Properties

Label 820.2.u.a.221.1
Level $820$
Weight $2$
Character 820.221
Analytic conductor $6.548$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 221.1
Character \(\chi\) \(=\) 820.221
Dual form 820.2.u.a.141.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.55771 q^{3} +(-0.809017 - 0.587785i) q^{5} +(0.254587 + 0.783539i) q^{7} +3.54189 q^{9} +(1.87777 - 1.36428i) q^{11} +(-0.980451 + 3.01752i) q^{13} +(2.06923 + 1.50339i) q^{15} +(-5.32618 + 3.86970i) q^{17} +(0.947836 + 2.91714i) q^{19} +(-0.651161 - 2.00407i) q^{21} +(2.53799 - 7.81113i) q^{23} +(0.309017 + 0.951057i) q^{25} -1.38599 q^{27} +(-8.11578 - 5.89646i) q^{29} +(7.52831 - 5.46964i) q^{31} +(-4.80279 + 3.48943i) q^{33} +(0.254587 - 0.783539i) q^{35} +(-0.730928 - 0.531051i) q^{37} +(2.50771 - 7.71794i) q^{39} +(5.13251 - 3.82850i) q^{41} +(1.40448 - 4.32254i) q^{43} +(-2.86545 - 2.08187i) q^{45} +(1.68758 - 5.19384i) q^{47} +(5.11400 - 3.71554i) q^{49} +(13.6228 - 9.89758i) q^{51} +(3.59973 + 2.61536i) q^{53} -2.32105 q^{55} +(-2.42429 - 7.46120i) q^{57} +(-1.97221 + 6.06983i) q^{59} +(-3.58776 - 11.0420i) q^{61} +(0.901720 + 2.77521i) q^{63} +(2.56686 - 1.86493i) q^{65} +(-8.95132 - 6.50351i) q^{67} +(-6.49145 + 19.9786i) q^{69} +(6.99837 - 5.08462i) q^{71} -4.08803 q^{73} +(-0.790376 - 2.43253i) q^{75} +(1.54702 + 1.12398i) q^{77} -8.41097 q^{79} -7.08069 q^{81} -4.00591 q^{83} +6.58353 q^{85} +(20.7578 + 15.0814i) q^{87} +(-3.45809 - 10.6429i) q^{89} -2.61396 q^{91} +(-19.2552 + 13.9898i) q^{93} +(0.947836 - 2.91714i) q^{95} +(12.1338 + 8.81569i) q^{97} +(6.65084 - 4.83212i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{3} - 6 q^{5} + 5 q^{7} + 18 q^{9} - 7 q^{11} - 5 q^{13} + 2 q^{15} + 3 q^{17} - q^{19} + 2 q^{21} + 20 q^{23} - 6 q^{25} + 20 q^{27} - 15 q^{29} - q^{31} - 6 q^{33} + 5 q^{35} + q^{37} + 28 q^{41}+ \cdots + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.55771 −1.47670 −0.738348 0.674420i \(-0.764394\pi\)
−0.738348 + 0.674420i \(0.764394\pi\)
\(4\) 0 0
\(5\) −0.809017 0.587785i −0.361803 0.262866i
\(6\) 0 0
\(7\) 0.254587 + 0.783539i 0.0962250 + 0.296150i 0.987571 0.157174i \(-0.0502382\pi\)
−0.891346 + 0.453324i \(0.850238\pi\)
\(8\) 0 0
\(9\) 3.54189 1.18063
\(10\) 0 0
\(11\) 1.87777 1.36428i 0.566168 0.411345i −0.267543 0.963546i \(-0.586212\pi\)
0.833711 + 0.552201i \(0.186212\pi\)
\(12\) 0 0
\(13\) −0.980451 + 3.01752i −0.271928 + 0.836909i 0.718087 + 0.695953i \(0.245018\pi\)
−0.990016 + 0.140956i \(0.954982\pi\)
\(14\) 0 0
\(15\) 2.06923 + 1.50339i 0.534273 + 0.388172i
\(16\) 0 0
\(17\) −5.32618 + 3.86970i −1.29179 + 0.938540i −0.999840 0.0178937i \(-0.994304\pi\)
−0.291950 + 0.956434i \(0.594304\pi\)
\(18\) 0 0
\(19\) 0.947836 + 2.91714i 0.217449 + 0.669238i 0.998971 + 0.0453604i \(0.0144436\pi\)
−0.781522 + 0.623878i \(0.785556\pi\)
\(20\) 0 0
\(21\) −0.651161 2.00407i −0.142095 0.437323i
\(22\) 0 0
\(23\) 2.53799 7.81113i 0.529207 1.62873i −0.226635 0.973980i \(-0.572773\pi\)
0.755843 0.654753i \(-0.227227\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) −1.38599 −0.266735
\(28\) 0 0
\(29\) −8.11578 5.89646i −1.50706 1.09494i −0.967460 0.253025i \(-0.918575\pi\)
−0.539602 0.841920i \(-0.681425\pi\)
\(30\) 0 0
\(31\) 7.52831 5.46964i 1.35212 0.982376i 0.353222 0.935540i \(-0.385086\pi\)
0.998903 0.0468364i \(-0.0149140\pi\)
\(32\) 0 0
\(33\) −4.80279 + 3.48943i −0.836058 + 0.607432i
\(34\) 0 0
\(35\) 0.254587 0.783539i 0.0430331 0.132442i
\(36\) 0 0
\(37\) −0.730928 0.531051i −0.120164 0.0873042i 0.526080 0.850435i \(-0.323661\pi\)
−0.646244 + 0.763131i \(0.723661\pi\)
\(38\) 0 0
\(39\) 2.50771 7.71794i 0.401555 1.23586i
\(40\) 0 0
\(41\) 5.13251 3.82850i 0.801563 0.597911i
\(42\) 0 0
\(43\) 1.40448 4.32254i 0.214181 0.659180i −0.785030 0.619458i \(-0.787353\pi\)
0.999211 0.0397228i \(-0.0126475\pi\)
\(44\) 0 0
\(45\) −2.86545 2.08187i −0.427156 0.310347i
\(46\) 0 0
\(47\) 1.68758 5.19384i 0.246159 0.757600i −0.749285 0.662248i \(-0.769602\pi\)
0.995444 0.0953517i \(-0.0303976\pi\)
\(48\) 0 0
\(49\) 5.11400 3.71554i 0.730571 0.530791i
\(50\) 0 0
\(51\) 13.6228 9.89758i 1.90758 1.38594i
\(52\) 0 0
\(53\) 3.59973 + 2.61536i 0.494461 + 0.359247i 0.806897 0.590692i \(-0.201145\pi\)
−0.312436 + 0.949939i \(0.601145\pi\)
\(54\) 0 0
\(55\) −2.32105 −0.312970
\(56\) 0 0
\(57\) −2.42429 7.46120i −0.321105 0.988261i
\(58\) 0 0
\(59\) −1.97221 + 6.06983i −0.256759 + 0.790224i 0.736718 + 0.676200i \(0.236374\pi\)
−0.993478 + 0.114025i \(0.963626\pi\)
\(60\) 0 0
\(61\) −3.58776 11.0420i −0.459366 1.41378i −0.865932 0.500161i \(-0.833274\pi\)
0.406567 0.913621i \(-0.366726\pi\)
\(62\) 0 0
\(63\) 0.901720 + 2.77521i 0.113606 + 0.349643i
\(64\) 0 0
\(65\) 2.56686 1.86493i 0.318379 0.231316i
\(66\) 0 0
\(67\) −8.95132 6.50351i −1.09358 0.794531i −0.113578 0.993529i \(-0.536231\pi\)
−0.980000 + 0.198999i \(0.936231\pi\)
\(68\) 0 0
\(69\) −6.49145 + 19.9786i −0.781478 + 2.40514i
\(70\) 0 0
\(71\) 6.99837 5.08462i 0.830554 0.603433i −0.0891620 0.996017i \(-0.528419\pi\)
0.919716 + 0.392584i \(0.128419\pi\)
\(72\) 0 0
\(73\) −4.08803 −0.478468 −0.239234 0.970962i \(-0.576896\pi\)
−0.239234 + 0.970962i \(0.576896\pi\)
\(74\) 0 0
\(75\) −0.790376 2.43253i −0.0912648 0.280884i
\(76\) 0 0
