Properties

Label 820.2.u.a.141.5
Level $820$
Weight $2$
Character 820.141
Analytic conductor $6.548$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(141,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.141"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.u (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 141.5
Character \(\chi\) \(=\) 820.141
Dual form 820.2.u.a.221.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.34396 q^{3} +(-0.809017 + 0.587785i) q^{5} +(-1.10976 + 3.41550i) q^{7} -1.19376 q^{9} +(-1.76997 - 1.28596i) q^{11} +(-0.0445363 - 0.137069i) q^{13} +(-1.08729 + 0.789962i) q^{15} +(3.20771 + 2.33053i) q^{17} +(-1.32729 + 4.08498i) q^{19} +(-1.49148 + 4.59031i) q^{21} +(1.69503 + 5.21678i) q^{23} +(0.309017 - 0.951057i) q^{25} -5.63626 q^{27} +(-7.59594 + 5.51877i) q^{29} +(-3.27809 - 2.38168i) q^{31} +(-2.37877 - 1.72828i) q^{33} +(-1.10976 - 3.41550i) q^{35} +(-0.000202820 + 0.000147358i) q^{37} +(-0.0598552 - 0.184215i) q^{39} +(6.39614 - 0.299050i) q^{41} +(-2.93535 - 9.03406i) q^{43} +(0.965774 - 0.701676i) q^{45} +(3.24623 + 9.99087i) q^{47} +(-4.77096 - 3.46631i) q^{49} +(4.31104 + 3.13215i) q^{51} +(6.06700 - 4.40793i) q^{53} +2.18780 q^{55} +(-1.78383 + 5.49006i) q^{57} +(2.90058 + 8.92708i) q^{59} +(-1.71987 + 5.29322i) q^{61} +(1.32479 - 4.07730i) q^{63} +(0.116598 + 0.0847132i) q^{65} +(6.24294 - 4.53576i) q^{67} +(2.27806 + 7.01116i) q^{69} +(-3.85278 - 2.79921i) q^{71} -2.37813 q^{73} +(0.415308 - 1.27819i) q^{75} +(6.35643 - 4.61822i) q^{77} +17.0749 q^{79} -3.99365 q^{81} -10.6815 q^{83} -3.96494 q^{85} +(-10.2087 + 7.41703i) q^{87} +(5.08466 - 15.6490i) q^{89} +0.517584 q^{91} +(-4.40564 - 3.20088i) q^{93} +(-1.32729 - 4.08498i) q^{95} +(1.62250 - 1.17882i) q^{97} +(2.11292 + 1.53513i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{3} - 6 q^{5} + 5 q^{7} + 18 q^{9} - 7 q^{11} - 5 q^{13} + 2 q^{15} + 3 q^{17} - q^{19} + 2 q^{21} + 20 q^{23} - 6 q^{25} + 20 q^{27} - 15 q^{29} - q^{31} - 6 q^{33} + 5 q^{35} + q^{37} + 28 q^{41}+ \cdots + 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.34396 0.775938 0.387969 0.921672i \(-0.373177\pi\)
0.387969 + 0.921672i \(0.373177\pi\)
\(4\) 0 0
\(5\) −0.809017 + 0.587785i −0.361803 + 0.262866i
\(6\) 0 0
\(7\) −1.10976 + 3.41550i −0.419451 + 1.29094i 0.488757 + 0.872420i \(0.337451\pi\)
−0.908208 + 0.418519i \(0.862549\pi\)
\(8\) 0 0
\(9\) −1.19376 −0.397921
\(10\) 0 0
\(11\) −1.76997 1.28596i −0.533665 0.387730i 0.288062 0.957612i \(-0.406989\pi\)
−0.821727 + 0.569882i \(0.806989\pi\)
\(12\) 0 0
\(13\) −0.0445363 0.137069i −0.0123522 0.0380160i 0.944690 0.327963i \(-0.106362\pi\)
−0.957043 + 0.289947i \(0.906362\pi\)
\(14\) 0 0
\(15\) −1.08729 + 0.789962i −0.280737 + 0.203967i
\(16\) 0 0
\(17\) 3.20771 + 2.33053i 0.777983 + 0.565238i 0.904373 0.426743i \(-0.140339\pi\)
−0.126390 + 0.991981i \(0.540339\pi\)
\(18\) 0 0
\(19\) −1.32729 + 4.08498i −0.304501 + 0.937158i 0.675362 + 0.737486i \(0.263987\pi\)
−0.979863 + 0.199671i \(0.936013\pi\)
\(20\) 0 0
\(21\) −1.49148 + 4.59031i −0.325468 + 1.00169i
\(22\) 0 0
\(23\) 1.69503 + 5.21678i 0.353439 + 1.08777i 0.956909 + 0.290388i \(0.0937843\pi\)
−0.603470 + 0.797386i \(0.706216\pi\)
\(24\) 0 0
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 0 0
\(27\) −5.63626 −1.08470
\(28\) 0 0
\(29\) −7.59594 + 5.51877i −1.41053 + 1.02481i −0.417285 + 0.908776i \(0.637018\pi\)
−0.993245 + 0.116035i \(0.962982\pi\)
\(30\) 0 0
\(31\) −3.27809 2.38168i −0.588763 0.427761i 0.253110 0.967438i \(-0.418547\pi\)
−0.841873 + 0.539676i \(0.818547\pi\)
\(32\) 0 0
\(33\) −2.37877 1.72828i −0.414091 0.300854i
\(34\) 0 0
\(35\) −1.10976 3.41550i −0.187584 0.577325i
\(36\) 0 0
\(37\) −0.000202820 0 0.000147358i −3.33434e−5 0 2.42254e-5i −0.587802 0.809005i \(-0.700007\pi\)
0.587769 + 0.809029i \(0.300007\pi\)
\(38\) 0 0
\(39\) −0.0598552 0.184215i −0.00958451 0.0294981i
\(40\) 0 0
\(41\) 6.39614 0.299050i 0.998909 0.0467038i
\(42\) 0 0
\(43\) −2.93535 9.03406i −0.447636 1.37768i −0.879567 0.475775i \(-0.842168\pi\)
0.431931 0.901907i \(-0.357832\pi\)
\(44\) 0 0
\(45\) 0.965774 0.701676i 0.143969 0.104600i
\(46\) 0 0
\(47\) 3.24623 + 9.99087i 0.473511 + 1.45732i 0.847955 + 0.530069i \(0.177834\pi\)
−0.374443 + 0.927250i \(0.622166\pi\)
\(48\) 0 0
\(49\) −4.77096 3.46631i −0.681566 0.495187i
\(50\) 0 0
\(51\) 4.31104 + 3.13215i 0.603666 + 0.438589i
\(52\) 0 0
\(53\) 6.06700 4.40793i 0.833366 0.605476i −0.0871434 0.996196i \(-0.527774\pi\)
0.920510 + 0.390720i \(0.127774\pi\)
\(54\) 0 0
\(55\) 2.18780 0.295003
\(56\) 0 0
\(57\) −1.78383 + 5.49006i −0.236274 + 0.727176i
\(58\) 0 0
\(59\) 2.90058 + 8.92708i 0.377624 + 1.16221i 0.941691 + 0.336478i \(0.109236\pi\)
−0.564067 + 0.825729i \(0.690764\pi\)
\(60\) 0 0
\(61\) −1.71987 + 5.29322i −0.220207 + 0.677727i 0.778536 + 0.627600i \(0.215963\pi\)
−0.998743 + 0.0501272i \(0.984037\pi\)
\(62\) 0 0
\(63\) 1.32479 4.07730i 0.166908 0.513691i
\(64\) 0 0
\(65\) 0.116598 + 0.0847132i 0.0144622 + 0.0105074i
\(66\) 0 0
\(67\) 6.24294 4.53576i 0.762696 0.554131i −0.137040 0.990566i \(-0.543759\pi\)
0.899736 + 0.436434i \(0.143759\pi\)
\(68\) 0 0
\(69\) 2.27806 + 7.01116i 0.274247 + 0.844044i
\(70\) 0 0
\(71\) −3.85278 2.79921i −0.457241 0.332205i 0.335207 0.942145i \(-0.391194\pi\)
−0.792448 + 0.609939i \(0.791194\pi\)
