Properties

Label 820.2.s.c.647.54
Level $820$
Weight $2$
Character 820.647
Analytic conductor $6.548$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(583,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.583"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(120\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.54
Character \(\chi\) \(=\) 820.647
Dual form 820.2.s.c.583.54

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.349906 + 1.37024i) q^{2} -2.06782 q^{3} +(-1.75513 - 0.958912i) q^{4} +(-0.600491 - 2.15393i) q^{5} +(0.723542 - 2.83341i) q^{6} -3.38406i q^{7} +(1.92807 - 2.06943i) q^{8} +1.27587 q^{9} +(3.16152 - 0.0691463i) q^{10} +(-3.69062 - 3.69062i) q^{11} +(3.62929 + 1.98286i) q^{12} -0.425062i q^{13} +(4.63699 + 1.18410i) q^{14} +(1.24171 + 4.45394i) q^{15} +(2.16098 + 3.36603i) q^{16} +3.34792i q^{17} +(-0.446436 + 1.74826i) q^{18} +(0.684819 + 0.684819i) q^{19} +(-1.01149 + 4.35625i) q^{20} +6.99763i q^{21} +(6.34841 - 3.76568i) q^{22} +(-5.31453 - 5.31453i) q^{23} +(-3.98691 + 4.27920i) q^{24} +(-4.27882 + 2.58683i) q^{25} +(0.582438 + 0.148732i) q^{26} +3.56518 q^{27} +(-3.24502 + 5.93948i) q^{28} +(3.38159 + 3.38159i) q^{29} +(-6.53745 + 0.142982i) q^{30} +6.18545i q^{31} +(-5.36842 + 1.78327i) q^{32} +(7.63153 + 7.63153i) q^{33} +(-4.58747 - 1.17146i) q^{34} +(-7.28903 + 2.03210i) q^{35} +(-2.23933 - 1.22345i) q^{36} +(-3.00501 - 3.00501i) q^{37} +(-1.17799 + 0.698746i) q^{38} +0.878951i q^{39} +(-5.61519 - 2.91026i) q^{40} +(6.32040 + 1.02593i) q^{41} +(-9.58845 - 2.44851i) q^{42} +(1.80499 - 1.80499i) q^{43} +(2.93854 + 10.0165i) q^{44} +(-0.766151 - 2.74814i) q^{45} +(9.14179 - 5.42262i) q^{46} -8.57237 q^{47} +(-4.46851 - 6.96035i) q^{48} -4.45188 q^{49} +(-2.04740 - 6.76817i) q^{50} -6.92289i q^{51} +(-0.407597 + 0.746040i) q^{52} -9.32035i q^{53} +(-1.24748 + 4.88516i) q^{54} +(-5.73315 + 10.1655i) q^{55} +(-7.00308 - 6.52472i) q^{56} +(-1.41608 - 1.41608i) q^{57} +(-5.81684 + 3.45036i) q^{58} -0.468941 q^{59} +(2.09157 - 9.00793i) q^{60} +0.208691i q^{61} +(-8.47557 - 2.16432i) q^{62} -4.31764i q^{63} +(-0.565069 - 7.98002i) q^{64} +(-0.915554 + 0.255246i) q^{65} +(-13.1274 + 7.78673i) q^{66} +4.16083 q^{67} +(3.21036 - 5.87604i) q^{68} +(10.9895 + 10.9895i) q^{69} +(-0.233996 - 10.6988i) q^{70} +(5.60857 + 5.60857i) q^{71} +(2.45998 - 2.64033i) q^{72} +(3.45071 + 3.45071i) q^{73} +(5.16907 - 3.06613i) q^{74} +(8.84783 - 5.34910i) q^{75} +(-0.545267 - 1.85863i) q^{76} +(-12.4893 + 12.4893i) q^{77} +(-1.20438 - 0.307550i) q^{78} +(-10.8014 + 10.8014i) q^{79} +(5.95255 - 6.67586i) q^{80} -11.1998 q^{81} +(-3.61732 + 8.30150i) q^{82} +(-5.42477 - 5.42477i) q^{83} +(6.71011 - 12.2818i) q^{84} +(7.21119 - 2.01040i) q^{85} +(1.84170 + 3.10486i) q^{86} +(-6.99252 - 6.99252i) q^{87} +(-14.7533 + 0.521689i) q^{88} +(2.57886 + 2.57886i) q^{89} +(4.03370 - 0.0882221i) q^{90} -1.43844 q^{91} +(4.23154 + 14.4239i) q^{92} -12.7904i q^{93} +(2.99952 - 11.7462i) q^{94} +(1.06382 - 1.88628i) q^{95} +(11.1009 - 3.68747i) q^{96} +13.1254i q^{97} +(1.55774 - 6.10016i) q^{98} +(-4.70877 - 4.70877i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 4 q^{6} - 12 q^{8} + 240 q^{9} - 20 q^{10} + 8 q^{14} + 8 q^{16} - 12 q^{18} - 16 q^{20} - 12 q^{24} - 16 q^{25} - 30 q^{30} - 24 q^{33} + 20 q^{34} - 8 q^{37} - 4 q^{40} - 16 q^{41} + 84 q^{42}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.349906 + 1.37024i −0.247421 + 0.968908i
\(3\) −2.06782 −1.19386 −0.596928 0.802295i \(-0.703612\pi\)
−0.596928 + 0.802295i \(0.703612\pi\)
\(4\) −1.75513 0.958912i −0.877566 0.479456i
\(5\) −0.600491 2.15393i −0.268548 0.963266i
\(6\) 0.723542 2.83341i 0.295385 1.15674i
\(7\) 3.38406i 1.27906i −0.768768 0.639528i \(-0.779130\pi\)
0.768768 0.639528i \(-0.220870\pi\)
\(8\) 1.92807 2.06943i 0.681677 0.731653i
\(9\) 1.27587 0.425291
\(10\) 3.16152 0.0691463i 0.999761 0.0218660i
\(11\) −3.69062 3.69062i −1.11276 1.11276i −0.992775 0.119988i \(-0.961714\pi\)
−0.119988 0.992775i \(-0.538286\pi\)
\(12\) 3.62929 + 1.98286i 1.04769 + 0.572401i
\(13\) 0.425062i 0.117891i −0.998261 0.0589455i \(-0.981226\pi\)
0.998261 0.0589455i \(-0.0187738\pi\)
\(14\) 4.63699 + 1.18410i 1.23929 + 0.316465i
\(15\) 1.24171 + 4.45394i 0.320607 + 1.15000i
\(16\) 2.16098 + 3.36603i 0.540244 + 0.841508i
\(17\) 3.34792i 0.811990i 0.913875 + 0.405995i \(0.133075\pi\)
−0.913875 + 0.405995i \(0.866925\pi\)
\(18\) −0.446436 + 1.74826i −0.105226 + 0.412068i
\(19\) 0.684819 + 0.684819i 0.157108 + 0.157108i 0.781284 0.624176i \(-0.214565\pi\)
−0.624176 + 0.781284i \(0.714565\pi\)
\(20\) −1.01149 + 4.35625i −0.226175 + 0.974087i
\(21\) 6.99763i 1.52701i
\(22\) 6.34841 3.76568i 1.35349 0.802845i
\(23\) −5.31453 5.31453i −1.10816 1.10816i −0.993393 0.114764i \(-0.963389\pi\)
−0.114764 0.993393i \(-0.536611\pi\)
\(24\) −3.98691 + 4.27920i −0.813824 + 0.873489i
\(25\) −4.27882 + 2.58683i −0.855764 + 0.517366i
\(26\) 0.582438 + 0.148732i 0.114226 + 0.0291687i
\(27\) 3.56518 0.686119
\(28\) −3.24502 + 5.93948i −0.613251 + 1.12246i
\(29\) 3.38159 + 3.38159i 0.627946 + 0.627946i 0.947551 0.319605i \(-0.103550\pi\)