\(77\) 1.54702 + 1.12398i 0.176299 + 0.128089i
\(78\) 0 0
\(79\) −8.41097 −0.946309 −0.473154 0.880980i \(-0.656885\pi\)
−0.473154 + 0.880980i \(0.656885\pi\)
\(80\) 0 0
\(81\) −7.08069 −0.786744
\(82\) 0 0
\(83\) −4.00591 −0.439706 −0.219853 0.975533i \(-0.570558\pi\)
−0.219853 + 0.975533i \(0.570558\pi\)
\(84\) 0 0
\(85\) 6.58353 0.714084
\(86\) 0 0
\(87\) 20.7578 + 15.0814i 2.22547 + 1.61690i
\(88\) 0 0
\(89\) −3.45809 10.6429i −0.366557 1.12815i −0.949000 0.315275i \(-0.897903\pi\)
0.582444 0.812871i \(-0.302097\pi\)
\(90\) 0 0
\(91\) −2.61396 −0.274017
\(92\) 0 0
\(93\) −19.2552 + 13.9898i −1.99668 + 1.45067i
\(94\) 0 0
\(95\) 0.947836 2.91714i 0.0972460 0.299292i
\(96\) 0 0
\(97\) 12.1338 + 8.81569i 1.23200 + 0.895097i 0.997038 0.0769083i \(-0.0245049\pi\)
0.234958 + 0.972006i \(0.424505\pi\)
\(98\) 0 0
\(99\) 6.65084 4.83212i 0.668435 0.485646i
\(100\) 0 0
\(101\) 0.880473 + 2.70982i 0.0876103 + 0.269637i 0.985257 0.171078i \(-0.0547250\pi\)
−0.897647 + 0.440715i \(0.854725\pi\)
\(102\) 0 0
\(103\) 2.94149 + 9.05296i 0.289833 + 0.892015i 0.984908 + 0.173078i \(0.0553712\pi\)
−0.695075 + 0.718937i \(0.744629\pi\)
\(104\) 0 0
\(105\) −0.651161 + 2.00407i −0.0635468 + 0.195577i
\(106\) 0 0
\(107\) −3.64567 11.2202i −0.352440 1.08470i −0.957479 0.288503i \(-0.906842\pi\)
0.605039 0.796196i \(-0.293158\pi\)
\(108\) 0 0
\(109\) 11.2203 1.07471 0.537356 0.843356i \(-0.319423\pi\)
0.537356 + 0.843356i \(0.319423\pi\)
\(110\) 0 0
\(111\) 1.86950 + 1.35827i 0.177445 + 0.128922i
\(112\) 0 0
\(113\) 11.5109 8.36314i 1.08285 0.786738i 0.104674 0.994507i \(-0.466620\pi\)
0.978178 + 0.207769i \(0.0666202\pi\)
\(114\) 0 0
\(115\) −6.64454 + 4.82754i −0.619607 + 0.450171i
\(116\) 0 0
\(117\) −3.47265 + 10.6877i −0.321047 + 0.988080i
\(118\) 0 0
\(119\) −4.38804 3.18810i −0.402251 0.292253i
\(120\) 0 0
\(121\) −1.73443 + 5.33803i −0.157675 + 0.485275i
\(122\) 0 0
\(123\) −13.1275 + 9.79219i −1.18366 + 0.882932i
\(124\) 0 0
\(125\) 0.309017 0.951057i 0.0276393 0.0850651i
\(126\) 0 0
\(127\) −1.83286 1.33165i −0.162640 0.118165i 0.503488 0.864002i \(-0.332050\pi\)
−0.666128 + 0.745837i \(0.732050\pi\)
\(128\) 0 0
\(129\) −3.59225 + 11.0558i −0.316280 + 0.973409i
\(130\) 0 0
\(131\) 16.0806 11.6833i 1.40497 1.02077i 0.410942 0.911662i \(-0.365200\pi\)
0.994030 0.109110i \(-0.0348000\pi\)
\(132\) 0 0
\(133\) −2.04439 + 1.48533i −0.177271 + 0.128795i
\(134\) 0 0
\(135\) 1.12129 + 0.814667i 0.0965055 + 0.0701154i
\(136\) 0 0
\(137\) −10.6119 −0.906639 −0.453319 0.891348i \(-0.649760\pi\)
−0.453319 + 0.891348i \(0.649760\pi\)
\(138\) 0 0
\(139\) 3.49620 + 10.7602i 0.296544 + 0.912668i 0.982699 + 0.185212i \(0.0592973\pi\)
−0.686155 + 0.727456i \(0.740703\pi\)
\(140\) 0 0
\(141\) −4.31635 + 13.2844i −0.363502 + 1.11874i
\(142\) 0 0
\(143\) 2.27568 + 7.00381i 0.190302 + 0.585688i
\(144\) 0 0
\(145\) 3.09995 + 9.54067i 0.257437 + 0.792309i
\(146\) 0 0
\(147\) −13.0801 + 9.50328i −1.07883 + 0.783817i
\(148\) 0 0
\(149\) 6.34283 + 4.60833i 0.519625 + 0.377529i 0.816462 0.577398i \(-0.195932\pi\)
−0.296838 + 0.954928i \(0.595932\pi\)
\(150\) 0 0
\(151\) 1.93794 5.96438i 0.157708 0.485374i −0.840717 0.541474i \(-0.817866\pi\)
0.998425 + 0.0560997i \(0.0178665\pi\)
\(152\) 0 0
\(153\) −18.8648 + 13.7060i −1.52512 + 1.10807i
\(154\) 0 0
\(155\) −9.30550 −0.747436
\(156\) 0 0
\(157\) −2.76555 8.51149i −0.220715 0.679291i −0.998698 0.0510059i \(-0.983757\pi\)
0.777983 0.628285i \(-0.216243\pi\)
\(158\) 0 0
\(159\) −9.20707 6.68933i −0.730168 0.530498i
\(160\) 0 0
\(161\) 6.76647 0.533272
\(162\) 0 0
\(163\) −7.24829 −0.567730 −0.283865 0.958864i \(-0.591617\pi\)
−0.283865 + 0.958864i \(0.591617\pi\)
\(164\) 0 0
\(165\) 5.93657 0.462162
\(166\) 0 0
\(167\) 16.6599 1.28918 0.644592 0.764526i \(-0.277027\pi\)
0.644592 + 0.764526i \(0.277027\pi\)
\(168\) 0 0
\(169\) 2.37308 + 1.72415i 0.182545 + 0.132627i
\(170\) 0 0
\(171\) 3.35713 + 10.3322i 0.256726 + 0.790122i
\(172\) 0 0
\(173\) −14.5215 −1.10405 −0.552023 0.833829i \(-0.686144\pi\)
−0.552023 + 0.833829i \(0.686144\pi\)
\(174\) 0 0
\(175\) −0.666518 + 0.484254i −0.0503841 + 0.0366062i
\(176\) 0 0
\(177\) 5.04434 15.5249i 0.379156 1.16692i
\(178\) 0 0
\(179\) −10.3941 7.55174i −0.776890 0.564444i 0.127154 0.991883i \(-0.459416\pi\)
−0.904044 + 0.427439i \(0.859416\pi\)
\(180\) 0 0
\(181\) −6.04866 + 4.39461i −0.449594 + 0.326649i −0.789435 0.613834i \(-0.789627\pi\)
0.339842 + 0.940483i \(0.389627\pi\)
\(182\) 0 0
\(183\) 9.17646 + 28.2422i 0.678343 + 2.08773i
\(184\) 0 0
\(185\) 0.279190 + 0.859258i 0.0205264 + 0.0631739i
\(186\) 0 0
\(187\) −4.72199 + 14.5328i −0.345306 + 1.06274i
\(188\) 0 0
\(189\) −0.352857 1.08598i −0.0256665 0.0789935i
\(190\) 0 0
\(191\) 14.1829 1.02624 0.513121 0.858316i \(-0.328489\pi\)
0.513121 + 0.858316i \(0.328489\pi\)
\(192\) 0 0
\(193\) −2.51771 1.82922i −0.181229 0.131670i 0.493472 0.869762i \(-0.335727\pi\)
−0.674701 + 0.738091i \(0.735727\pi\)
\(194\) 0 0
\(195\) −6.56528 + 4.76995i −0.470149 + 0.341583i
\(196\) 0 0
\(197\) −13.3992 + 9.73508i −0.954652 + 0.693595i −0.951903 0.306401i \(-0.900875\pi\)
−0.00274968 + 0.999996i \(0.500875\pi\)
\(198\) 0 0
\(199\) 1.38628 4.26652i 0.0982706 0.302446i −0.889822 0.456308i \(-0.849171\pi\)
0.988092 + 0.153863i \(0.0491714\pi\)
