) 6.52789 + 20.0908i 0.239163 + 0.736069i
\(746\) 0 0
\(747\) −31.3798 −1.14813
\(748\) 0 0
\(749\) −12.3474 + 8.97093i −0.451165 + 0.327791i
\(750\) 0 0
\(751\) −5.11879 + 15.7540i −0.186787 + 0.574873i −0.999975 0.00712965i \(-0.997731\pi\)
0.813187 + 0.582002i \(0.197731\pi\)
\(752\) 0 0
\(753\) 41.6929 + 30.2917i 1.51937 + 1.10389i
\(754\) 0 0
\(755\) 6.29724 4.57521i 0.229180 0.166509i
\(756\) 0 0
\(757\) −14.8886 45.8225i −0.541137 1.66545i −0.730001 0.683446i \(-0.760481\pi\)
0.188864 0.982003i \(-0.439519\pi\)
\(758\) 0 0
\(759\) −8.43056 25.9466i −0.306010 0.941802i
\(760\) 0 0
\(761\) −9.06638 + 27.9034i −0.328656 + 1.01150i 0.641107 + 0.767451i \(0.278475\pi\)
−0.969763 + 0.244048i \(0.921525\pi\)
\(762\) 0 0
\(763\) −2.42860 7.47448i −0.0879214 0.270594i
\(764\) 0 0
\(765\) −17.2656 −0.624238
\(766\) 0 0
\(767\) −12.8893 9.36461i −0.465405 0.338137i
\(768\) 0 0
\(769\) −14.5237 + 10.5521i −0.523737 + 0.380517i −0.818010 0.575204i \(-0.804923\pi\)
0.294273 + 0.955721i \(0.404923\pi\)
\(770\) 0 0
\(771\) −46.3135 + 33.6488i −1.66794 + 1.21183i
\(772\) 0 0
\(773\) 10.9987 33.8505i 0.395595 1.21752i −0.532902 0.846177i \(-0.678898\pi\)
0.928497 0.371340i \(-0.121102\pi\)
\(774\) 0 0
\(775\) −6.26976 4.55525i −0.225216 0.163629i
\(776\) 0 0
\(777\) −24.5502 + 75.5578i −0.880734 + 2.71062i
\(778\) 0 0
\(779\) 10.4779 17.1780i 0.375408 0.615466i
\(780\) 0 0
\(781\) 6.30768 19.4130i 0.225706 0.694653i
\(782\) 0 0
\(783\) −0.515185 0.374304i −0.0184112 0.0133765i
\(784\) 0 0
\(785\) −6.84680 + 21.0723i −0.244373 + 0.752102i
\(786\) 0 0
\(787\) 25.0188 18.1772i 0.891822 0.647947i −0.0445303 0.999008i \(-0.514179\pi\)
0.936352 + 0.351061i \(0.114179\pi\)
\(788\) 0 0
\(789\) −18.4152 + 13.3794i −0.655599 + 0.476321i
\(790\) 0 0
\(791\) 15.1240 + 10.9883i 0.537749 + 0.390697i
\(792\) 0 0
\(793\) 43.0038 1.52711
\(794\) 0 0
\(795\) 0.418671 + 1.28854i 0.0148487 + 0.0456997i
\(796\) 0 0
\(797\) 1.29656 3.99039i 0.0459264 0.141347i −0.925464 0.378836i \(-0.876324\pi\)
0.971390 + 0.237489i \(0.0763244\pi\)
\(798\) 0 0
\(799\) 10.9994 + 33.8528i 0.389132 + 1.19763i
\(800\) 0 0
\(801\) 3.62221 + 11.1480i 0.127984 + 0.393896i
\(802\) 0 0
\(803\) −25.9225 + 18.8338i −0.914787 + 0.664632i
\(804\) 0 0
\(805\) −8.89115 6.45980i −0.313372 0.227678i
\(806\) 0 0
\(807\) 19.5853 60.2773i 0.689434 2.12186i
\(808\) 0 0
\(809\) 25.2978 18.3800i 0.889425 0.646205i −0.0463034 0.998927i \(-0.514744\pi\)
0.935728 + 0.352723i \(0.114744\pi\)
\(810\) 0 0