\(72\) 0 0
\(73\) −2.37813 −0.278339 −0.139169 0.990269i \(-0.544443\pi\)
−0.139169 + 0.990269i \(0.544443\pi\)
\(74\) 0 0
\(75\) 0.415308 1.27819i 0.0479556 0.147592i
\(76\) 0 0
\(77\) 6.35643 4.61822i 0.724382 0.526295i
\(78\) 0 0
\(79\) 17.0749 1.92108 0.960538 0.278148i \(-0.0897207\pi\)
0.960538 + 0.278148i \(0.0897207\pi\)
\(80\) 0 0
\(81\) −3.99365 −0.443738
\(82\) 0 0
\(83\) −10.6815 −1.17245 −0.586224 0.810149i \(-0.699386\pi\)
−0.586224 + 0.810149i \(0.699386\pi\)
\(84\) 0 0
\(85\) −3.96494 −0.430058
\(86\) 0 0
\(87\) −10.2087 + 7.41703i −1.09448 + 0.795189i
\(88\) 0 0
\(89\) 5.08466 15.6490i 0.538973 1.65879i −0.195931 0.980618i \(-0.562773\pi\)
0.734904 0.678171i \(-0.237227\pi\)
\(90\) 0 0
\(91\) 0.517584 0.0542575
\(92\) 0 0
\(93\) −4.40564 3.20088i −0.456844 0.331916i
\(94\) 0 0
\(95\) −1.32729 4.08498i −0.136177 0.419110i
\(96\) 0 0
\(97\) 1.62250 1.17882i 0.164740 0.119691i −0.502361 0.864658i \(-0.667535\pi\)
0.667101 + 0.744967i \(0.267535\pi\)
\(98\) 0 0
\(99\) 2.11292 + 1.53513i 0.212356 + 0.154286i
\(100\) 0 0
\(101\) −0.432423 + 1.33086i −0.0430277 + 0.132426i −0.970263 0.242054i \(-0.922179\pi\)
0.927235 + 0.374480i \(0.122179\pi\)
\(102\) 0 0
\(103\) 0.715848 2.20315i 0.0705346 0.217083i −0.909575 0.415540i \(-0.863593\pi\)
0.980110 + 0.198456i \(0.0635928\pi\)
\(104\) 0 0
\(105\) −1.49148 4.59031i −0.145554 0.447968i
\(106\) 0 0
\(107\) −5.59423 + 17.2173i −0.540815 + 1.66446i 0.189924 + 0.981799i \(0.439176\pi\)
−0.730738 + 0.682658i \(0.760824\pi\)
\(108\) 0 0
\(109\) 2.04797 0.196160 0.0980800 0.995179i \(-0.468730\pi\)
0.0980800 + 0.995179i \(0.468730\pi\)
\(110\) 0 0
\(111\) −0.000272583 0 0.000198043i −2.58724e−5 0 1.87974e-5i
\(112\) 0 0
\(113\) −6.10286 4.43399i −0.574108 0.417114i 0.262487 0.964936i \(-0.415457\pi\)
−0.836595 + 0.547821i \(0.815457\pi\)
\(114\) 0 0
\(115\) −4.43766 3.22415i −0.413814 0.300653i
\(116\) 0 0
\(117\) 0.0531658 + 0.163628i 0.00491518 + 0.0151274i
\(118\) 0 0
\(119\) −11.5197 + 8.36958i −1.05601 + 0.767239i
\(120\) 0 0
\(121\) −1.92009 5.90943i −0.174554 0.537221i
\(122\) 0 0
\(123\) 8.59617 0.401913i 0.775091 0.0362392i
\(124\) 0 0
\(125\) 0.309017 + 0.951057i 0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) 16.0597 11.6681i 1.42507 1.03537i 0.434161 0.900835i \(-0.357045\pi\)
0.990908 0.134539i \(-0.0429552\pi\)
\(128\) 0 0
\(129\) −3.94500 12.1415i −0.347338 1.06900i
\(130\) 0 0
\(131\) 13.1855 + 9.57983i 1.15202 + 0.836994i 0.988749 0.149587i \(-0.0477943\pi\)
0.163275 + 0.986581i \(0.447794\pi\)
\(132\) 0 0
\(133\) −12.4793 9.06672i −1.08209 0.786184i
\(134\) 0 0
\(135\) 4.55983 3.31291i 0.392448 0.285130i
\(136\) 0 0
\(137\) −0.876573 −0.0748907 −0.0374454 0.999299i \(-0.511922\pi\)
−0.0374454 + 0.999299i \(0.511922\pi\)
\(138\) 0 0
\(139\) −0.225290 + 0.693373i −0.0191089 + 0.0588111i −0.960156 0.279464i \(-0.909843\pi\)
0.941047 + 0.338275i \(0.109843\pi\)
\(140\) 0 0
\(141\) 4.36282 + 13.4274i 0.367415 + 1.13079i
\(142\) 0 0
\(143\) −0.0974365 + 0.299879i −0.00814805 + 0.0250771i
\(144\) 0 0
\(145\) 2.90139 8.92956i 0.240947 0.741560i
\(146\) 0 0
\(147\) −6.41200 4.65859i −0.528853 0.384234i
\(148\) 0 0
\(149\) −1.44143 + 1.04726i −0.118087 + 0.0857949i −0.645261 0.763962i \(-0.723251\pi\)
0.527175 + 0.849757i \(0.323251\pi\)
\(150\) 0 0
\(151\) 6.87654 + 21.1638i 0.559605 + 1.72229i 0.683461 + 0.729987i \(0.260474\pi\)
−0.123856 + 0.992300i \(0.539526\pi\)
\(152\) 0 0
\(153\) −3.82924 2.78210i −0.309576 0.224920i
\(154\) 0 0
\(155\) 4.05195 0.325460
\(156\) 0 0
\(157\) 0.799017 2.45912i 0.0637685 0.196259i −0.914096 0.405497i \(-0.867098\pi\)
0.977865 + 0.209238i \(0.0670984\pi\)
\(158\) 0 0
\(159\) 8.15382 5.92410i 0.646640 0.469812i
\(160\) 0 0
\(161\) −19.6990 −1.55250
\(162\) 0 0
\(163\) 0.814220 0.0637746 0.0318873 0.999491i \(-0.489848\pi\)
0.0318873 + 0.999491i \(0.489848\pi\)
\(164\) 0 0
\(165\) 2.94032 0.228904
\(166\) 0 0
\(167\) −11.0173 −0.852546 −0.426273 0.904595i \(-0.640174\pi\)
−0.426273 + 0.904595i \(0.640174\pi\)
\(168\) 0 0
\(169\) 10.5004 7.62900i 0.807724 0.586846i
\(170\) 0 0
\(171\) 1.58447 4.87649i 0.121167 0.372915i
\(172\) 0 0
\(173\) 15.8936 1.20837 0.604183 0.796846i \(-0.293500\pi\)
0.604183 + 0.796846i \(0.293500\pi\)
\(174\) 0 0
\(175\) 2.90540 + 2.11090i 0.219628 + 0.159569i
\(176\) 0 0
\(177\) 3.89828 + 11.9977i 0.293013 + 0.901800i
\(178\) 0 0
\(179\) −3.71625 + 2.70002i −0.277766 + 0.201809i −0.717942 0.696103i \(-0.754916\pi\)
0.440177 + 0.897911i \(0.354916\pi\)
\(180\) 0 0
\(181\) 2.35014 + 1.70748i 0.174684 + 0.126916i 0.671692 0.740831i \(-0.265568\pi\)
−0.497007 + 0.867746i \(0.665568\pi\)
\(182\) 0 0
\(183\) −2.31144 + 7.11389i −0.170867 + 0.525874i
\(184\) 0 0
\(185\) 7.74704e−5 0 0.000238429i 5.69574e−6 0 1.75297e-5i
\(186\) 0 0
\(187\) −2.68057 8.24993i −0.196022 0.603295i
\(188\) 0 0
\(189\) 6.25492 19.2507i 0.454979 1.40028i
\(190\) 0 0
\(191\) −1.02847 −0.0744173 −0.0372087 0.999308i \(-0.511847\pi\)
−0.0372087 + 0.999308i \(0.511847\pi\)
\(192\) 0 0
\(193\) 18.7560 13.6270i 1.35009 0.980895i 0.351079 0.936346i \(-0.385815\pi\)
0.999007 0.0445495i \(-0.0141852\pi\)
\(194\) 0 0
\(195\) 0.156703 + 0.113851i 0.0112217 + 0.00815307i
\(196\) 0 0
\(197\) 0.217238 + 0.157833i 0.0154776 + 0.0112451i 0.595497 0.803357i \(-0.296955\pi\)
−0.580020 + 0.814603i \(0.696955\pi\)