−0.319605 + 0.947551i \(0.603550\pi\)
\(30\) −6.53745 + 0.142982i −1.19357 + 0.0261048i
\(31\) 6.18545i 1.11094i 0.831537 + 0.555470i \(0.187462\pi\)
−0.831537 + 0.555470i \(0.812538\pi\)
\(32\) −5.36842 + 1.78327i −0.949012 + 0.315240i
\(33\) 7.63153 + 7.63153i 1.32848 + 1.32848i
\(34\) −4.58747 1.17146i −0.786744 0.200903i
\(35\) −7.28903 + 2.03210i −1.23207 + 0.343487i
\(36\) −2.23933 1.22345i −0.373221 0.203909i
\(37\) −3.00501 3.00501i −0.494021 0.494021i 0.415549 0.909571i \(-0.363589\pi\)
−0.909571 + 0.415549i \(0.863589\pi\)
\(38\) −1.17799 + 0.698746i −0.191095 + 0.113352i
\(39\) 0.878951i 0.140745i
\(40\) −5.61519 2.91026i −0.887840 0.460152i
\(41\) 6.32040 + 1.02593i 0.987081 + 0.160224i
\(42\) −9.58845 2.44851i −1.47953 0.377813i
\(43\) 1.80499 1.80499i 0.275259 0.275259i −0.555954 0.831213i \(-0.687647\pi\)
0.831213 + 0.555954i \(0.187647\pi\)
\(44\) 2.93854 + 10.0165i 0.443002 + 1.51004i
\(45\) −0.766151 2.74814i −0.114211 0.409669i
\(46\) 9.14179 5.42262i 1.34788 0.799521i
\(47\) −8.57237 −1.25041 −0.625204 0.780461i \(-0.714984\pi\)
−0.625204 + 0.780461i \(0.714984\pi\)
\(48\) −4.46851 6.96035i −0.644973 1.00464i
\(49\) −4.45188 −0.635983
\(50\) −2.04740 6.76817i −0.289546 0.957164i
\(51\) 6.92289i 0.969399i
\(52\) −0.407597 + 0.746040i −0.0565235 + 0.103457i
\(53\) 9.32035i 1.28025i −0.768271 0.640124i \(-0.778883\pi\)
0.768271 0.640124i \(-0.221117\pi\)
\(54\) −1.24748 + 4.88516i −0.169760 + 0.664786i
\(55\) −5.73315 + 10.1655i −0.773057 + 1.37072i
\(56\) −7.00308 6.52472i −0.935825 0.871902i
\(57\) −1.41608 1.41608i −0.187565 0.187565i
\(58\) −5.81684 + 3.45036i −0.763789 + 0.453055i
\(59\) −0.468941 −0.0610509 −0.0305255 0.999534i \(-0.509718\pi\)
−0.0305255 + 0.999534i \(0.509718\pi\)
\(60\) 2.09157 9.00793i 0.270021 1.16292i
\(61\) 0.208691i 0.0267202i 0.999911 + 0.0133601i \(0.00425278\pi\)
−0.999911 + 0.0133601i \(0.995747\pi\)
\(62\) −8.47557 2.16432i −1.07640 0.274870i
\(63\) 4.31764i 0.543971i
\(64\) −0.565069 7.98002i −0.0706336 0.997502i
\(65\) −0.915554 + 0.255246i −0.113560 + 0.0316594i
\(66\) −13.1274 + 7.78673i −1.61587 + 0.958481i
\(67\) 4.16083 0.508327 0.254163 0.967161i \(-0.418200\pi\)
0.254163 + 0.967161i \(0.418200\pi\)
\(68\) 3.21036 5.87604i 0.389314 0.712575i
\(69\) 10.9895 + 10.9895i 1.32298 + 1.32298i
\(70\) −0.233996 10.6988i −0.0279678 1.27875i
\(71\) 5.60857 + 5.60857i 0.665615 + 0.665615i 0.956698 0.291083i \(-0.0940155\pi\)
−0.291083 + 0.956698i \(0.594016\pi\)
\(72\) 2.45998 2.64033i 0.289911 0.311166i