\(200\) 0 0
\(201\) 22.8949 + 16.6341i 1.61488 + 1.17328i
\(202\) 0 0
\(203\) 2.55393 7.86020i 0.179251 0.551678i
\(204\) 0 0
\(205\) −6.40262 + 0.0805086i −0.447178 + 0.00562296i
\(206\) 0 0
\(207\) 8.98928 27.6661i 0.624798 1.92293i
\(208\) 0 0
\(209\) 5.75961 + 4.18460i 0.398400 + 0.289455i
\(210\) 0 0
\(211\) −3.48302 + 10.7196i −0.239781 + 0.737969i 0.756671 + 0.653796i \(0.226825\pi\)
−0.996451 + 0.0841726i \(0.973175\pi\)
\(212\) 0 0
\(213\) −17.8998 + 13.0050i −1.22648 + 0.891087i
\(214\) 0 0
\(215\) −3.67697 + 2.67147i −0.250767 + 0.182193i
\(216\) 0 0
\(217\) 6.20229 + 4.50623i 0.421039 + 0.305903i
\(218\) 0 0
\(219\) 10.4560 0.706552
\(220\) 0 0
\(221\) −6.45483 19.8659i −0.434199 1.33633i
\(222\) 0 0
\(223\) 3.28941 10.1238i 0.220275 0.677938i −0.778462 0.627692i \(-0.784000\pi\)
0.998737 0.0502454i \(-0.0160003\pi\)
\(224\) 0 0
\(225\) 1.09450 + 3.36854i 0.0729669 + 0.224569i
\(226\) 0 0
\(227\) −4.33088 13.3291i −0.287451 0.884682i −0.985653 0.168782i \(-0.946017\pi\)
0.698203 0.715900i \(-0.253983\pi\)
\(228\) 0 0
\(229\) −16.1258 + 11.7161i −1.06562 + 0.774219i −0.975120 0.221678i \(-0.928847\pi\)
−0.0905005 + 0.995896i \(0.528847\pi\)
\(230\) 0 0
\(231\) −3.95683 2.87481i −0.260341 0.189149i
\(232\) 0 0
\(233\) −2.28889 + 7.04448i −0.149950 + 0.461499i −0.997614 0.0690340i \(-0.978008\pi\)
0.847664 + 0.530533i \(0.178008\pi\)
\(234\) 0 0
\(235\) −4.41815 + 3.20997i −0.288208 + 0.209395i
\(236\) 0 0
\(237\) 21.5128 1.39741
\(238\) 0 0
\(239\) 2.71467 + 8.35490i 0.175597 + 0.540433i 0.999660 0.0260651i \(-0.00829772\pi\)
−0.824063 + 0.566498i \(0.808298\pi\)
\(240\) 0 0
\(241\) 5.96384 + 4.33298i 0.384165 + 0.279112i 0.763060 0.646328i \(-0.223696\pi\)
−0.378895 + 0.925439i \(0.623696\pi\)
\(242\) 0 0
\(243\) 22.2683 1.42852
\(244\) 0 0
\(245\) −6.32125 −0.403850
\(246\) 0 0
\(247\) −9.73184 −0.619222
\(248\) 0 0
\(249\) 10.2460 0.649312
\(250\) 0 0
\(251\) −6.62516 4.81346i −0.418177 0.303823i 0.358727 0.933442i \(-0.383211\pi\)
−0.776904 + 0.629619i \(0.783211\pi\)
\(252\) 0 0
\(253\) −5.89080 18.1300i −0.370351 1.13982i
\(254\) 0 0
\(255\) −16.8388 −1.05448
\(256\) 0 0
\(257\) 24.0895 17.5021i 1.50266 1.09175i 0.533357 0.845890i \(-0.320930\pi\)
0.969306 0.245858i \(-0.0790698\pi\)
\(258\) 0 0
\(259\) 0.230014 0.707910i 0.0142924 0.0439874i
\(260\) 0 0
\(261\) −28.7452 20.8846i −1.77928 1.29272i
\(262\) 0 0
\(263\) 1.68689 1.22560i 0.104018 0.0755735i −0.534560 0.845130i \(-0.679523\pi\)
0.638578 + 0.769557i \(0.279523\pi\)
\(264\) 0 0
\(265\) −1.37497 4.23174i −0.0844640 0.259953i
\(266\) 0 0
\(267\) 8.84480 + 27.2215i 0.541293 + 1.66593i
\(268\) 0 0
\(269\) 7.30450 22.4809i 0.445363 1.37069i −0.436721 0.899597i \(-0.643860\pi\)
0.882085 0.471091i \(-0.156140\pi\)
\(270\) 0 0
\(271\) 0.902400 + 2.77730i 0.0548169 + 0.168709i 0.974717 0.223445i \(-0.0717302\pi\)
−0.919900 + 0.392154i \(0.871730\pi\)
\(272\) 0 0
\(273\) 6.68575 0.404640
\(274\) 0 0
\(275\) 1.87777 + 1.36428i 0.113234 + 0.0822691i
\(276\) 0 0
\(277\) 19.0286 13.8251i 1.14332 0.830667i 0.155738 0.987798i \(-0.450224\pi\)
0.987578 + 0.157131i \(0.0502245\pi\)
\(278\) 0 0
\(279\) 26.6644 19.3728i 1.59636 1.15982i
\(280\) 0 0
\(281\) 0.224932 0.692269i 0.0134183 0.0412973i −0.944123 0.329593i \(-0.893089\pi\)
0.957541 + 0.288296i \(0.0930885\pi\)
\(282\) 0 0
\(283\) 14.2332 + 10.3410i 0.846076 + 0.614710i 0.924061 0.382244i \(-0.124849\pi\)
−0.0779855 + 0.996954i \(0.524849\pi\)
\(284\) 0 0
\(285\) −2.42429 + 7.46120i −0.143603 + 0.441964i
\(286\) 0 0
\(287\) 4.30645 + 3.04683i 0.254202 + 0.179849i
\(288\) 0 0
\(289\) 8.14038 25.0535i 0.478846 1.47374i
\(290\) 0 0
\(291\) −31.0346 22.5480i −1.81928 1.32179i
\(292\) 0 0
\(293\) 1.13807 3.50261i 0.0664867 0.204625i −0.912294 0.409536i \(-0.865691\pi\)
0.978781 + 0.204911i \(0.0656906\pi\)
\(294\) 0 0
\(295\) 5.16331 3.75136i 0.300619 0.218413i
\(296\) 0 0
\(297\) −2.60257 + 1.89088i −0.151017 + 0.109720i
\(298\) 0 0
\(299\) 21.0819 + 15.3169i 1.21920 + 0.885797i
\(300\) 0 0
\(301\) 3.74444 0.215826
\(302\) 0 0
\(303\) −2.25200 6.93093i −0.129374 0.398171i
\(304\) 0 0
\(305\) −3.58776 + 11.0420i −0.205435 + 0.632263i
\(306\) 0 0
\(307\) 4.81560 + 14.8209i 0.274841 + 0.845873i 0.989262 + 0.146156i \(0.0466902\pi\)
−0.714421 + 0.699716i \(0.753310\pi\)
\(308\) 0 0
\(309\) −7.52347 23.1549i −0.427995 1.31723i
\(310\) 0 0
\(311\) −27.0475 + 19.6512i −1.53372 + 1.11432i −0.579602 + 0.814899i \(0.696792\pi\)
−0.954122 + 0.299417i \(0.903208\pi\)
\(312\) 0 0
\(313\) −16.3605 11.8866i −0.924753 0.671872i 0.0199497 0.999801i \(-0.493649\pi\)
−0.944702 + 0.327929i \(0.893649\pi\)
\(314\) 0 0
\(315\) 0.901720 2.77521i 0.0508062 0.156365i
\(316\) 0 0
\(317\) 9.71307 7.05696i 0.545540 0.396358i −0.280598 0.959825i \(-0.590533\pi\)
0.826139 + 0.563467i \(0.190533\pi\)
\(318\) 0 0
\(319\) −23.2840 −1.30365
\(320\) 0 0
\(321\) 9.32457 + 28.6981i 0.520447 + 1.60177i
\(322\) 0 0
\(323\) −16.3368 11.8694i −0.909004 0.660430i
\(324\) 0 0
\(325\) −3.17281 −0.175996
\(326\) 0 0
\(327\) −28.6983 −1.58702
\(328\) 0 0
\(329\) 4.49922 0.248050
\(330\) 0 0
\(331\) −8.74483 −0.480659 −0.240330 0.970691i \(-0.577256\pi\)
−0.240330 + 0.970691i \(0.577256\pi\)
\(332\) 0 0
\(333\) −2.58887 1.88092i −0.141869 0.103074i