\(198\) 0 0
\(199\) 8.03555 + 24.7309i 0.569625 + 1.75313i 0.653792 + 0.756674i \(0.273177\pi\)
−0.0841671 + 0.996452i \(0.526823\pi\)
\(200\) 0 0
\(201\) 8.39028 6.09590i 0.591805 0.429971i
\(202\) 0 0
\(203\) −10.4197 32.0685i −0.731318 2.25077i
\(204\) 0 0
\(205\) −4.99881 + 4.00149i −0.349132 + 0.279476i
\(206\) 0 0
\(207\) −2.02347 6.22759i −0.140641 0.432847i
\(208\) 0 0
\(209\) 7.60235 5.52343i 0.525866 0.382064i
\(210\) 0 0
\(211\) −0.918624 2.82723i −0.0632407 0.194635i 0.914444 0.404712i \(-0.132628\pi\)
−0.977685 + 0.210078i \(0.932628\pi\)
\(212\) 0 0
\(213\) −5.17800 3.76204i −0.354791 0.257770i
\(214\) 0 0
\(215\) 7.68483 + 5.58336i 0.524101 + 0.380782i
\(216\) 0 0
\(217\) 11.7725 8.55324i 0.799171 0.580632i
\(218\) 0 0
\(219\) −3.19612 −0.215974
\(220\) 0 0
\(221\) 0.176584 0.543470i 0.0118783 0.0365577i
\(222\) 0 0
\(223\) 0.640462 + 1.97114i 0.0428885 + 0.131997i 0.970208 0.242273i \(-0.0778931\pi\)
−0.927319 + 0.374271i \(0.877893\pi\)
\(224\) 0 0
\(225\) −0.368893 + 1.13534i −0.0245929 + 0.0756890i
\(226\) 0 0
\(227\) −4.47882 + 13.7844i −0.297270 + 0.914902i 0.685180 + 0.728374i \(0.259724\pi\)
−0.982450 + 0.186528i \(0.940276\pi\)
\(228\) 0 0
\(229\) −16.4161 11.9270i −1.08481 0.788159i −0.106292 0.994335i \(-0.533898\pi\)
−0.978515 + 0.206176i \(0.933898\pi\)
\(230\) 0 0
\(231\) 8.54281 6.20671i 0.562076 0.408372i
\(232\) 0 0
\(233\) −8.38802 25.8157i −0.549517 1.69124i −0.710000 0.704202i \(-0.751305\pi\)
0.160483 0.987039i \(-0.448695\pi\)
\(234\) 0 0
\(235\) −8.49874 6.17470i −0.554397 0.402793i
\(236\) 0 0
\(237\) 22.9480 1.49064
\(238\) 0 0
\(239\) −3.20636 + 9.86816i −0.207402 + 0.638318i 0.792204 + 0.610256i \(0.208934\pi\)
−0.999606 + 0.0280618i \(0.991066\pi\)
\(240\) 0 0
\(241\) −16.4453 + 11.9482i −1.05934 + 0.769653i −0.973966 0.226696i \(-0.927208\pi\)
−0.0853710 + 0.996349i \(0.527208\pi\)
\(242\) 0 0
\(243\) 11.5415 0.740386
\(244\) 0 0
\(245\) 5.89723 0.376760
\(246\) 0 0
\(247\) 0.619035 0.0393883
\(248\) 0 0
\(249\) −14.3556 −0.909747
\(250\) 0 0
\(251\) −5.14358 + 3.73703i −0.324660 + 0.235879i −0.738161 0.674624i \(-0.764306\pi\)
0.413501 + 0.910503i \(0.364306\pi\)
\(252\) 0 0
\(253\) 3.70839 11.4133i 0.233145 0.717545i
\(254\) 0 0
\(255\) −5.32874 −0.333699
\(256\) 0 0
\(257\) −5.27245 3.83066i −0.328886 0.238950i 0.411072 0.911603i \(-0.365155\pi\)
−0.739958 + 0.672653i \(0.765155\pi\)
\(258\) 0 0
\(259\) −0.000278217 0 0.000856265i −1.72876e−5 0 5.32057e-5i
\(260\) 0 0
\(261\) 9.06774 6.58810i 0.561279 0.407793i
\(262\) 0 0
\(263\) −2.10069 1.52624i −0.129534 0.0941118i 0.521132 0.853476i \(-0.325510\pi\)
−0.650666 + 0.759364i \(0.725510\pi\)
\(264\) 0 0
\(265\) −2.31739 + 7.13218i −0.142356 + 0.438127i
\(266\) 0 0
\(267\) 6.83360 21.0317i 0.418210 1.28712i
\(268\) 0 0
\(269\) −1.18852 3.65788i −0.0724651 0.223025i 0.908264 0.418398i \(-0.137408\pi\)
−0.980729 + 0.195373i \(0.937408\pi\)
\(270\) 0 0
\(271\) −2.65924 + 8.18430i −0.161537 + 0.497161i −0.998764 0.0496946i \(-0.984175\pi\)
0.837227 + 0.546855i \(0.184175\pi\)
\(272\) 0 0
\(273\) 0.695613 0.0421004
\(274\) 0 0
\(275\) −1.76997 + 1.28596i −0.106733 + 0.0775460i
\(276\) 0 0
\(277\) −12.8254 9.31823i −0.770606 0.559878i 0.131539 0.991311i \(-0.458008\pi\)
−0.902145 + 0.431433i \(0.858008\pi\)
\(278\) 0 0
\(279\) 3.91327 + 2.84315i 0.234281 + 0.170215i
\(280\) 0 0
\(281\) 5.63004 + 17.3275i 0.335860 + 1.03367i 0.966297 + 0.257430i \(0.0828758\pi\)
−0.630437 + 0.776241i \(0.717124\pi\)
\(282\) 0 0
\(283\) −2.64026 + 1.91826i −0.156947 + 0.114029i −0.663487 0.748188i \(-0.730924\pi\)
0.506540 + 0.862217i \(0.330924\pi\)
\(284\) 0 0
\(285\) −1.78383 5.49006i −0.105665 0.325203i
\(286\) 0 0
\(287\) −6.07680 + 22.1779i −0.358702 + 1.30912i
\(288\) 0 0
\(289\) −0.395303 1.21662i −0.0232531 0.0715658i
\(290\) 0 0
\(291\) 2.18058 1.58429i 0.127828 0.0928726i
\(292\) 0 0
\(293\) −3.01441 9.27741i −0.176104 0.541992i 0.823578 0.567203i \(-0.191974\pi\)
−0.999682 + 0.0252105i \(0.991974\pi\)
\(294\) 0 0
\(295\) −7.59383 5.51724i −0.442130 0.321226i
\(296\) 0 0
\(297\) 9.97599 + 7.24798i 0.578866 + 0.420571i
\(298\) 0 0
\(299\) 0.639567 0.464672i 0.0369871 0.0268727i
\(300\) 0 0
\(301\) 34.1134 1.96626
\(302\) 0 0
\(303\) −0.581161 + 1.78863i −0.0333868 + 0.102754i
\(304\) 0 0
\(305\) −1.71987 5.29322i −0.0984795 0.303089i
\(306\) 0 0
\(307\) 7.04255 21.6747i 0.401940 1.23704i −0.521484 0.853261i \(-0.674621\pi\)
0.923424 0.383782i \(-0.125379\pi\)
\(308\) 0 0
\(309\) 0.962074 2.96096i 0.0547305 0.168443i
\(310\) 0 0
\(311\) 16.9805 + 12.3371i 0.962878 + 0.699572i 0.953817 0.300387i \(-0.0971159\pi\)
0.00906068 + 0.999959i \(0.497116\pi\)
\(312\) 0 0
\(313\) 18.8267 13.6784i 1.06415 0.773148i 0.0892954 0.996005i \(-0.471538\pi\)
0.974851 + 0.222858i \(0.0715385\pi\)
\(314\) 0 0
\(315\) 1.32479 + 4.07730i 0.0746437 + 0.229730i
\(316\) 0 0
\(317\) 6.81762 + 4.95329i 0.382916 + 0.278205i 0.762546 0.646934i \(-0.223949\pi\)
−0.379631 + 0.925138i \(0.623949\pi\)
\(318\) 0 0
\(319\) 20.5414 1.15010
\(320\) 0 0
\(321\) −7.51844 + 23.1394i −0.419639 + 1.29151i
\(322\) 0 0
\(323\) −13.7777 + 10.0101i −0.766614 + 0.556977i
\(324\) 0 0
\(325\) −0.144123 −0.00799449
\(326\) 0 0
\(327\) 2.75240 0.152208
\(328\) 0 0
\(329\) −37.7264 −2.07992
\(330\) 0 0
\(331\) −26.6375 −1.46413 −0.732065 0.681235i \(-0.761443\pi\)