\(73\) 3.45071 + 3.45071i 0.403875 + 0.403875i 0.879596 0.475721i \(-0.157813\pi\)
−0.475721 + 0.879596i \(0.657813\pi\)
\(74\) 5.16907 3.06613i 0.600892 0.356430i
\(75\) 8.84783 5.34910i 1.02166 0.617660i
\(76\) −0.545267 1.85863i −0.0625464 0.213199i
\(77\) −12.4893 + 12.4893i −1.42329 + 1.42329i
\(78\) −1.20438 0.307550i −0.136369 0.0348232i
\(79\) −10.8014 + 10.8014i −1.21525 + 1.21525i −0.245980 + 0.969275i \(0.579110\pi\)
−0.969275 + 0.245980i \(0.920890\pi\)
\(80\) 5.95255 6.67586i 0.665515 0.746384i
\(81\) −11.1998 −1.24442
\(82\) −3.61732 + 8.30150i −0.399467 + 0.916748i
\(83\) −5.42477 5.42477i −0.595446 0.595446i 0.343651 0.939097i \(-0.388336\pi\)
−0.939097 + 0.343651i \(0.888336\pi\)
\(84\) 6.71011 12.2818i 0.732133 1.34005i
\(85\) 7.21119 2.01040i 0.782163 0.218058i
\(86\) 1.84170 + 3.10486i 0.198596 + 0.334805i
\(87\) −6.99252 6.99252i −0.749677 0.749677i
\(88\) −14.7533 + 0.521689i −1.57270 + 0.0556122i
\(89\) 2.57886 + 2.57886i 0.273358 + 0.273358i 0.830451 0.557092i \(-0.188083\pi\)
−0.557092 + 0.830451i \(0.688083\pi\)
\(90\) 4.03370 0.0882221i 0.425190 0.00929942i
\(91\) −1.43844 −0.150789
\(92\) 4.23154 + 14.4239i 0.441168 + 1.50379i
\(93\) 12.7904i 1.32630i
\(94\) 2.99952 11.7462i 0.309377 1.21153i
\(95\) 1.06382 1.88628i 0.109146 0.193528i
\(96\) 11.1009 3.68747i 1.13298 0.376351i
\(97\) 13.1254i 1.33268i 0.745649 + 0.666339i \(0.232140\pi\)
−0.745649 + 0.666339i \(0.767860\pi\)
\(98\) 1.55774 6.10016i 0.157355 0.616209i
\(99\) −4.70877 4.70877i −0.473249 0.473249i
\(100\) 9.99044 0.437215i 0.999044 0.0437215i
\(101\) −8.00287 8.00287i −0.796315 0.796315i 0.186197 0.982512i \(-0.440384\pi\)
−0.982512 + 0.186197i \(0.940384\pi\)
\(102\) 9.48605 + 2.42236i 0.939259 + 0.239849i
\(103\) 4.86602 4.86602i 0.479463 0.479463i −0.425497 0.904960i \(-0.639901\pi\)
0.904960 + 0.425497i \(0.139901\pi\)
\(104\) −0.879636 0.819551i −0.0862554 0.0803636i
\(105\) 15.0724 4.20201i 1.47092 0.410074i
\(106\) 12.7711 + 3.26124i 1.24044 + 0.316760i
\(107\) 0.734209 0.734209i 0.0709787 0.0709787i −0.670726 0.741705i \(-0.734017\pi\)
0.741705 + 0.670726i \(0.234017\pi\)
\(108\) −6.25736 3.41869i −0.602115 0.328964i
\(109\) −0.315628 + 0.315628i −0.0302317 + 0.0302317i −0.722061 0.691829i \(-0.756805\pi\)
0.691829 + 0.722061i \(0.256805\pi\)
\(110\) −11.9232 11.4128i −1.13683 1.08817i
\(111\) 6.21383 + 6.21383i 0.589790 + 0.589790i
\(112\) 11.3909 7.31288i 1.07634 0.691002i
\(113\) 5.84978 5.84978i 0.550301 0.550301i −0.376227 0.926528i \(-0.622779\pi\)
0.926528 + 0.376227i \(0.122779\pi\)