\(334\) 0 0
\(335\) 3.41910 + 10.5229i 0.186805 + 0.574928i
\(336\) 0 0
\(337\) −13.1398 −0.715768 −0.357884 0.933766i \(-0.616502\pi\)
−0.357884 + 0.933766i \(0.616502\pi\)
\(338\) 0 0
\(339\) −29.4415 + 21.3905i −1.59904 + 1.16177i
\(340\) 0 0
\(341\) 6.67431 20.5414i 0.361434 1.11238i
\(342\) 0 0
\(343\) 8.87886 + 6.45087i 0.479413 + 0.348314i
\(344\) 0 0
\(345\) 16.9948 12.3475i 0.914971 0.664765i
\(346\) 0 0
\(347\) −6.75719 20.7965i −0.362745 1.11641i −0.951381 0.308016i \(-0.900335\pi\)
0.588636 0.808398i \(-0.299665\pi\)
\(348\) 0 0
\(349\) 10.0196 + 30.8372i 0.536338 + 1.65068i 0.740740 + 0.671792i \(0.234475\pi\)
−0.204401 + 0.978887i \(0.565525\pi\)
\(350\) 0 0
\(351\) 1.35890 4.18226i 0.0725327 0.223233i
\(352\) 0 0
\(353\) 2.41774 + 7.44104i 0.128683 + 0.396047i 0.994554 0.104221i \(-0.0332349\pi\)
−0.865871 + 0.500268i \(0.833235\pi\)
\(354\) 0 0
\(355\) −8.65046 −0.459119
\(356\) 0 0
\(357\) 11.2233 + 8.15424i 0.594002 + 0.431568i
\(358\) 0 0
\(359\) 14.1852 10.3062i 0.748668 0.543939i −0.146746 0.989174i \(-0.546880\pi\)
0.895414 + 0.445235i \(0.146880\pi\)
\(360\) 0 0
\(361\) 7.76001 5.63798i 0.408422 0.296736i
\(362\) 0 0
\(363\) 4.43617 13.6531i 0.232839 0.716604i
\(364\) 0 0
\(365\) 3.30729 + 2.40289i 0.173111 + 0.125773i
\(366\) 0 0
\(367\) 6.80468 20.9426i 0.355201 1.09320i −0.600691 0.799481i \(-0.705108\pi\)
0.955893 0.293716i \(-0.0948921\pi\)
\(368\) 0 0
\(369\) 18.1788 13.5601i 0.946348 0.705911i
\(370\) 0 0
\(371\) −1.13279 + 3.48637i −0.0588115 + 0.181003i
\(372\) 0 0
\(373\) −10.3286 7.50415i −0.534793 0.388550i 0.287354 0.957824i \(-0.407224\pi\)
−0.822148 + 0.569274i \(0.807224\pi\)
\(374\) 0 0
\(375\) −0.790376 + 2.43253i −0.0408149 + 0.125615i
\(376\) 0 0
\(377\) 25.7498 18.7083i 1.32618 0.963528i
\(378\) 0 0
\(379\) 9.80664 7.12494i 0.503733 0.365983i −0.306708 0.951804i \(-0.599228\pi\)
0.810441 + 0.585820i \(0.199228\pi\)
\(380\) 0 0
\(381\) 4.68793 + 3.40598i 0.240170 + 0.174494i
\(382\) 0 0
\(383\) 9.94539 0.508186 0.254093 0.967180i \(-0.418223\pi\)
0.254093 + 0.967180i \(0.418223\pi\)
\(384\) 0 0
\(385\) −0.590910 1.81863i −0.0301155 0.0926861i
\(386\) 0 0
\(387\) 4.97450 15.3099i 0.252868 0.778248i
\(388\) 0 0
\(389\) 3.22471 + 9.92464i 0.163499 + 0.503199i 0.998923 0.0464080i \(-0.0147774\pi\)
−0.835423 + 0.549607i \(0.814777\pi\)
\(390\) 0 0
\(391\) 16.7089 + 51.4248i 0.845006 + 2.60066i
\(392\) 0 0
\(393\) −41.1296 + 29.8824i −2.07471 + 1.50737i
\(394\) 0 0
\(395\) 6.80462 + 4.94385i 0.342378 + 0.248752i
\(396\) 0 0
\(397\) −4.62293 + 14.2279i −0.232018 + 0.714078i 0.765485 + 0.643454i \(0.222499\pi\)
−0.997503 + 0.0706243i \(0.977501\pi\)
\(398\) 0 0
\(399\) 5.22895 3.79906i 0.261775 0.190191i
\(400\) 0 0
\(401\) −35.4667 −1.77112 −0.885562 0.464521i \(-0.846226\pi\)
−0.885562 + 0.464521i \(0.846226\pi\)
\(402\) 0 0
\(403\) 9.12360 + 28.0795i 0.454479 + 1.39874i
\(404\) 0 0
\(405\) 5.72840 + 4.16193i 0.284646 + 0.206808i
\(406\) 0 0
\(407\) −2.09701 −0.103945
\(408\) 0 0
\(409\) −15.5049 −0.766666 −0.383333 0.923610i \(-0.625224\pi\)
−0.383333 + 0.923610i \(0.625224\pi\)
\(410\) 0 0
\(411\) 27.1423 1.33883
\(412\) 0 0
\(413\) −5.25805 −0.258732
\(414\) 0 0
\(415\) 3.24085 + 2.35462i 0.159087 + 0.115584i
\(416\) 0 0
\(417\) −8.94227 27.5215i −0.437905 1.34773i
\(418\) 0 0
\(419\) −21.6946 −1.05985 −0.529926 0.848044i \(-0.677780\pi\)
−0.529926 + 0.848044i \(0.677780\pi\)
\(420\) 0 0
\(421\) 11.9917 8.71246i 0.584439 0.424619i −0.255883 0.966708i \(-0.582366\pi\)
0.840322 + 0.542088i \(0.182366\pi\)
\(422\) 0 0
\(423\) 5.97723 18.3960i 0.290623 0.894445i
\(424\) 0 0
\(425\) −5.32618 3.86970i −0.258358 0.187708i
\(426\) 0 0
\(427\) 7.73844 5.62230i 0.374489 0.272082i
\(428\) 0 0
\(429\) −5.82052 17.9137i −0.281017 0.864883i
\(430\) 0 0
\(431\) −8.23386 25.3412i −0.396611 1.22064i −0.927700 0.373327i \(-0.878217\pi\)
0.531088 0.847316i \(-0.321783\pi\)
\(432\) 0 0
\(433\) 2.33451 7.18487i 0.112189 0.345283i −0.879161 0.476525i \(-0.841896\pi\)
0.991350 + 0.131242i \(0.0418963\pi\)
\(434\) 0 0
\(435\) −7.92878 24.4023i −0.380156 1.17000i
\(436\) 0 0
\(437\) 25.1918 1.20509
\(438\) 0 0
\(439\) −18.1840 13.2115i −0.867876 0.630549i 0.0621405 0.998067i \(-0.480207\pi\)
−0.930016 + 0.367519i \(0.880207\pi\)
\(440\) 0 0
\(441\) 18.1132 13.1600i 0.862534 0.626668i
\(442\) 0 0
\(443\) 0.0789845 0.0573856i 0.00375267 0.00272647i −0.585907 0.810378i \(-0.699262\pi\)
0.589660 + 0.807652i \(0.299262\pi\)
\(444\) 0 0
\(445\) −3.45809 + 10.6429i −0.163929 + 0.504522i
\(446\) 0 0
\(447\) −16.2231 11.7868i −0.767327 0.557496i
\(448\) 0 0
\(449\) −12.6572 + 38.9549i −0.597330 + 1.83839i −0.0545630 + 0.998510i \(0.517377\pi\)
−0.542767 + 0.839883i \(0.682623\pi\)
\(450\) 0 0
\(451\) 4.41452 14.1912i 0.207871 0.668237i
\(452\) 0 0
\(453\) −4.95670 + 15.2552i −0.232886 + 0.716750i
\(454\) 0 0
\(455\) 2.11473 + 1.53644i 0.0991403 + 0.0720296i
\(456\) 0 0
\(457\) −6.18932 + 19.0488i −0.289524 + 0.891064i 0.695482 + 0.718544i \(0.255191\pi\)
−0.985006 + 0.172520i \(0.944809\pi\)
\(458\) 0 0
\(459\) 7.38206 5.36338i 0.344565 0.250341i
\(460\) 0 0
\(461\) −15.2814 + 11.1026i −0.711725 + 0.517099i −0.883730 0.467998i \(-0.844976\pi\)
0.172005 + 0.985096i \(0.444976\pi\)