−0.732065 + 0.681235i \(0.761443\pi\)
\(332\) 0 0
\(333\) 0.000242119 0 0.000175910i 1.32680e−5 0 9.63980e-6i
\(334\) 0 0
\(335\) −2.38459 + 7.33901i −0.130284 + 0.400973i
\(336\) 0 0
\(337\) −16.3498 −0.890632 −0.445316 0.895373i \(-0.646909\pi\)
−0.445316 + 0.895373i \(0.646909\pi\)
\(338\) 0 0
\(339\) −8.20202 5.95911i −0.445472 0.323655i
\(340\) 0 0
\(341\) 2.73939 + 8.43097i 0.148346 + 0.456562i
\(342\) 0 0
\(343\) −3.20398 + 2.32783i −0.172999 + 0.125691i
\(344\) 0 0
\(345\) −5.96405 4.33313i −0.321094 0.233288i
\(346\) 0 0
\(347\) −4.53016 + 13.9424i −0.243192 + 0.748467i 0.752737 + 0.658321i \(0.228733\pi\)
−0.995929 + 0.0901456i \(0.971267\pi\)
\(348\) 0 0
\(349\) −8.11578 + 24.9778i −0.434428 + 1.33703i 0.459244 + 0.888310i \(0.348120\pi\)
−0.893672 + 0.448721i \(0.851880\pi\)
\(350\) 0 0
\(351\) 0.251019 + 0.772556i 0.0133984 + 0.0412360i
\(352\) 0 0
\(353\) −11.1118 + 34.1986i −0.591421 + 1.82021i −0.0196299 + 0.999807i \(0.506249\pi\)
−0.571791 + 0.820399i \(0.693751\pi\)
\(354\) 0 0
\(355\) 4.76230 0.252757
\(356\) 0 0
\(357\) −15.4821 + 11.2484i −0.819400 + 0.595329i
\(358\) 0 0
\(359\) 14.7480 + 10.7150i 0.778369 + 0.565518i 0.904489 0.426497i \(-0.140252\pi\)
−0.126120 + 0.992015i \(0.540252\pi\)
\(360\) 0 0
\(361\) 0.445988 + 0.324029i 0.0234730 + 0.0170542i
\(362\) 0 0
\(363\) −2.58053 7.94205i −0.135443 0.416850i
\(364\) 0 0
\(365\) 1.92395 1.39783i 0.100704 0.0731657i
\(366\) 0 0
\(367\) −7.40649 22.7948i −0.386615 1.18988i −0.935302 0.353852i \(-0.884872\pi\)
0.548686 0.836028i \(-0.315128\pi\)
\(368\) 0 0
\(369\) −7.63547 + 0.356995i −0.397486 + 0.0185844i
\(370\) 0 0
\(371\) 8.32237 + 25.6136i 0.432076 + 1.32979i
\(372\) 0 0
\(373\) 9.09660 6.60906i 0.471004 0.342204i −0.326829 0.945084i \(-0.605980\pi\)
0.797832 + 0.602879i \(0.205980\pi\)
\(374\) 0 0
\(375\) 0.415308 + 1.27819i 0.0214464 + 0.0660052i
\(376\) 0 0
\(377\) 1.09475 + 0.795380i 0.0563823 + 0.0409642i
\(378\) 0 0
\(379\) 8.70656 + 6.32569i 0.447226 + 0.324929i 0.788500 0.615035i \(-0.210858\pi\)
−0.341274 + 0.939964i \(0.610858\pi\)
\(380\) 0 0
\(381\) 21.5837 15.6815i 1.10577 0.803386i
\(382\) 0 0
\(383\) 25.7540 1.31597 0.657984 0.753032i \(-0.271409\pi\)
0.657984 + 0.753032i \(0.271409\pi\)
\(384\) 0 0
\(385\) −2.42794 + 7.47243i −0.123739 + 0.380830i
\(386\) 0 0
\(387\) 3.50410 + 10.7845i 0.178124 + 0.548208i
\(388\) 0 0
\(389\) −1.59812 + 4.91851i −0.0810280 + 0.249379i −0.983361 0.181660i \(-0.941853\pi\)
0.902333 + 0.431039i \(0.141853\pi\)
\(390\) 0 0
\(391\) −6.72071 + 20.6842i −0.339881 + 1.04605i
\(392\) 0 0
\(393\) 17.7208 + 12.8749i 0.893898 + 0.649455i
\(394\) 0 0
\(395\) −13.8139 + 10.0364i −0.695052 + 0.504985i
\(396\) 0 0
\(397\) 7.61404 + 23.4336i 0.382138 + 1.17610i 0.938536 + 0.345183i \(0.112183\pi\)
−0.556398 + 0.830916i \(0.687817\pi\)
\(398\) 0 0
\(399\) −16.7717 12.1853i −0.839634 0.610030i
\(400\) 0 0
\(401\) −4.40023 −0.219737 −0.109869 0.993946i \(-0.535043\pi\)
−0.109869 + 0.993946i \(0.535043\pi\)
\(402\) 0 0
\(403\) −0.180459 + 0.555396i −0.00898930 + 0.0276662i
\(404\) 0 0
\(405\) 3.23093 2.34741i 0.160546 0.116644i
\(406\) 0 0
\(407\) 0.000548480 0 2.71871e−5 0
\(408\) 0 0
\(409\) −23.4777 −1.16090 −0.580448 0.814297i \(-0.697122\pi\)
−0.580448 + 0.814297i \(0.697122\pi\)
\(410\) 0 0
\(411\) −1.17808 −0.0581105
\(412\) 0 0
\(413\) −33.7094 −1.65873
\(414\) 0 0
\(415\) 8.64153 6.27844i 0.424196 0.308196i
\(416\) 0 0
\(417\) −0.302782 + 0.931868i −0.0148273 + 0.0456337i
\(418\) 0 0
\(419\) 7.98845 0.390261 0.195131 0.980777i \(-0.437487\pi\)
0.195131 + 0.980777i \(0.437487\pi\)
\(420\) 0 0
\(421\) −26.7367 19.4254i −1.30307 0.946735i −0.303088 0.952962i \(-0.598018\pi\)
−0.999981 + 0.00622742i \(0.998018\pi\)
\(422\) 0 0
\(423\) −3.87523 11.9267i −0.188420 0.579897i
\(424\) 0 0
\(425\) 3.20771 2.33053i 0.155597 0.113048i
\(426\) 0 0
\(427\) −16.1704 11.7484i −0.782538 0.568547i
\(428\) 0 0
\(429\) −0.130951 + 0.403026i −0.00632238 + 0.0194583i
\(430\) 0 0
\(431\) −9.12240 + 28.0759i −0.439411 + 1.35237i 0.449088 + 0.893488i \(0.351749\pi\)
−0.888498 + 0.458880i \(0.848251\pi\)
\(432\) 0 0
\(433\) 5.07986 + 15.6342i 0.244122 + 0.751331i 0.995780 + 0.0917773i \(0.0292548\pi\)
−0.751657 + 0.659554i \(0.770745\pi\)
\(434\) 0 0
\(435\) 3.89936 12.0010i 0.186960 0.575404i
\(436\) 0 0
\(437\) −23.5602 −1.12704
\(438\) 0 0
\(439\) 10.5853 7.69064i 0.505207 0.367054i −0.305796 0.952097i \(-0.598922\pi\)
0.811002 + 0.585043i \(0.198922\pi\)
\(440\) 0 0
\(441\) 5.69539 + 4.13795i 0.271209 + 0.197045i
\(442\) 0 0
\(443\) −19.6914 14.3066i −0.935567 0.679729i 0.0117828 0.999931i \(-0.496249\pi\)
−0.947349 + 0.320202i \(0.896249\pi\)
\(444\) 0 0
\(445\) 5.08466 + 15.6490i 0.241036 + 0.741833i
\(446\) 0 0
\(447\) −1.93723 + 1.40748i −0.0916278 + 0.0665715i
\(448\) 0 0
\(449\) −0.0809089 0.249012i −0.00381833 0.0117516i 0.949129 0.314887i \(-0.101967\pi\)
−0.952948 + 0.303135i \(0.901967\pi\)
\(450\) 0 0
\(451\) −11.7055 7.69584i −0.551191 0.362383i
\(452\) 0 0
\(453\) 9.24182 + 28.4434i 0.434219 + 1.33639i
\(454\) 0 0
\(455\) −0.418734 + 0.304228i −0.0196305 + 0.0142624i
\(456\) 0 0
\(457\) 9.79806 + 30.1553i 0.458334 + 1.41061i 0.867176 + 0.498002i \(0.165933\pi\)
−0.408842 + 0.912605i \(0.634067\pi\)
\(458\) 0 0
\(459\) −18.0795 13.1355i −0.843878 0.613113i