\(811\) 12.4807 0.438256 0.219128 0.975696i \(-0.429679\pi\)
0.219128 + 0.975696i \(0.429679\pi\)
\(812\) 0 0
\(813\) 7.90760 + 24.3371i 0.277332 + 0.853539i
\(814\) 0 0
\(815\) −10.3272 7.50315i −0.361746 0.262824i
\(816\) 0 0
\(817\) 31.5876 1.10511
\(818\) 0 0
\(819\) −28.5749 −0.998489
\(820\) 0 0
\(821\) −36.9369 −1.28911 −0.644553 0.764559i \(-0.722957\pi\)
−0.644553 + 0.764559i \(0.722957\pi\)
\(822\) 0 0
\(823\) −49.2807 −1.71782 −0.858909 0.512128i \(-0.828857\pi\)
−0.858909 + 0.512128i \(0.828857\pi\)
\(824\) 0 0
\(825\) 5.87348 + 4.26733i 0.204488 + 0.148569i
\(826\) 0 0
\(827\) 17.4761 + 53.7860i 0.607705 + 1.87032i 0.477006 + 0.878900i \(0.341722\pi\)
0.130699 + 0.991422i \(0.458278\pi\)
\(828\) 0 0
\(829\) 7.76797 0.269793 0.134896 0.990860i \(-0.456930\pi\)
0.134896 + 0.990860i \(0.456930\pi\)
\(830\) 0 0
\(831\) −23.3233 + 16.9453i −0.809075 + 0.587827i
\(832\) 0 0
\(833\) −2.85333 + 8.78165i −0.0988620 + 0.304266i
\(834\) 0 0
\(835\) 3.04124 + 2.20959i 0.105246 + 0.0764659i
\(836\) 0 0
\(837\) 1.45869 1.05980i 0.0504196 0.0366320i
\(838\) 0 0
\(839\) −4.87384 15.0001i −0.168264 0.517862i 0.830998 0.556275i \(-0.187770\pi\)
−0.999262 + 0.0384127i \(0.987770\pi\)
\(840\) 0 0
\(841\) −6.64638 20.4555i −0.229186 0.705361i
\(842\) 0 0
\(843\) 22.2255 68.4030i 0.765487 2.35593i
\(844\) 0 0
\(845\) −0.519732 1.59957i −0.0178793 0.0550269i
\(846\) 0 0
\(847\) −6.06238 −0.208306
\(848\) 0 0
\(849\) −26.0102 18.8976i −0.892669 0.648562i
\(850\) 0 0
\(851\) 33.9876 24.6935i 1.16508 0.846481i
\(852\) 0 0
\(853\) 41.4138 30.0889i 1.41798 1.03022i 0.425883 0.904778i \(-0.359964\pi\)
0.992100 0.125447i \(-0.0400364\pi\)
\(854\) 0 0
\(855\) 2.82022 8.67973i 0.0964493 0.296841i
\(856\) 0 0
\(857\) 43.5442 + 31.6367i 1.48744 + 1.08069i 0.975062 + 0.221931i \(0.0712359\pi\)
0.512380 + 0.858759i \(0.328764\pi\)
\(858\) 0 0
\(859\) −14.3645 + 44.2093i −0.490110 + 1.50840i 0.334331 + 0.942456i \(0.391490\pi\)
−0.824441 + 0.565948i \(0.808510\pi\)
\(860\) 0 0
\(861\) 23.6948 38.8466i 0.807517 1.32389i
\(862\) 0 0
\(863\) −15.9126 + 48.9738i −0.541670 + 1.66709i 0.187109 + 0.982339i \(0.440088\pi\)
−0.728779 + 0.684749i \(0.759912\pi\)
\(864\) 0 0
\(865\) 14.8236 + 10.7700i 0.504017 + 0.366190i
\(866\) 0 0
\(867\) 13.7726 42.3877i 0.467742 1.43956i
\(868\) 0 0
\(869\) −6.71803 + 4.88093i −0.227893 + 0.165574i
\(870\) 0 0
\(871\) 23.5204 17.0886i 0.796958 0.579024i
\(872\) 0 0
\(873\) −6.84453 4.97284i −0.231652 0.168305i
\(874\) 0 0
\(875\) 2.92458 0.0988689