\(462\) 0 0
\(463\) −4.90446 3.56330i −0.227930 0.165601i 0.467959 0.883750i \(-0.344989\pi\)
−0.695889 + 0.718150i \(0.744989\pi\)
\(464\) 0 0
\(465\) 23.8008 1.10374
\(466\) 0 0
\(467\) −10.3802 31.9471i −0.480340 1.47833i −0.838618 0.544720i \(-0.816636\pi\)
0.358278 0.933615i \(-0.383364\pi\)
\(468\) 0 0
\(469\) 2.81687 8.66942i 0.130071 0.400317i
\(470\) 0 0
\(471\) 7.07348 + 21.7699i 0.325929 + 1.00311i
\(472\) 0 0
\(473\) −3.25986 10.0328i −0.149888 0.461309i
\(474\) 0 0
\(475\) −2.48147 + 1.80289i −0.113858 + 0.0827224i
\(476\) 0 0
\(477\) 12.7498 + 9.26330i 0.583775 + 0.424137i
\(478\) 0 0
\(479\) −8.10867 + 24.9559i −0.370494 + 1.14026i 0.575974 + 0.817468i \(0.304623\pi\)
−0.946468 + 0.322796i \(0.895377\pi\)
\(480\) 0 0
\(481\) 2.31910 1.68492i 0.105742 0.0768258i
\(482\) 0 0
\(483\) −17.3067 −0.787481
\(484\) 0 0
\(485\) −4.63468 14.2641i −0.210450 0.647699i
\(486\) 0 0
\(487\) 2.17097 + 1.57730i 0.0983759 + 0.0714743i 0.635886 0.771783i \(-0.280635\pi\)
−0.537510 + 0.843257i \(0.680635\pi\)
\(488\) 0 0
\(489\) 18.5390 0.838365
\(490\) 0 0
\(491\) −3.00724 −0.135715 −0.0678575 0.997695i \(-0.521616\pi\)
−0.0678575 + 0.997695i \(0.521616\pi\)
\(492\) 0 0
\(493\) 66.0436 2.97446
\(494\) 0 0
\(495\) −8.22089 −0.369502
\(496\) 0 0
\(497\) 5.76569 + 4.18902i 0.258627 + 0.187903i
\(498\) 0 0
\(499\) 4.57722 + 14.0872i 0.204905 + 0.630631i 0.999717 + 0.0237766i \(0.00756903\pi\)
−0.794813 + 0.606855i \(0.792431\pi\)
\(500\) 0 0
\(501\) −42.6113 −1.90373
\(502\) 0 0
\(503\) 33.9706 24.6811i 1.51467 1.10048i 0.550625 0.834753i \(-0.314389\pi\)
0.964050 0.265723i \(-0.0856105\pi\)
\(504\) 0 0
\(505\) 0.880473 2.70982i 0.0391805 0.120585i
\(506\) 0 0
\(507\) −6.06966 4.40987i −0.269563 0.195849i
\(508\) 0 0
\(509\) −21.4164 + 15.5599i −0.949264 + 0.689681i −0.950633 0.310318i \(-0.899564\pi\)
0.00136865 + 0.999999i \(0.499564\pi\)
\(510\) 0 0
\(511\) −1.04076 3.20314i −0.0460406 0.141698i
\(512\) 0 0
\(513\) −1.31370 4.04314i −0.0580011 0.178509i
\(514\) 0 0
\(515\) 2.94149 9.05296i 0.129617 0.398921i
\(516\) 0 0
\(517\) −3.91696 12.0552i −0.172268 0.530185i
\(518\) 0 0
\(519\) 37.1417 1.63034
\(520\) 0 0
\(521\) 4.80316 + 3.48970i 0.210430 + 0.152887i 0.688008 0.725703i \(-0.258485\pi\)
−0.477578 + 0.878589i \(0.658485\pi\)
\(522\) 0 0
\(523\) 6.20993 4.51178i 0.271541 0.197286i −0.443678 0.896186i \(-0.646327\pi\)
0.715220 + 0.698900i \(0.246327\pi\)
\(524\) 0 0
\(525\) 1.70476 1.23858i 0.0744019 0.0540562i
\(526\) 0 0
\(527\) −18.9313 + 58.2646i −0.824661 + 2.53805i
\(528\) 0 0
\(529\) −35.9650 26.1301i −1.56369 1.13609i
\(530\) 0 0
\(531\) −6.98534 + 21.4987i −0.303138 + 0.932962i
\(532\) 0 0
\(533\) 6.52039 + 19.2411i 0.282430 + 0.833424i
\(534\) 0 0
\(535\) −3.64567 + 11.2202i −0.157616 + 0.485092i
\(536\) 0 0
\(537\) 26.5851 + 19.3152i 1.14723 + 0.833511i
\(538\) 0 0
\(539\) 4.53388 13.9538i 0.195288 0.601034i
\(540\) 0 0
\(541\) −5.66050 + 4.11260i −0.243364 + 0.176814i −0.702781 0.711407i \(-0.748058\pi\)
0.459417 + 0.888221i \(0.348058\pi\)
\(542\) 0 0
\(543\) 15.4707 11.2401i 0.663913 0.482361i
\(544\) 0 0
\(545\) −9.07743 6.59514i −0.388834 0.282505i
\(546\) 0 0
\(547\) −24.3110 −1.03946 −0.519732 0.854329i \(-0.673968\pi\)
−0.519732 + 0.854329i \(0.673968\pi\)
\(548\) 0 0
\(549\) −12.7074 39.1095i −0.542341 1.66915i
\(550\) 0 0
\(551\) 9.50837 29.2637i 0.405070 1.24668i
\(552\) 0 0
\(553\) −2.14133 6.59033i −0.0910585 0.280249i
\(554\) 0 0
\(555\) −0.714087 2.19773i −0.0303113 0.0932886i
\(556\) 0 0
\(557\) 26.0322 18.9135i 1.10302 0.801392i 0.121471 0.992595i \(-0.461239\pi\)
0.981551 + 0.191203i \(0.0612389\pi\)
\(558\) 0 0
\(559\) 11.6663 + 8.47607i 0.493432 + 0.358500i
\(560\) 0 0
\(561\) 12.0775 37.1707i 0.509912 1.56935i
\(562\) 0 0
\(563\) 7.54214 5.47968i 0.317863 0.230941i −0.417400 0.908723i \(-0.637059\pi\)
0.735263 + 0.677782i \(0.237059\pi\)
\(564\) 0 0
\(565\) −14.2282 −0.598586
\(566\) 0 0
\(567\) −1.80265 5.54800i −0.0757044 0.232994i
\(568\) 0 0
\(569\) −24.5198 17.8147i −1.02792 0.746830i −0.0600310 0.998197i \(-0.519120\pi\)
−0.967892 + 0.251367i \(0.919120\pi\)
\(570\) 0 0
\(571\) 38.8333 1.62512 0.812562 0.582875i \(-0.198072\pi\)
0.812562 + 0.582875i \(0.198072\pi\)
\(572\) 0 0
\(573\) −36.2759 −1.51545
\(574\) 0 0
\(575\) 8.21311 0.342510
\(576\) 0 0
\(577\) −29.5428 −1.22988 −0.614942 0.788572i \(-0.710821\pi\)
−0.614942 + 0.788572i \(0.710821\pi\)
\(578\) 0 0
\(579\) 6.43958 + 4.67863i 0.267620 + 0.194437i
\(580\) 0 0
\(581\) −1.01985 3.13879i −0.0423107 0.130219i
\(582\) 0 0
\(583\) 10.3275 0.427723
\(584\) 0 0
\(585\) 9.09152 6.60537i 0.375888 0.273099i
\(586\) 0 0
\(587\) 1.92000 5.90914i 0.0792467 0.243896i −0.903582 0.428414i \(-0.859072\pi\)
0.982829 + 0.184518i \(0.0590724\pi\)
\(588\) 0 0
\(589\) 23.0913 + 16.7768i 0.951461 + 0.691277i
\(590\) 0 0
\(591\) 34.2712 24.8995i 1.40973 1.02423i
\(592\) 0 0
\(593\) −5.02251 15.4577i −0.206250 0.634772i −0.999660 0.0260841i \(-0.991696\pi\)
0.793410 0.608688i \(-0.208304\pi\)
\(594\) 0 0
\(595\) 1.67608 + 5.15845i 0.0687127 + 0.211476i
\(596\) 0 0
\(597\) −3.54570 + 10.9125i −0.145116 + 0.446620i
\(598\) 0 0
\(599\) −6.90014 21.2365i −0.281932 0.867698i −0.987301 0.158858i \(-0.949219\pi\)