\(460\) 0 0
\(461\) −1.95260 1.41865i −0.0909417 0.0660730i 0.541385 0.840775i \(-0.317900\pi\)
−0.632327 + 0.774702i \(0.717900\pi\)
\(462\) 0 0
\(463\) 14.3214 10.4051i 0.665571 0.483565i −0.202969 0.979185i \(-0.565059\pi\)
0.868540 + 0.495620i \(0.165059\pi\)
\(464\) 0 0
\(465\) 5.44567 0.252537
\(466\) 0 0
\(467\) 0.685967 2.11119i 0.0317428 0.0976941i −0.933930 0.357456i \(-0.883644\pi\)
0.965673 + 0.259762i \(0.0836441\pi\)
\(468\) 0 0
\(469\) 8.56371 + 26.3564i 0.395435 + 1.21703i
\(470\) 0 0
\(471\) 1.07385 3.30497i 0.0494804 0.152285i
\(472\) 0 0
\(473\) −6.42194 + 19.7647i −0.295281 + 0.908782i
\(474\) 0 0
\(475\) 3.47489 + 2.52465i 0.159439 + 0.115839i
\(476\) 0 0
\(477\) −7.24255 + 5.26202i −0.331614 + 0.240931i
\(478\) 0 0
\(479\) 7.26137 + 22.3482i 0.331780 + 1.02111i 0.968286 + 0.249843i \(0.0803790\pi\)
−0.636506 + 0.771272i \(0.719621\pi\)
\(480\) 0 0
\(481\) 2.92310e−5 0 2.12376e-5i 1.33282e−6 0 9.68349e-7i
\(482\) 0 0
\(483\) −26.4747 −1.20464
\(484\) 0 0
\(485\) −0.619741 + 1.90737i −0.0281410 + 0.0866090i
\(486\) 0 0
\(487\) 0.804510 0.584511i 0.0364558 0.0264867i −0.569408 0.822055i \(-0.692828\pi\)
0.605864 + 0.795568i \(0.292828\pi\)
\(488\) 0 0
\(489\) 1.09428 0.0494851
\(490\) 0 0
\(491\) −6.01340 −0.271381 −0.135690 0.990751i \(-0.543325\pi\)
−0.135690 + 0.990751i \(0.543325\pi\)
\(492\) 0 0
\(493\) −37.2272 −1.67663
\(494\) 0 0
\(495\) −2.61171 −0.117388
\(496\) 0 0
\(497\) 13.8364 10.0527i 0.620647 0.450926i
\(498\) 0 0
\(499\) 0.0289521 0.0891055i 0.00129608 0.00398891i −0.950406 0.311011i \(-0.899332\pi\)
0.951702 + 0.307022i \(0.0993325\pi\)
\(500\) 0 0
\(501\) −14.8069 −0.661523
\(502\) 0 0
\(503\) 16.4727 + 11.9681i 0.734479 + 0.533630i 0.890977 0.454048i \(-0.150020\pi\)
−0.156498 + 0.987678i \(0.550020\pi\)
\(504\) 0 0
\(505\) −0.432423 1.33086i −0.0192426 0.0592226i
\(506\) 0 0
\(507\) 14.1122 10.2531i 0.626744 0.455356i
\(508\) 0 0
\(509\) 25.4729 + 18.5072i 1.12907 + 0.820315i 0.985559 0.169334i \(-0.0541616\pi\)
0.143508 + 0.989649i \(0.454162\pi\)
\(510\) 0 0
\(511\) 2.63916 8.12250i 0.116750 0.359318i
\(512\) 0 0
\(513\) 7.48095 23.0240i 0.330292 1.01653i
\(514\) 0 0
\(515\) 0.715848 + 2.20315i 0.0315440 + 0.0970826i
\(516\) 0 0
\(517\) 7.10210 21.8580i 0.312350 0.961314i
\(518\) 0 0
\(519\) 21.3604 0.937617
\(520\) 0 0
\(521\) −3.51549 + 2.55416i −0.154017 + 0.111900i −0.662125 0.749394i \(-0.730345\pi\)
0.508108 + 0.861293i \(0.330345\pi\)
\(522\) 0 0
\(523\) 0.232185 + 0.168692i 0.0101527 + 0.00737638i 0.592850 0.805313i \(-0.298003\pi\)
−0.582697 + 0.812689i \(0.698003\pi\)
\(524\) 0 0
\(525\) 3.90475 + 2.83697i 0.170417 + 0.123815i
\(526\) 0 0
\(527\) −4.96459 15.2794i −0.216261 0.665582i
\(528\) 0 0
\(529\) −5.73423 + 4.16617i −0.249315 + 0.181138i
\(530\) 0 0
\(531\) −3.46261 10.6568i −0.150264 0.462466i
\(532\) 0 0
\(533\) −0.325851 0.863392i −0.0141142 0.0373977i
\(534\) 0 0
\(535\) −5.59423 17.2173i −0.241860 0.744368i
\(536\) 0 0
\(537\) −4.99451 + 3.62872i −0.215529 + 0.156591i
\(538\) 0 0
\(539\) 3.98692 + 12.2705i 0.171729 + 0.528527i
\(540\) 0 0
\(541\) 10.4025 + 7.55785i 0.447238 + 0.324937i 0.788504 0.615029i \(-0.210856\pi\)
−0.341266 + 0.939967i \(0.610856\pi\)
\(542\) 0 0
\(543\) 3.15850 + 2.29479i 0.135544 + 0.0984787i
\(544\) 0 0
\(545\) −1.65684 + 1.20377i −0.0709714 + 0.0515637i
\(546\) 0 0
\(547\) 2.76950 0.118415 0.0592077 0.998246i \(-0.481143\pi\)
0.0592077 + 0.998246i \(0.481143\pi\)
\(548\) 0 0
\(549\) 2.05312 6.31884i 0.0876249 0.269682i
\(550\) 0 0
\(551\) −12.4620 38.3542i −0.530901 1.63395i
\(552\) 0 0
\(553\) −18.9491 + 58.3194i −0.805798 + 2.47999i
\(554\) 0 0
\(555\) 0.000104117 0 0.000320440i 4.41954e−6 0 1.36019e-5i
\(556\) 0 0
\(557\) 3.46145 + 2.51489i 0.146666 + 0.106559i 0.658699 0.752407i \(-0.271107\pi\)
−0.512032 + 0.858966i \(0.671107\pi\)
\(558\) 0 0
\(559\) −1.10756 + 0.804688i −0.0468447 + 0.0340347i
\(560\) 0 0
\(561\) −3.60258 11.0876i −0.152101 0.468119i
\(562\) 0 0
\(563\) 15.1119 + 10.9794i 0.636891 + 0.462728i 0.858781 0.512343i \(-0.171222\pi\)
−0.221890 + 0.975072i \(0.571222\pi\)
\(564\) 0 0
\(565\) 7.54355 0.317359
\(566\) 0 0
\(567\) 4.43200 13.6403i 0.186127 0.572839i
\(568\) 0 0
\(569\) 26.8211 19.4866i 1.12440 0.816923i 0.139528 0.990218i \(-0.455442\pi\)
0.984870 + 0.173296i \(0.0554416\pi\)
\(570\) 0 0
\(571\) −0.690623 −0.0289017 −0.0144508 0.999896i \(-0.504600\pi\)
−0.0144508 + 0.999896i \(0.504600\pi\)
\(572\) 0 0
\(573\) −1.38222 −0.0577432
\(574\) 0 0
\(575\) 5.48524 0.228750
\(576\) 0 0
\(577\) 15.5256 0.646339 0.323170 0.946341i \(-0.395252\pi\)
0.323170 + 0.946341i \(0.395252\pi\)
\(578\) 0 0
\(579\) 25.2074 18.3142i 1.04758 0.761114i
\(580\) 0 0
\(581\) 11.8540 36.4827i 0.491785 1.51356i
\(582\) 0 0
\(583\) −16.4068 −0.679500
\(584\) 0 0
\(585\) −0.139190 0.101127i −0.00575479 0.00418110i
\(586\) 0 0
\(587\) −5.94532 18.2978i −0.245390 0.755232i −0.995572 0.0940009i \(-0.970034\pi\)
0.750182 0.661231i \(-0.229966\pi\)
\(588\) 0 0
\(589\) 14.0801 10.2298i 0.580159 0.421510i
\(590\) 0 0
\(591\) 0.291960 + 0.212121i 0.0120096 + 0.00872550i
\(592\) 0 0
\(593\) −4.49720 + 13.8410i −0.184678 + 0.568380i −0.999943 0.0107081i \(-0.996591\pi\)
0.815265 + 0.579089i \(0.196591\pi\)
\(594\) 0 0
\(595\) 4.40015 13.5423i 0.180389 0.555179i
\(596\) 0 0