\(114\) 2.43587 1.44488i 0.228140 0.135325i
\(115\) −8.25580 + 14.6385i −0.769857 + 1.36504i
\(116\) −2.69249 9.17779i −0.249992 0.852136i
\(117\) 0.542326i 0.0501380i
\(118\) 0.164085 0.642563i 0.0151053 0.0591527i
\(119\) 11.3296 1.03858
\(120\) 11.6112 + 6.01789i 1.05995 + 0.549356i
\(121\) 16.2413i 1.47648i
\(122\) −0.285958 0.0730223i −0.0258894 0.00661113i
\(123\) −13.0694 2.12145i −1.17843 0.191284i
\(124\) 5.93130 10.8563i 0.532647 0.974923i
\(125\) 8.14124 + 7.66291i 0.728175 + 0.685391i
\(126\) 5.91621 + 1.51077i 0.527058 + 0.134590i
\(127\) −15.0544 + 15.0544i −1.33586 + 1.33586i −0.435834 + 0.900027i \(0.643547\pi\)
−0.900027 + 0.435834i \(0.856453\pi\)
\(128\) 11.1323 + 2.01797i 0.983964 + 0.178365i
\(129\) −3.73240 + 3.73240i −0.328619 + 0.328619i
\(130\) −0.0293915 1.34384i −0.00257780 0.117863i
\(131\) 6.94210 0.606534 0.303267 0.952906i \(-0.401923\pi\)
0.303267 + 0.952906i \(0.401923\pi\)
\(132\) −6.07638 20.7123i −0.528881 1.80277i
\(133\) 2.31747 2.31747i 0.200950 0.200950i
\(134\) −1.45590 + 5.70135i −0.125771 + 0.492522i
\(135\) −2.14086 7.67914i −0.184256 0.660915i
\(136\) 6.92828 + 6.45504i 0.594095 + 0.553515i
\(137\) 3.88148i 0.331617i 0.986158 + 0.165809i \(0.0530234\pi\)
−0.986158 + 0.165809i \(0.946977\pi\)
\(138\) −18.9036 + 11.2130i −1.60918 + 0.954513i
\(139\) 18.9708 1.60908 0.804540 0.593898i \(-0.202412\pi\)
0.804540 + 0.593898i \(0.202412\pi\)
\(140\) 14.7418 + 3.42294i 1.24591 + 0.289291i
\(141\) 17.7261 1.49281
\(142\) −9.64758 + 5.72263i −0.809607 + 0.480233i
\(143\) −1.56874 + 1.56874i −0.131185 + 0.131185i
\(144\) 2.75713 + 4.29464i 0.229761 + 0.357886i
\(145\) 5.25309 9.31432i 0.436246 0.773512i
\(146\) −5.93574 + 3.52089i −0.491245 + 0.291391i
\(147\) 9.20568 0.759272
\(148\) 2.39265 + 8.15574i 0.196675 + 0.670398i
\(149\) −13.8184 + 13.8184i −1.13205 + 1.13205i −0.142212 + 0.989836i \(0.545422\pi\)
−0.989836 + 0.142212i \(0.954578\pi\)
\(150\) 4.23366 + 13.9954i 0.345676 + 1.14272i
\(151\) 10.4426 + 10.4426i 0.849804 + 0.849804i 0.990108 0.140305i \(-0.0448082\pi\)
−0.140305 + 0.990108i \(0.544808\pi\)
\(152\) 2.73756 0.0968029i 0.222046 0.00785175i
\(153\) 4.27153i 0.345333i
\(154\) −12.7433 21.4834i −1.02688 1.73118i
\(155\) 13.3230 3.71431i 1.07013 0.298340i
\(156\) 0.842837 1.54268i 0.0674810 0.123513i
\(157\) −19.0040 −1.51669 −0.758343 0.651856i \(-0.773991\pi\)
−0.758343 + 0.651856i \(0.773991\pi\)
\(158\) −11.0211 18.5801i −0.876791 1.47815i
\(159\) 19.2728i 1.52843i
\(160\) 7.06472 + 10.4924i 0.558515 + 0.829494i
\(161\) −17.9847 + 17.9847i −1.41739 + 1.41739i