0.705369 0.708840i \(-0.250781\pi\)
\(600\) 0 0
\(601\) 6.73234 0.274618 0.137309 0.990528i \(-0.456155\pi\)
0.137309 + 0.990528i \(0.456155\pi\)
\(602\) 0 0
\(603\) −31.7046 23.0347i −1.29111 0.938046i
\(604\) 0 0
\(605\) 4.54080 3.29908i 0.184610 0.134127i
\(606\) 0 0
\(607\) −36.4262 + 26.4652i −1.47849 + 1.07419i −0.500454 + 0.865763i \(0.666834\pi\)
−0.978038 + 0.208425i \(0.933166\pi\)
\(608\) 0 0
\(609\) −6.53222 + 20.1041i −0.264699 + 0.814660i
\(610\) 0 0
\(611\) 14.0179 + 10.1846i 0.567105 + 0.412026i
\(612\) 0 0
\(613\) 4.20835 12.9520i 0.169974 0.523125i −0.829395 0.558663i \(-0.811315\pi\)
0.999368 + 0.0355381i \(0.0113145\pi\)
\(614\) 0 0
\(615\) 16.3761 0.205918i 0.660346 0.00830341i
\(616\) 0 0
\(617\) −7.31769 + 22.5215i −0.294599 + 0.906683i 0.688757 + 0.724993i \(0.258157\pi\)
−0.983356 + 0.181690i \(0.941843\pi\)
\(618\) 0 0
\(619\) −30.5174 22.1722i −1.22660 0.891175i −0.229967 0.973199i \(-0.573862\pi\)
−0.996630 + 0.0820236i \(0.973862\pi\)
\(620\) 0 0
\(621\) −3.51764 + 10.8262i −0.141158 + 0.434440i
\(622\) 0 0
\(623\) 7.45875 5.41910i 0.298829 0.217112i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) −14.7314 10.7030i −0.588316 0.427437i
\(628\) 0 0
\(629\) 5.94807 0.237165
\(630\) 0 0
\(631\) −3.96306 12.1970i −0.157767 0.485556i 0.840664 0.541557i \(-0.182165\pi\)
−0.998431 + 0.0560009i \(0.982165\pi\)
\(632\) 0 0
\(633\) 8.90855 27.4177i 0.354083 1.08976i
\(634\) 0 0
\(635\) 0.700091 + 2.15466i 0.0277822 + 0.0855050i
\(636\) 0 0
\(637\) 6.19768 + 19.0745i 0.245561 + 0.755759i
\(638\) 0 0
\(639\) 24.7875 18.0091i 0.980577 0.712431i
\(640\) 0 0
\(641\) 25.9050 + 18.8211i 1.02319 + 0.743389i 0.966934 0.255028i \(-0.0820847\pi\)
0.0562530 + 0.998417i \(0.482085\pi\)
\(642\) 0 0
\(643\) −4.82062 + 14.8363i −0.190107 + 0.585088i −0.999999 0.00149069i \(-0.999525\pi\)
0.809892 + 0.586579i \(0.199525\pi\)
\(644\) 0 0
\(645\) 9.40462 6.83286i 0.370307 0.269044i
\(646\) 0 0
\(647\) 33.8600 1.33118 0.665588 0.746320i \(-0.268181\pi\)
0.665588 + 0.746320i \(0.268181\pi\)
\(648\) 0 0
\(649\) 4.57759 + 14.0884i 0.179686 + 0.553017i
\(650\) 0 0
\(651\) −15.8637 11.5256i −0.621746 0.451725i
\(652\) 0 0
\(653\) 8.95555 0.350458 0.175229 0.984528i \(-0.443933\pi\)
0.175229 + 0.984528i \(0.443933\pi\)
\(654\) 0 0
\(655\) −19.8768 −0.776649
\(656\) 0 0
\(657\) −14.4794 −0.564894
\(658\) 0 0
\(659\) −5.59706 −0.218030 −0.109015 0.994040i \(-0.534770\pi\)
−0.109015 + 0.994040i \(0.534770\pi\)
\(660\) 0 0
\(661\) −32.9297 23.9248i −1.28082 0.930567i −0.281238 0.959638i \(-0.590745\pi\)
−0.999577 + 0.0290709i \(0.990745\pi\)
\(662\) 0 0
\(663\) 16.5096 + 50.8113i 0.641179 + 1.97335i
\(664\) 0 0
\(665\) 2.52700 0.0979929
\(666\) 0 0
\(667\) −66.6557 + 48.4282i −2.58092 + 1.87515i
\(668\) 0 0
\(669\) −8.41337 + 25.8937i −0.325279 + 1.00111i
\(670\) 0 0
\(671\) −21.8013 15.8396i −0.841631 0.611481i
\(672\) 0 0
\(673\) −0.117090 + 0.0850707i −0.00451348 + 0.00327923i −0.590040 0.807374i \(-0.700888\pi\)
0.585526 + 0.810653i \(0.300888\pi\)
\(674\) 0 0
\(675\) −0.428296 1.31816i −0.0164851 0.0507360i
\(676\) 0 0
\(677\) 0.997430 + 3.06977i 0.0383343 + 0.117981i 0.968392 0.249432i \(-0.0802437\pi\)
−0.930058 + 0.367412i \(0.880244\pi\)
\(678\) 0 0
\(679\) −3.81834 + 11.7516i −0.146534 + 0.450986i
\(680\) 0 0
\(681\) 11.0771 + 34.0919i 0.424477 + 1.30641i
\(682\) 0 0
\(683\) −21.7773 −0.833285 −0.416643 0.909070i \(-0.636793\pi\)
−0.416643 + 0.909070i \(0.636793\pi\)
\(684\) 0 0
\(685\) 8.58524 + 6.23754i 0.328025 + 0.238324i
\(686\) 0 0
\(687\) 41.2451 29.9663i 1.57360 1.14329i
\(688\) 0 0
\(689\) −11.4212 + 8.29802i −0.435115 + 0.316129i
\(690\) 0 0
\(691\) −5.76750 + 17.7505i −0.219406 + 0.675263i 0.779405 + 0.626520i \(0.215521\pi\)
−0.998811 + 0.0487426i \(0.984479\pi\)
\(692\) 0 0
\(693\) 5.47938 + 3.98100i 0.208144 + 0.151226i
\(694\) 0 0
\(695\) 3.49620 10.7602i 0.132618 0.408157i
\(696\) 0 0
\(697\) −12.5215 + 40.2525i −0.474287 + 1.52467i
\(698\) 0 0
\(699\) 5.85432 18.0177i 0.221431 0.681494i
\(700\) 0 0
\(701\) 13.7776 + 10.0100i 0.520374 + 0.378074i 0.816745 0.576999i \(-0.195776\pi\)
−0.296371 + 0.955073i \(0.595776\pi\)
\(702\) 0 0
\(703\) 0.856349 2.63557i 0.0322978 0.0994024i
\(704\) 0 0
\(705\) 11.3003 8.21018i 0.425596 0.309213i
\(706\) 0 0
\(707\) −1.89909 + 1.37977i −0.0714227 + 0.0518916i
\(708\) 0 0
\(709\) 26.9159 + 19.5556i 1.01085 + 0.734425i 0.964387 0.264495i \(-0.0852054\pi\)
0.0464619 + 0.998920i \(0.485205\pi\)
\(710\) 0 0
\(711\) −29.7907 −1.11724
\(712\) 0 0
\(713\) −23.6173 72.6865i −0.884474 2.72213i
\(714\) 0 0
\(715\) 2.27568 7.00381i 0.0851054 0.261928i
\(716\) 0 0
\(717\) −6.94334 21.3694i −0.259304 0.798055i
\(718\) 0 0
\(719\) 3.06324 + 9.42769i 0.114240 + 0.351594i 0.991788 0.127895i \(-0.0408221\pi\)
−0.877548 + 0.479489i \(0.840822\pi\)
\(720\) 0 0
\(721\) −6.34449 + 4.60954i −0.236281 + 0.171668i
\(722\) 0 0
\(723\) −15.2538 11.0825i −0.567294 0.412163i
\(724\) 0 0
\(725\) 3.09995 9.54067i 0.115129 0.354332i
\(726\) 0 0
\(727\) −29.5266 + 21.4524i −1.09508 + 0.795624i −0.980250 0.197761i \(-0.936633\pi\)
−0.114832 + 0.993385i \(0.536633\pi\)
\(728\) 0 0
\(729\) −35.7139 −1.32274
\(730\) 0 0
\(731\) 9.24641 + 28.4575i 0.341991 + 1.05254i
\(732\) 0 0