\(597\) 10.7995 + 33.2374i 0.441994 + 1.36032i
\(598\) 0 0
\(599\) 3.59063 11.0508i 0.146709 0.451524i −0.850518 0.525946i \(-0.823711\pi\)
0.997227 + 0.0744224i \(0.0237113\pi\)
\(600\) 0 0
\(601\) −33.6461 −1.37245 −0.686226 0.727389i \(-0.740734\pi\)
−0.686226 + 0.727389i \(0.740734\pi\)
\(602\) 0 0
\(603\) −7.45258 + 5.41462i −0.303493 + 0.220500i
\(604\) 0 0
\(605\) 5.02686 + 3.65223i 0.204371 + 0.148484i
\(606\) 0 0
\(607\) −2.83608 2.06054i −0.115113 0.0836346i 0.528739 0.848784i \(-0.322665\pi\)
−0.643852 + 0.765150i \(0.722665\pi\)
\(608\) 0 0
\(609\) −14.0037 43.0989i −0.567457 1.74645i
\(610\) 0 0
\(611\) 1.22486 0.889914i 0.0495526 0.0360021i
\(612\) 0 0
\(613\) −2.42038 7.44916i −0.0977581 0.300869i 0.890205 0.455561i \(-0.150561\pi\)
−0.987963 + 0.154692i \(0.950561\pi\)
\(614\) 0 0
\(615\) −6.71821 + 5.37786i −0.270904 + 0.216856i
\(616\) 0 0
\(617\) 14.3193 + 44.0703i 0.576474 + 1.77421i 0.631103 + 0.775699i \(0.282602\pi\)
−0.0546292 + 0.998507i \(0.517398\pi\)
\(618\) 0 0
\(619\) −8.95495 + 6.50615i −0.359930 + 0.261504i −0.753023 0.657994i \(-0.771405\pi\)
0.393093 + 0.919499i \(0.371405\pi\)
\(620\) 0 0
\(621\) −9.55366 29.4031i −0.383375 1.17991i
\(622\) 0 0
\(623\) 47.8064 + 34.7334i 1.91532 + 1.39156i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 0 0
\(627\) 10.2173 7.42329i 0.408039 0.296458i
\(628\) 0 0
\(629\) −0.000994009 0 −3.96338e−5 0
\(630\) 0 0
\(631\) −3.09439 + 9.52355i −0.123186 + 0.379127i −0.993566 0.113253i \(-0.963873\pi\)
0.870380 + 0.492380i \(0.163873\pi\)
\(632\) 0 0
\(633\) −1.23460 3.79970i −0.0490708 0.151024i
\(634\) 0 0
\(635\) −6.13427 + 18.8793i −0.243431 + 0.749203i
\(636\) 0 0
\(637\) −0.262641 + 0.808327i −0.0104062 + 0.0320271i
\(638\) 0 0
\(639\) 4.59931 + 3.34159i 0.181946 + 0.132191i
\(640\) 0 0
\(641\) 19.1822 13.9367i 0.757651 0.550466i −0.140538 0.990075i \(-0.544883\pi\)
0.898189 + 0.439610i \(0.144883\pi\)
\(642\) 0 0
\(643\) −5.43819 16.7370i −0.214461 0.660043i −0.999191 0.0402061i \(-0.987199\pi\)
0.784730 0.619837i \(-0.212801\pi\)
\(644\) 0 0
\(645\) 10.3281 + 7.50383i 0.406670 + 0.295463i
\(646\) 0 0
\(647\) −24.3217 −0.956183 −0.478091 0.878310i \(-0.658671\pi\)
−0.478091 + 0.878310i \(0.658671\pi\)
\(648\) 0 0
\(649\) 6.34589 19.5307i 0.249098 0.766645i
\(650\) 0 0
\(651\) 15.8218 11.4952i 0.620107 0.450534i
\(652\) 0 0
\(653\) 9.67667 0.378677 0.189339 0.981912i \(-0.439366\pi\)
0.189339 + 0.981912i \(0.439366\pi\)
\(654\) 0 0
\(655\) −16.2982 −0.636823
\(656\) 0 0
\(657\) 2.83892 0.110757
\(658\) 0 0
\(659\) −33.6251 −1.30985 −0.654923 0.755695i \(-0.727299\pi\)
−0.654923 + 0.755695i \(0.727299\pi\)
\(660\) 0 0
\(661\) 34.2851 24.9096i 1.33354 0.968871i 0.333881 0.942615i \(-0.391642\pi\)
0.999655 0.0262556i \(-0.00835839\pi\)
\(662\) 0 0
\(663\) 0.237323 0.730404i 0.00921684 0.0283665i
\(664\) 0 0
\(665\) 15.4252 0.598165
\(666\) 0 0
\(667\) −41.6656 30.2718i −1.61330 1.17213i
\(668\) 0 0
\(669\) 0.860758 + 2.64914i 0.0332788 + 0.102422i
\(670\) 0 0
\(671\) 9.85096 7.15714i 0.380292 0.276298i
\(672\) 0 0
\(673\) 31.5940 + 22.9544i 1.21786 + 0.884828i 0.995921 0.0902323i \(-0.0287610\pi\)
0.221940 + 0.975060i \(0.428761\pi\)
\(674\) 0 0
\(675\) −1.74170 + 5.36040i −0.0670381 + 0.206322i
\(676\) 0 0
\(677\) −3.80805 + 11.7200i −0.146355 + 0.450435i −0.997183 0.0750101i \(-0.976101\pi\)
0.850828 + 0.525445i \(0.176101\pi\)
\(678\) 0 0
\(679\) 2.22566 + 6.84987i 0.0854129 + 0.262874i
\(680\) 0 0
\(681\) −6.01937 + 18.5257i −0.230663 + 0.709907i
\(682\) 0 0
\(683\) −6.72705 −0.257404 −0.128702 0.991683i \(-0.541081\pi\)
−0.128702 + 0.991683i \(0.541081\pi\)
\(684\) 0 0
\(685\) 0.709163 0.515237i 0.0270957 0.0196862i
\(686\) 0 0
\(687\) −22.0627 16.0295i −0.841743 0.611562i
\(688\) 0 0
\(689\) −0.874392 0.635283i −0.0333117 0.0242024i
\(690\) 0 0
\(691\) −6.72449 20.6958i −0.255812 0.787307i −0.993669 0.112350i \(-0.964162\pi\)
0.737857 0.674957i \(-0.235838\pi\)
\(692\) 0 0
\(693\) −7.58806 + 5.51305i −0.288247 + 0.209423i
\(694\) 0 0
\(695\) −0.225290 0.693373i −0.00854575 0.0263011i
\(696\) 0 0
\(697\) 21.2139 + 13.9472i 0.803533 + 0.528286i
\(698\) 0 0
\(699\) −11.2732 34.6953i −0.426391 1.31230i
\(700\) 0 0
\(701\) −1.75450 + 1.27472i −0.0662664 + 0.0481453i −0.620425 0.784266i \(-0.713040\pi\)
0.554159 + 0.832411i \(0.313040\pi\)
\(702\) 0 0
\(703\) −0.000332751 0.00102410i −1.25499e−5 3.86247e-5i
\(704\) 0 0
\(705\) −11.4220 8.29857i −0.430177 0.312542i
\(706\) 0 0
\(707\) −4.06567 2.95388i −0.152905 0.111092i
\(708\) 0 0
\(709\) −38.9072 + 28.2677i −1.46119 + 1.06162i −0.478139 + 0.878284i \(0.658688\pi\)
−0.983051 + 0.183332i \(0.941312\pi\)
\(710\) 0 0
\(711\) −20.3834 −0.764436
\(712\) 0 0
\(713\) 6.86819 21.1381i 0.257216 0.791628i
\(714\) 0 0
\(715\) −0.0974365 0.299879i −0.00364392 0.0112148i
\(716\) 0 0
\(717\) −4.30923 + 13.2624i −0.160931 + 0.495295i
\(718\) 0 0
\(719\) 2.74923 8.46125i 0.102529 0.315551i −0.886614 0.462511i \(-0.846949\pi\)
0.989143 + 0.146959i \(0.0469487\pi\)
\(720\) 0 0
\(721\) 6.73045 + 4.88996i 0.250655 + 0.182112i
\(722\) 0 0
\(723\) −22.1019 + 16.0580i −0.821979 + 0.597203i
\(724\) 0 0
\(725\) 2.90139 + 8.92956i 0.107755 + 0.331636i
\(726\) 0 0
\(727\) −17.0308 12.3736i −0.631639 0.458912i 0.225329 0.974283i \(-0.427654\pi\)
−0.856968 + 0.515370i \(0.827654\pi\)
\(728\) 0 0