\(876\) 0 0
\(877\) −10.7577 33.1088i −0.363262 1.11801i −0.951062 0.308999i \(-0.900006\pi\)
0.587800 0.809006i \(-0.299994\pi\)
\(878\) 0 0
\(879\) 22.6731 69.7807i 0.764745 2.35364i
\(880\) 0 0
\(881\) −13.6750 42.0874i −0.460723 1.41796i −0.864282 0.503007i \(-0.832227\pi\)
0.403559 0.914954i \(-0.367773\pi\)
\(882\) 0 0
\(883\) −0.562347 1.73073i −0.0189245 0.0582435i 0.941148 0.337994i \(-0.109748\pi\)
−0.960073 + 0.279750i \(0.909748\pi\)
\(884\) 0 0
\(885\) 9.30945 6.76371i 0.312934 0.227360i
\(886\) 0 0
\(887\) 19.4665 + 14.1433i 0.653622 + 0.474884i 0.864503 0.502628i \(-0.167633\pi\)
−0.210881 + 0.977512i \(0.567633\pi\)
\(888\) 0 0
\(889\) −17.4176 + 53.6058i −0.584166 + 1.79788i
\(890\) 0 0
\(891\) −22.4270 + 16.2942i −0.751332 + 0.545875i
\(892\) 0 0
\(893\) −18.8151 −0.629624
\(894\) 0 0
\(895\) −1.61742 4.97789i −0.0540642 0.166393i
\(896\) 0 0
\(897\) 24.8521 + 18.0561i 0.829788 + 0.602877i
\(898\) 0 0
\(899\) −21.2123 −0.707470
\(900\) 0 0
\(901\) −3.31478 −0.110431
\(902\) 0 0
\(903\) 71.4327 2.37713
\(904\) 0 0
\(905\) 0.854227 0.0283955
\(906\) 0 0
\(907\) −35.0673 25.4779i −1.16439 0.845979i −0.174064 0.984734i \(-0.555690\pi\)
−0.990327 + 0.138755i \(0.955690\pi\)
\(908\) 0 0
\(909\) 2.23544 + 6.87999i 0.0741450 + 0.228195i
\(910\) 0 0
\(911\) 1.76735 0.0585550 0.0292775 0.999571i \(-0.490679\pi\)
0.0292775 + 0.999571i \(0.490679\pi\)
\(912\) 0 0
\(913\) −26.1173 + 18.9753i −0.864357 + 0.627992i
\(914\) 0 0
\(915\) −9.59808 + 29.5399i −0.317303 + 0.976558i
\(916\) 0 0
\(917\) −8.34903 6.06593i −0.275709 0.200315i
\(918\) 0 0
\(919\) −25.3440 + 18.4135i −0.836020 + 0.607404i −0.921256 0.388956i \(-0.872836\pi\)
0.0852357 + 0.996361i \(0.472836\pi\)
\(920\) 0 0
\(921\) −23.3581 71.8889i −0.769677 2.36882i
\(922\) 0 0
\(923\) 7.10234 + 21.8587i 0.233776 + 0.719489i
\(924\) 0 0
\(925\) −3.45469 + 10.6324i −0.113590 + 0.349593i
\(926\) 0 0
\(927\) −16.6762 51.3241i −0.547719 1.68571i
\(928\) 0 0
\(929\) −30.5027 −1.00076 −0.500381 0.865805i \(-0.666807\pi\)
−0.500381 + 0.865805i \(0.666807\pi\)
\(930\) 0 0
\(931\) −3.94863 2.86885i −0.129411 0.0940227i
\(932\) 0 0
\(933\) 24.1098 17.5168i 0.789319 0.573474i
\(934\) 0 0
\(935\) −14.3701 + 10.4405i −0.469952 + 0.341440i
\(936\) 0 0
\(937\) −1.00408 + 3.09024i −0.0328018 + 0.100954i −0.966117 0.258105i \(-0.916902\pi\)
0.933315 + 0.359058i \(0.116902\pi\)
\(938\) 0 0
\(939\) 27.1108 + 19.6972i 0.884728 + 0.642792i
\(940\) 0 0
\(941\) 0.0182408 0.0561394i 0.000594633 0.00183009i −0.950759 0.309932i \(-0.899694\pi\)