\(733\) 39.6237 + 28.7883i 1.46354 + 1.06332i 0.982424 + 0.186661i \(0.0597667\pi\)
0.481111 + 0.876660i \(0.340233\pi\)
\(734\) 0 0
\(735\) 16.1679 0.596363
\(736\) 0 0
\(737\) −25.6811 −0.945975
\(738\) 0 0
\(739\) 27.9886 1.02958 0.514788 0.857318i \(-0.327871\pi\)
0.514788 + 0.857318i \(0.327871\pi\)
\(740\) 0 0
\(741\) 24.8912 0.914402
\(742\) 0 0
\(743\) 35.9814 + 26.1421i 1.32003 + 0.959059i 0.999932 + 0.0116749i \(0.00371632\pi\)
0.320099 + 0.947384i \(0.396284\pi\)
\(744\) 0 0
\(745\) −2.42274 7.45644i −0.0887625 0.273183i
\(746\) 0 0
\(747\) −14.1885 −0.519130
\(748\) 0 0
\(749\) 7.86334 5.71305i 0.287320 0.208750i
\(750\) 0 0
\(751\) 7.68289 23.6455i 0.280353 0.862837i −0.707401 0.706813i \(-0.750132\pi\)
0.987753 0.156024i \(-0.0498678\pi\)
\(752\) 0 0
\(753\) 16.9453 + 12.3115i 0.617520 + 0.448654i
\(754\) 0 0
\(755\) −5.07360 + 3.68619i −0.184647 + 0.134154i
\(756\) 0 0
\(757\) 9.63020 + 29.6387i 0.350016 + 1.07724i 0.958843 + 0.283935i \(0.0916401\pi\)
−0.608828 + 0.793302i \(0.708360\pi\)
\(758\) 0 0
\(759\) 15.0670 + 46.3713i 0.546896 + 1.68317i
\(760\) 0 0
\(761\) −0.389601 + 1.19907i −0.0141230 + 0.0434662i −0.957870 0.287203i \(-0.907274\pi\)
0.943747 + 0.330669i \(0.107274\pi\)
\(762\) 0 0
\(763\) 2.85655 + 8.79156i 0.103414 + 0.318276i
\(764\) 0 0
\(765\) 23.3181 0.843068
\(766\) 0 0
\(767\) −16.3822 11.9023i −0.591526 0.429769i
\(768\) 0 0
\(769\) 0.0243696 0.0177056i 0.000878791 0.000638479i −0.587346 0.809336i \(-0.699827\pi\)
0.588225 + 0.808698i \(0.299827\pi\)
\(770\) 0 0
\(771\) −61.6140 + 44.7652i −2.21898 + 1.61218i
\(772\) 0 0
\(773\) −4.24932 + 13.0781i −0.152837 + 0.470385i −0.997935 0.0642265i \(-0.979542\pi\)
0.845098 + 0.534611i \(0.179542\pi\)
\(774\) 0 0
\(775\) 7.52831 + 5.46964i 0.270425 + 0.196475i
\(776\) 0 0
\(777\) −0.588309 + 1.81063i −0.0211055 + 0.0649560i
\(778\) 0 0
\(779\) 16.0330 + 11.3434i 0.574443 + 0.406421i
\(780\) 0 0
\(781\) 6.20449 19.0955i 0.222014 0.683289i
\(782\) 0 0
\(783\) 11.2484 + 8.17246i 0.401986 + 0.292060i
\(784\) 0 0
\(785\) −2.76555 + 8.51149i −0.0987067 + 0.303788i
\(786\) 0 0
\(787\) −11.7108 + 8.50840i −0.417445 + 0.303292i −0.776609 0.629983i \(-0.783062\pi\)
0.359164 + 0.933275i \(0.383062\pi\)
\(788\) 0 0
\(789\) −4.31457 + 3.13472i −0.153603 + 0.111599i
\(790\) 0 0
\(791\) 9.48337 + 6.89007i 0.337190 + 0.244983i
\(792\) 0 0
\(793\) 36.8371 1.30812
\(794\) 0 0
\(795\) 3.51679 + 10.8236i 0.124728 + 0.383872i
\(796\) 0 0
\(797\) 1.02991 3.16975i 0.0364814 0.112278i −0.931157 0.364617i \(-0.881200\pi\)
0.967639 + 0.252339i \(0.0811998\pi\)
\(798\) 0 0
\(799\) 11.1102 + 34.1938i 0.393052 + 1.20969i
\(800\) 0 0
\(801\) −12.2482 37.6960i −0.432768 1.33192i
\(802\) 0 0
\(803\) −7.67638 + 5.57722i −0.270894 + 0.196816i
\(804\) 0 0
\(805\) −5.47419 3.97723i −0.192940 0.140179i
\(806\) 0 0
\(807\) −18.6828 + 57.4998i −0.657666 + 2.02409i
\(808\) 0 0
\(809\) −32.7391 + 23.7864i −1.15105 + 0.836284i −0.988620 0.150436i \(-0.951932\pi\)
−0.162427 + 0.986721i \(0.551932\pi\)
\(810\) 0 0
\(811\) −26.2206 −0.920729 −0.460365 0.887730i \(-0.652281\pi\)
−0.460365 + 0.887730i \(0.652281\pi\)
\(812\) 0 0
\(813\) −2.30808 7.10353i −0.0809478 0.249132i
\(814\) 0 0
\(815\) 5.86399 + 4.26044i 0.205407 + 0.149237i
\(816\) 0 0
\(817\) 13.9407 0.487722
\(818\) 0 0
\(819\) −9.25834 −0.323513
\(820\) 0 0
\(821\) 17.7603 0.619838 0.309919 0.950763i \(-0.399698\pi\)
0.309919 + 0.950763i \(0.399698\pi\)
\(822\) 0 0
\(823\) −38.5826 −1.34490 −0.672452 0.740141i \(-0.734759\pi\)
−0.672452 + 0.740141i \(0.734759\pi\)
\(824\) 0 0
\(825\) −4.80279 3.48943i −0.167212 0.121486i
\(826\) 0 0
\(827\) 13.6881 + 42.1277i 0.475983 + 1.46493i 0.844627 + 0.535355i \(0.179822\pi\)
−0.368644 + 0.929571i \(0.620178\pi\)
\(828\) 0 0
\(829\) 30.7334 1.06742 0.533708 0.845669i \(-0.320798\pi\)
0.533708 + 0.845669i \(0.320798\pi\)
\(830\) 0 0
\(831\) −48.6696 + 35.3605i −1.68833 + 1.22664i
\(832\) 0 0
\(833\) −12.8601 + 39.5793i −0.445576 + 1.37134i
\(834\) 0 0
\(835\) −13.4782 9.79247i −0.466431 0.338882i
\(836\) 0 0
\(837\) −10.4342 + 7.58089i −0.360659 + 0.262034i
\(838\) 0 0
\(839\) 8.48044 + 26.1001i 0.292777 + 0.901076i 0.983959 + 0.178395i \(0.0570904\pi\)
−0.691182 + 0.722681i \(0.742910\pi\)
\(840\) 0 0
\(841\) 22.1361 + 68.1280i 0.763315 + 2.34924i
\(842\) 0 0
\(843\) −0.575310 + 1.77062i −0.0198147 + 0.0609835i
\(844\) 0 0
\(845\) −0.906437 2.78973i −0.0311824 0.0959695i
\(846\) 0 0
\(847\) −4.62412 −0.158887
\(848\) 0 0
\(849\) −36.4044 26.4494i −1.24940 0.907739i
\(850\) 0 0
\(851\) −6.00319 + 4.36158i −0.205787 + 0.149513i
\(852\) 0 0
\(853\) 34.1719 24.8274i 1.17003 0.850073i 0.179013 0.983847i \(-0.442710\pi\)
0.991012 + 0.133774i \(0.0427095\pi\)
\(854\) 0 0
\(855\) 3.35713 10.3322i 0.114811 0.353353i
\(856\) 0 0
\(857\) −0.550995 0.400322i −0.0188216 0.0136747i 0.578335 0.815800i \(-0.303703\pi\)
−0.597156 + 0.802125i \(0.703703\pi\)
\(858\) 0 0
\(859\) 4.12328 12.6901i 0.140684 0.432982i −0.855746 0.517395i \(-0.826902\pi\)
0.996431 + 0.0844135i \(0.0269016\pi\)
\(860\) 0 0
\(861\) −11.0147 7.79292i −0.375378 0.265582i
\(862\) 0 0
\(863\) 9.97581 30.7024i 0.339581 1.04512i −0.624841 0.780752i \(-0.714836\pi\)
0.964421 0.264369i \(-0.0851638\pi\)
\(864\) 0 0