\(729\) 27.4923 1.01823
\(730\) 0 0
\(731\) 11.6385 35.8195i 0.430465 1.32483i
\(732\) 0 0
\(733\) 40.1973 29.2051i 1.48472 1.07871i 0.508725 0.860929i \(-0.330117\pi\)
0.975997 0.217784i \(-0.0698829\pi\)
\(734\) 0 0
\(735\) 7.92567 0.292343
\(736\) 0 0
\(737\) −16.8826 −0.621878
\(738\) 0 0
\(739\) 50.8996 1.87237 0.936185 0.351507i \(-0.114331\pi\)
0.936185 + 0.351507i \(0.114331\pi\)
\(740\) 0 0
\(741\) 0.831961 0.0305628
\(742\) 0 0
\(743\) −12.4277 + 9.02928i −0.455929 + 0.331252i −0.791932 0.610609i \(-0.790925\pi\)
0.336003 + 0.941861i \(0.390925\pi\)
\(744\) 0 0
\(745\) 0.550577 1.69450i 0.0201716 0.0620817i
\(746\) 0 0
\(747\) 12.7512 0.466542
\(748\) 0 0
\(749\) −52.5974 38.2142i −1.92187 1.39632i
\(750\) 0 0
\(751\) −11.6496 35.8537i −0.425099 1.30832i −0.902900 0.429852i \(-0.858566\pi\)
0.477801 0.878468i \(-0.341434\pi\)
\(752\) 0 0
\(753\) −6.91278 + 5.02243i −0.251916 + 0.183028i
\(754\) 0 0
\(755\) −18.0030 13.0800i −0.655197 0.476028i
\(756\) 0 0
\(757\) 1.02514 3.15506i 0.0372594 0.114673i −0.930697 0.365791i \(-0.880798\pi\)
0.967956 + 0.251119i \(0.0807984\pi\)
\(758\) 0 0
\(759\) 4.98394 15.3390i 0.180906 0.556770i
\(760\) 0 0
\(761\) −7.64678 23.5344i −0.277196 0.853121i −0.988630 0.150368i \(-0.951954\pi\)
0.711434 0.702753i \(-0.248046\pi\)
\(762\) 0 0
\(763\) −2.27276 + 6.99485i −0.0822796 + 0.253231i
\(764\) 0 0
\(765\) 4.73320 0.171129
\(766\) 0 0
\(767\) 1.09444 0.795159i 0.0395180 0.0287115i
\(768\) 0 0
\(769\) 32.1809 + 23.3808i 1.16047 + 0.843133i 0.989838 0.142201i \(-0.0454179\pi\)
0.170636 + 0.985334i \(0.445418\pi\)
\(770\) 0 0
\(771\) −7.08598 5.14827i −0.255195 0.185410i
\(772\) 0 0
\(773\) −1.31387 4.04369i −0.0472567 0.145441i 0.924644 0.380833i \(-0.124363\pi\)
−0.971901 + 0.235392i \(0.924363\pi\)
\(774\) 0 0
\(775\) −3.27809 + 2.38168i −0.117753 + 0.0855523i
\(776\) 0 0
\(777\) −0.000373914 0.00115079i −1.34141e−5 4.12843e-5i
\(778\) 0 0
\(779\) −7.26791 + 26.5250i −0.260400 + 0.950357i
\(780\) 0 0
\(781\) 3.21963 + 9.90901i 0.115208 + 0.354572i
\(782\) 0 0
\(783\) 42.8127 31.1053i 1.53000 1.11161i
\(784\) 0 0
\(785\) 0.799017 + 2.45912i 0.0285181 + 0.0877698i
\(786\) 0 0
\(787\) 11.6705 + 8.47913i 0.416009 + 0.302248i 0.776030 0.630696i \(-0.217231\pi\)
−0.360021 + 0.932944i \(0.617231\pi\)
\(788\) 0 0
\(789\) −2.82324 2.05121i −0.100510 0.0730249i
\(790\) 0 0
\(791\) 21.9170 15.9236i 0.779279 0.566180i
\(792\) 0 0
\(793\) 0.802132 0.0284845
\(794\) 0 0
\(795\) −3.11448 + 9.58540i −0.110459 + 0.339959i
\(796\) 0 0
\(797\) 7.85043 + 24.1611i 0.278076 + 0.855831i 0.988389 + 0.151945i \(0.0485536\pi\)
−0.710313 + 0.703886i \(0.751446\pi\)
\(798\) 0 0
\(799\) −12.8711 + 39.6132i −0.455347 + 1.40142i
\(800\) 0 0
\(801\) −6.06988 + 18.6812i −0.214469 + 0.660066i
\(802\) 0 0
\(803\) 4.20921 + 3.05817i 0.148540 + 0.107920i
\(804\) 0 0
\(805\) 15.9368 11.5788i 0.561699 0.408098i
\(806\) 0 0
\(807\) −1.59732 4.91605i −0.0562284 0.173053i
\(808\) 0 0
\(809\) 15.5797 + 11.3193i 0.547752 + 0.397965i 0.826956 0.562267i \(-0.190071\pi\)
−0.279204 + 0.960232i \(0.590071\pi\)
\(810\) 0 0
\(811\) 32.3382 1.13555 0.567774 0.823185i \(-0.307805\pi\)
0.567774 + 0.823185i \(0.307805\pi\)
\(812\) 0 0
\(813\) −3.57392 + 10.9994i −0.125343 + 0.385766i
\(814\) 0 0
\(815\) −0.658718 + 0.478586i −0.0230739 + 0.0167642i
\(816\) 0 0
\(817\) 40.8000 1.42741
\(818\) 0 0
\(819\) −0.617872 −0.0215902
\(820\) 0 0
\(821\) −41.7277 −1.45631 −0.728154 0.685414i \(-0.759621\pi\)
−0.728154 + 0.685414i \(0.759621\pi\)
\(822\) 0 0
\(823\) 15.1311 0.527436 0.263718 0.964600i \(-0.415051\pi\)
0.263718 + 0.964600i \(0.415051\pi\)
\(824\) 0 0
\(825\) −2.37877 + 1.72828i −0.0828181 + 0.0601709i
\(826\) 0 0
\(827\) 13.0225 40.0790i 0.452836 1.39369i −0.420822 0.907143i \(-0.638258\pi\)
0.873657 0.486542i \(-0.161742\pi\)
\(828\) 0 0
\(829\) −53.4115 −1.85506 −0.927530 0.373750i \(-0.878072\pi\)
−0.927530 + 0.373750i \(0.878072\pi\)
\(830\) 0 0
\(831\) −17.2369 12.5234i −0.597942 0.434431i
\(832\) 0 0
\(833\) −7.22549 22.2378i −0.250349 0.770494i
\(834\) 0 0
\(835\) 8.91320 6.47582i 0.308454 0.224105i
\(836\) 0 0
\(837\) 18.4762 + 13.4237i 0.638631 + 0.463993i
\(838\) 0 0
\(839\) −12.2123 + 37.5856i −0.421615 + 1.29760i 0.484583 + 0.874745i \(0.338971\pi\)
−0.906198 + 0.422853i \(0.861029\pi\)
\(840\) 0 0
\(841\) 18.2799 56.2599i 0.630343 1.94000i
\(842\) 0 0
\(843\) 7.56657 + 23.2875i 0.260606 + 0.802064i
\(844\) 0 0
\(845\) −4.01080 + 12.3440i −0.137976 + 0.424646i
\(846\) 0 0
\(847\) 22.3145 0.766736
\(848\) 0 0
\(849\) −3.54842 + 2.57807i −0.121781 + 0.0884793i
\(850\) 0 0
\(851\) −0.00111252 0.000808292i −3.81366e−5 2.77079e-5i
\(852\) 0 0
\(853\) −14.2690 10.3670i −0.488562 0.354961i 0.316069 0.948736i \(-0.397637\pi\)
−0.804631 + 0.593775i \(0.797637\pi\)
\(854\) 0 0
\(855\) 1.58447 + 4.87649i 0.0541877 + 0.166772i
\(856\) 0 0
\(857\) 42.3155 30.7440i 1.44547 1.05020i 0.458608 0.888639i \(-0.348348\pi\)
0.986863 0.161557i \(-0.0516517\pi\)
\(858\) 0 0
\(859\) −11.2201 34.5320i −0.382826 1.17822i −0.938045 0.346513i \(-0.887366\pi\)
0.555219 0.831704i \(-0.312634\pi\)
\(860\) 0 0
\(861\) −8.16699 + 29.8063i −0.278330 + 1.01580i
\(862\) 0 0
\(863\) 12.1614 + 37.4290i 0.413979 + 1.27410i 0.913161 + 0.407600i \(0.133634\pi\)
−0.499181 + 0.866498i \(0.666366\pi\)
\(864\) 0 0