0.951353 + 0.308102i \(0.0996937\pi\)
\(942\) 0 0
\(943\) −22.2111 + 9.25404i −0.723294 + 0.301353i
\(944\) 0 0
\(945\) −0.210260 + 0.647114i −0.00683977 + 0.0210506i
\(946\) 0 0
\(947\) 24.3058 + 17.6592i 0.789831 + 0.573846i 0.907913 0.419158i \(-0.137675\pi\)
−0.118082 + 0.993004i \(0.537675\pi\)
\(948\) 0 0
\(949\) 11.1490 34.3130i 0.361910 1.11385i
\(950\) 0 0
\(951\) −3.70867 + 2.69451i −0.120262 + 0.0873754i
\(952\) 0 0
\(953\) 8.16589 5.93287i 0.264519 0.192184i −0.447618 0.894225i \(-0.647727\pi\)
0.712137 + 0.702041i \(0.247727\pi\)
\(954\) 0 0
\(955\) 10.3776 + 7.53974i 0.335810 + 0.243980i
\(956\) 0 0
\(957\) 19.8716 0.642357
\(958\) 0 0
\(959\) 1.82884 + 5.62859i 0.0590563 + 0.181757i
\(960\) 0 0
\(961\) 8.98009 27.6379i 0.289680 0.891545i
\(962\) 0 0
\(963\) 4.68351 + 14.4144i 0.150924 + 0.464496i
\(964\) 0 0
\(965\) 6.98896 + 21.5098i 0.224983 + 0.692426i
\(966\) 0 0
\(967\) −26.5254 + 19.2718i −0.852999 + 0.619740i −0.925971 0.377594i \(-0.876752\pi\)
0.0729721 + 0.997334i \(0.476752\pi\)
\(968\) 0 0
\(969\) 36.7242 + 26.6817i 1.17975 + 0.857140i
\(970\) 0 0
\(971\) 5.77964 17.7879i 0.185477 0.570840i −0.814479 0.580193i \(-0.802977\pi\)
0.999956 + 0.00935262i \(0.00297708\pi\)
\(972\) 0 0
\(973\) −13.5176 + 9.82114i −0.433356 + 0.314851i
\(974\) 0 0
\(975\) −8.17466 −0.261799
\(976\) 0 0
\(977\) 17.5509 + 54.0162i 0.561504 + 1.72813i 0.678117 + 0.734954i \(0.262796\pi\)
−0.116614 + 0.993177i \(0.537204\pi\)
\(978\) 0 0
\(979\) 9.75595 + 7.08811i 0.311802 + 0.226537i
\(980\) 0 0
\(981\) −7.80450 −0.249178
\(982\) 0 0
\(983\) 0.416676 0.0132899 0.00664495 0.999978i \(-0.497885\pi\)
0.00664495 + 0.999978i \(0.497885\pi\)
\(984\) 0 0
\(985\) 0.700561 0.0223217
\(986\) 0 0
\(987\) −42.5489 −1.35435
\(988\) 0 0
\(989\) −30.5594 22.2027i −0.971732 0.706005i
\(990\) 0 0
\(991\) 14.3813 + 44.2611i 0.456837 + 1.40600i 0.868965 + 0.494874i \(0.164786\pi\)
−0.412128 + 0.911126i \(0.635214\pi\)
\(992\) 0 0
\(993\) 6.39499 0.202939
\(994\) 0 0
\(995\) 0.295911 0.214992i 0.00938102 0.00681571i
\(996\) 0 0
\(997\) 8.93664 27.5041i 0.283026 0.871065i −0.703957 0.710242i \(-0.748585\pi\)
0.986983 0.160823i \(-0.0514147\pi\)
\(998\) 0 0
\(999\) −2.10424 1.52882i −0.0665752 0.0483697i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.a.221.6 yes 24
41.18 even 5 inner 820.2.u.a.141.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.a.141.6 24 41.18 even 5 inner
820.2.u.a.221.6 yes 24 1.1 even 1 trivial