\(865\) 11.7481 + 8.53550i 0.399448 + 0.290216i
\(866\) 0 0
\(867\) −20.8207 + 64.0796i −0.707109 + 2.17626i
\(868\) 0 0
\(869\) −15.7939 + 11.4749i −0.535770 + 0.389260i
\(870\) 0 0
\(871\) 28.4008 20.6344i 0.962325 0.699170i
\(872\) 0 0
\(873\) 42.9764 + 31.2242i 1.45453 + 1.05678i
\(874\) 0 0
\(875\) 0.823862 0.0278516
\(876\) 0 0
\(877\) −15.7500 48.4735i −0.531840 1.63684i −0.750380 0.661007i \(-0.770129\pi\)
0.218540 0.975828i \(-0.429871\pi\)
\(878\) 0 0
\(879\) −2.91085 + 8.95868i −0.0981806 + 0.302169i
\(880\) 0 0
\(881\) 9.92077 + 30.5330i 0.334239 + 1.02868i 0.967096 + 0.254413i \(0.0818824\pi\)
−0.632856 + 0.774269i \(0.718118\pi\)
\(882\) 0 0
\(883\) −9.65896 29.7272i −0.325050 1.00040i −0.971418 0.237375i \(-0.923713\pi\)
0.646368 0.763026i \(-0.276287\pi\)
\(884\) 0 0
\(885\) −13.2062 + 9.59490i −0.443923 + 0.322529i
\(886\) 0 0
\(887\) −12.3420 8.96700i −0.414404 0.301082i 0.360978 0.932574i \(-0.382443\pi\)
−0.775382 + 0.631492i \(0.782443\pi\)
\(888\) 0 0
\(889\) 0.576778 1.77514i 0.0193445 0.0595363i
\(890\) 0 0
\(891\) −13.2959 + 9.66003i −0.445429 + 0.323623i
\(892\) 0 0
\(893\) 16.7507 0.560541
\(894\) 0 0
\(895\) 3.97018 + 12.2190i 0.132709 + 0.408435i
\(896\) 0 0
\(897\) −53.9213 39.1761i −1.80038 1.30805i
\(898\) 0 0
\(899\) −93.3496 −3.11338
\(900\) 0 0
\(901\) −29.2935 −0.975907
\(902\) 0 0
\(903\) −9.57719 −0.318709
\(904\) 0 0
\(905\) 7.47656 0.248529
\(906\) 0 0
\(907\) 36.6201 + 26.6061i 1.21595 + 0.883440i 0.995758 0.0920157i \(-0.0293310\pi\)
0.220194 + 0.975456i \(0.429331\pi\)
\(908\) 0 0
\(909\) 3.11854 + 9.59787i 0.103435 + 0.318341i
\(910\) 0 0
\(911\) 3.37170 0.111709 0.0558547 0.998439i \(-0.482212\pi\)
0.0558547 + 0.998439i \(0.482212\pi\)
\(912\) 0 0
\(913\) −7.52217 + 5.46518i −0.248947 + 0.180871i
\(914\) 0 0
\(915\) 9.17646 28.2422i 0.303364 0.933659i
\(916\) 0 0
\(917\) 13.2482 + 9.62540i 0.437495 + 0.317859i
\(918\) 0 0
\(919\) 3.26696 2.37358i 0.107767 0.0782973i −0.532597 0.846369i \(-0.678784\pi\)
0.640364 + 0.768072i \(0.278784\pi\)
\(920\) 0 0
\(921\) −12.3169 37.9075i −0.405856 1.24910i
\(922\) 0 0
\(923\) 8.48136 + 26.1029i 0.279167 + 0.859189i
\(924\) 0 0
\(925\) 0.279190 0.859258i 0.00917971 0.0282522i
\(926\) 0 0
\(927\) 10.4184 + 32.0646i 0.342186 + 1.05314i
\(928\) 0 0
\(929\) −44.4464 −1.45824 −0.729119 0.684387i \(-0.760070\pi\)
−0.729119 + 0.684387i \(0.760070\pi\)
\(930\) 0 0
\(931\) 15.6860 + 11.3965i 0.514087 + 0.373506i
\(932\) 0 0
\(933\) 69.1798 50.2621i 2.26484 1.64551i
\(934\) 0 0
\(935\) 12.3623 8.98176i 0.404291 0.293735i
\(936\) 0 0
\(937\) −2.42438 + 7.46148i −0.0792011 + 0.243756i −0.982815 0.184591i \(-0.940904\pi\)
0.903614 + 0.428347i \(0.140904\pi\)
\(938\) 0 0
\(939\) 41.8456 + 30.4026i 1.36558 + 0.992151i
\(940\) 0 0
\(941\) −13.7359 + 42.2746i −0.447776 + 1.37811i 0.431634 + 0.902049i \(0.357937\pi\)
−0.879410 + 0.476064i \(0.842063\pi\)
\(942\) 0 0
\(943\) −16.8786 49.8073i −0.549644 1.62195i
\(944\) 0 0
\(945\) −0.352857 + 1.08598i −0.0114784 + 0.0353270i
\(946\) 0 0
\(947\) −24.8044 18.0215i −0.806035 0.585619i 0.106643 0.994297i \(-0.465990\pi\)
−0.912678 + 0.408678i \(0.865990\pi\)
\(948\) 0 0
\(949\) 4.00812 12.3357i 0.130109 0.400435i
\(950\) 0 0
\(951\) −24.8432 + 18.0497i −0.805597 + 0.585301i
\(952\) 0 0
\(953\) −0.755634 + 0.549001i −0.0244774 + 0.0177839i −0.599957 0.800032i \(-0.704816\pi\)
0.575479 + 0.817816i \(0.304816\pi\)
\(954\) 0 0
\(955\) −11.4742 8.33652i −0.371298 0.269764i
\(956\) 0 0
\(957\) 59.5536 1.92510
\(958\) 0 0
\(959\) −2.70167 8.31487i −0.0872413 0.268501i
\(960\) 0 0
\(961\) 17.1790 52.8715i 0.554161 1.70553i
\(962\) 0 0
\(963\) −12.9126 39.7408i −0.416101 1.28063i
\(964\) 0 0
\(965\) 0.961680 + 2.95975i 0.0309576 + 0.0952776i
\(966\) 0 0
\(967\) 35.4245 25.7374i 1.13918 0.827660i 0.152172 0.988354i \(-0.451373\pi\)
0.987004 + 0.160694i \(0.0513733\pi\)
\(968\) 0 0
\(969\) 41.7848 + 30.3585i 1.34232 + 0.975254i
\(970\) 0 0
\(971\) 5.72303 17.6137i 0.183661 0.565250i −0.816262 0.577682i \(-0.803957\pi\)
0.999923 + 0.0124323i \(0.00395744\pi\)
\(972\) 0 0
\(973\) −7.54095 + 5.47882i −0.241752 + 0.175643i
\(974\) 0 0
\(975\) 8.11513 0.259892
\(976\) 0 0
\(977\) −17.1524 52.7895i −0.548752 1.68889i −0.711897 0.702284i \(-0.752164\pi\)
0.163144 0.986602i \(-0.447836\pi\)
\(978\) 0 0
\(979\) −21.0134 15.2671i −0.671590 0.487939i
\(980\) 0 0
\(981\) 39.7411 1.26884
\(982\) 0 0
\(983\) 33.3719 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(984\) 0 0
\(985\) 16.5623 0.527719
\(986\) 0 0
\(987\) −11.5077 −0.366294
\(988\) 0 0
\(989\) −30.1993 21.9411i −0.960283 0.697686i
\(990\) 0 0
\(991\) −4.97195 15.3021i −0.157939 0.486087i 0.840508 0.541800i \(-0.182257\pi\)
−0.998447 + 0.0557128i \(0.982257\pi\)
\(992\) 0 0
\(993\) 22.3667 0.709787
\(994\) 0 0
\(995\) −3.62932 + 2.63686i −0.115057 + 0.0835939i
\(996\) 0 0
\(997\) 14.1347 43.5020i 0.447649 1.37772i −0.431902 0.901920i \(-0.642158\pi\)
0.879552 0.475803i \(-0.157842\pi\)
\(998\) 0 0
\(999\) 1.01306 + 0.736033i 0.0320519 + 0.0232871i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.a.221.1 yes 24
41.18 even 5 inner 820.2.u.a.141.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.a.141.1 24 41.18 even 5 inner
820.2.u.a.221.1 yes 24 1.1 even 1 trivial