\(865\) −12.8582 + 9.34201i −0.437191 + 0.317638i
\(866\) 0 0
\(867\) −0.531273 1.63509i −0.0180430 0.0555306i
\(868\) 0 0
\(869\) −30.2220 21.9576i −1.02521 0.744859i
\(870\) 0 0
\(871\) −0.899749 0.653706i −0.0304868 0.0221500i
\(872\) 0 0
\(873\) −1.93688 + 1.40723i −0.0655535 + 0.0476274i
\(874\) 0 0
\(875\) −3.59127 −0.121407
\(876\) 0 0
\(877\) 9.83740 30.2764i 0.332185 1.02236i −0.635907 0.771766i \(-0.719374\pi\)
0.968092 0.250595i \(-0.0806264\pi\)
\(878\) 0 0
\(879\) −4.05126 12.4685i −0.136646 0.420552i
\(880\) 0 0
\(881\) 5.41672 16.6710i 0.182494 0.561659i −0.817402 0.576068i \(-0.804587\pi\)
0.999896 + 0.0144085i \(0.00458652\pi\)
\(882\) 0 0
\(883\) −14.9659 + 46.0603i −0.503643 + 1.55005i 0.299398 + 0.954128i \(0.403214\pi\)
−0.803040 + 0.595925i \(0.796786\pi\)
\(884\) 0 0
\(885\) −10.2058 7.41497i −0.343065 0.249251i
\(886\) 0 0
\(887\) 21.6459 15.7267i 0.726800 0.528051i −0.161750 0.986832i \(-0.551714\pi\)
0.888549 + 0.458781i \(0.151714\pi\)
\(888\) 0 0
\(889\) 22.0298 + 67.8008i 0.738856 + 2.27397i
\(890\) 0 0
\(891\) 7.06862 + 5.13565i 0.236808 + 0.172051i
\(892\) 0 0
\(893\) −45.1212 −1.50992
\(894\) 0 0
\(895\) 1.41948 4.36872i 0.0474481 0.146030i
\(896\) 0 0
\(897\) 0.859554 0.624503i 0.0286997 0.0208515i
\(898\) 0 0
\(899\) 38.0441 1.26884
\(900\) 0 0
\(901\) 29.7340 0.990583
\(902\) 0 0
\(903\) 45.8472 1.52570
\(904\) 0 0
\(905\) −2.90493 −0.0965632
\(906\) 0 0
\(907\) −15.6204 + 11.3489i −0.518667 + 0.376834i −0.816102 0.577909i \(-0.803869\pi\)
0.297434 + 0.954742i \(0.403869\pi\)
\(908\) 0 0
\(909\) 0.516210 1.58873i 0.0171216 0.0526949i
\(910\) 0 0
\(911\) −36.8878 −1.22215 −0.611074 0.791574i \(-0.709262\pi\)
−0.611074 + 0.791574i \(0.709262\pi\)
\(912\) 0 0
\(913\) 18.9059 + 13.7360i 0.625695 + 0.454594i
\(914\) 0 0
\(915\) −2.31144 7.11389i −0.0764140 0.235178i
\(916\) 0 0
\(917\) −47.3528 + 34.4038i −1.56373 + 1.13611i
\(918\) 0 0
\(919\) −20.0401 14.5600i −0.661063 0.480291i 0.205959 0.978561i \(-0.433969\pi\)
−0.867022 + 0.498270i \(0.833969\pi\)
\(920\) 0 0
\(921\) 9.46493 29.1301i 0.311880 0.959869i
\(922\) 0 0
\(923\) −0.212096 + 0.652763i −0.00698121 + 0.0214860i
\(924\) 0 0
\(925\) 7.74704e−5 0 0.000238429i 2.54721e−6 0 7.83951e-6i
\(926\) 0 0
\(927\) −0.854552 + 2.63004i −0.0280672 + 0.0863819i
\(928\) 0 0
\(929\) 2.82394 0.0926505 0.0463253 0.998926i \(-0.485249\pi\)
0.0463253 + 0.998926i \(0.485249\pi\)
\(930\) 0 0
\(931\) 20.4922 14.8885i 0.671606 0.487950i
\(932\) 0 0
\(933\) 22.8212 + 16.5806i 0.747133 + 0.542824i
\(934\) 0 0
\(935\) 7.01781 + 5.09874i 0.229507 + 0.166747i
\(936\) 0 0
\(937\) −10.3701 31.9158i −0.338776 1.04265i −0.964832 0.262867i \(-0.915332\pi\)
0.626056 0.779778i \(-0.284668\pi\)
\(938\) 0 0
\(939\) 25.3024 18.3832i 0.825711 0.599914i
\(940\) 0 0
\(941\) 5.64538 + 17.3747i 0.184034 + 0.566399i 0.999930 0.0117995i \(-0.00375598\pi\)
−0.815896 + 0.578198i \(0.803756\pi\)
\(942\) 0 0
\(943\) 12.4017 + 32.8603i 0.403856 + 1.07008i
\(944\) 0 0
\(945\) 6.25492 + 19.2507i 0.203473 + 0.626224i
\(946\) 0 0
\(947\) 14.7752 10.7348i 0.480131 0.348835i −0.321246 0.946996i \(-0.604102\pi\)
0.801376 + 0.598161i \(0.204102\pi\)
\(948\) 0 0
\(949\) 0.105913 + 0.325967i 0.00343809 + 0.0105813i
\(950\) 0 0
\(951\) 9.16264 + 6.65704i 0.297119 + 0.215869i
\(952\) 0 0
\(953\) 8.63936 + 6.27687i 0.279856 + 0.203328i 0.718855 0.695160i \(-0.244667\pi\)
−0.438998 + 0.898488i \(0.644667\pi\)
\(954\) 0 0
\(955\) 0.832048 0.604518i 0.0269244 0.0195617i
\(956\) 0 0
\(957\) 27.6070 0.892406
\(958\) 0 0
\(959\) 0.972790 2.99394i 0.0314130 0.0966793i
\(960\) 0 0
\(961\) −4.50600 13.8680i −0.145355 0.447356i
\(962\) 0 0
\(963\) 6.67818 20.5533i 0.215201 0.662322i
\(964\) 0 0
\(965\) −7.16415 + 22.0490i −0.230622 + 0.709782i
\(966\) 0 0
\(967\) −38.5792 28.0294i −1.24062 0.901365i −0.242983 0.970031i \(-0.578126\pi\)
−0.997640 + 0.0686652i \(0.978126\pi\)
\(968\) 0 0
\(969\) −18.5168 + 13.4532i −0.594844 + 0.432180i
\(970\) 0 0
\(971\) −11.5005 35.3949i −0.369069 1.13588i −0.947394 0.320070i \(-0.896293\pi\)
0.578325 0.815807i \(-0.303707\pi\)
\(972\) 0 0
\(973\) −2.11820 1.53896i −0.0679063 0.0493368i
\(974\) 0 0
\(975\) −0.193696 −0.00620322
\(976\) 0 0
\(977\) 8.09379 24.9101i 0.258943 0.796946i −0.734084 0.679059i \(-0.762388\pi\)
0.993027 0.117887i \(-0.0376120\pi\)
\(978\) 0 0
\(979\) −29.1236 + 21.1595i −0.930793 + 0.676261i
\(980\) 0 0
\(981\) −2.44479 −0.0780561
\(982\) 0 0
\(983\) −6.85447 −0.218624 −0.109312 0.994008i \(-0.534865\pi\)
−0.109312 + 0.994008i \(0.534865\pi\)
\(984\) 0 0
\(985\) −0.268521 −0.00855578
\(986\) 0 0
\(987\) −50.7029 −1.61389
\(988\) 0 0
\(989\) 42.1532 30.6261i 1.34039 0.973853i
\(990\) 0 0
\(991\) 13.3019 40.9389i 0.422548 1.30047i −0.482775 0.875744i \(-0.660371\pi\)
0.905323 0.424724i \(-0.139629\pi\)
\(992\) 0 0
\(993\) −35.7998 −1.13607
\(994\) 0 0
\(995\) −21.0373 15.2845i −0.666929 0.484552i
\(996\) 0 0
\(997\) −18.8798 58.1059i −0.597928 1.84023i −0.539577 0.841936i \(-0.681416\pi\)
−0.0583506 0.998296i \(-0.518584\pi\)
\(998\) 0 0
\(999\) 0.00114315 0.000830546i 3.61676e−5 2.62773e-5i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.u.a.141.5 24
41.16 even 5 inner 820.2.u.a.221.5 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.u.a.141.5 24 1.1 even 1 trivial
820.2.u.a.221.5 yes 24 41.16 even 5 inner