\(162\) 3.91886 15.3464i 0.307895 1.20573i
\(163\) 1.86716 + 1.86716i 0.146247 + 0.146247i 0.776439 0.630192i \(-0.217024\pi\)
−0.630192 + 0.776439i \(0.717024\pi\)
\(164\) −10.1094 7.86136i −0.789408 0.613869i
\(165\) 11.8551 21.0204i 0.922919 1.63644i
\(166\) 9.33142 5.53510i 0.724259 0.429607i
\(167\) 22.3685i 1.73093i −0.500972 0.865463i \(-0.667024\pi\)
0.500972 0.865463i \(-0.332976\pi\)
\(168\) 14.4811 + 13.4919i 1.11724 + 1.04093i
\(169\) 12.8193 0.986102
\(170\) 0.231497 + 10.5845i 0.0177550 + 0.811796i
\(171\) 0.873743 + 0.873743i 0.0668168 + 0.0668168i
\(172\) −4.89883 + 1.43717i −0.373532 + 0.109583i
\(173\) −10.8233 10.8233i −0.822883 0.822883i 0.163638 0.986520i \(-0.447677\pi\)
−0.986520 + 0.163638i \(0.947677\pi\)
\(174\) 12.0282 7.13473i 0.911853 0.540882i
\(175\) 8.75399 + 14.4798i 0.661740 + 1.09457i
\(176\) 4.44741 20.3981i 0.335236 1.53756i
\(177\) 0.969685 0.0728860
\(178\) −4.43602 + 2.63131i −0.332494 + 0.197225i
\(179\) 7.55200 + 7.55200i 0.564463 + 0.564463i 0.930572 0.366109i \(-0.119310\pi\)
−0.366109 + 0.930572i \(0.619310\pi\)
\(180\) −1.29053 + 5.55803i −0.0961905 + 0.414271i
\(181\) −15.1028 15.1028i −1.12258 1.12258i −0.991352 0.131227i \(-0.958108\pi\)
−0.131227 0.991352i \(-0.541892\pi\)
\(182\) 0.503317 1.97101i 0.0373084 0.146101i
\(183\) 0.431536i 0.0319001i
\(184\) −21.2449 + 0.751238i −1.56619 + 0.0553820i
\(185\) −4.66810 + 8.27707i −0.343206 + 0.608543i
\(186\) 17.5259 + 4.47543i 1.28506 + 0.328155i
\(187\) 12.3559 12.3559i 0.903553 0.903553i
\(188\) 15.0456 + 8.22014i 1.09732 + 0.599516i
\(189\) 12.0648i 0.877584i
\(190\) 2.21242 + 2.11772i 0.160506 + 0.153635i
\(191\) −19.3766 + 19.3766i −1.40204 + 1.40204i −0.608452 + 0.793591i \(0.708209\pi\)
−0.793591 + 0.608452i \(0.791791\pi\)
\(192\) 1.16846 + 16.5012i 0.0843263 + 1.19087i
\(193\) 5.00474i 0.360249i 0.983644 + 0.180125i \(0.0576501\pi\)
−0.983644 + 0.180125i \(0.942350\pi\)
\(194\) −17.9849 4.59264i −1.29124 0.329732i
\(195\) 1.89320 0.527802i 0.135575 0.0377967i
\(196\) 7.81363 + 4.26896i 0.558117 + 0.304926i
\(197\) −0.711380 + 0.711380i −0.0506837 + 0.0506837i −0.731994 0.681311i \(-0.761410\pi\)
0.681311 + 0.731994i \(0.261410\pi\)
\(198\) 8.09978 4.80453i 0.575626 0.341443i
\(199\) −3.44585 3.44585i −0.244270 0.244270i 0.574344 0.818614i \(-0.305257\pi\)
−0.818614 + 0.574344i \(0.805257\pi\)
\(200\) −2.89662 + 13.8423i −0.204822 + 0.978799i
\(201\) −8.60385 −0.606869
\(202\) 13.7661 8.16563i 0.968581 0.574531i
\(203\) 11.4435 11.4435i 0.803177 0.803177i
\(204\) −6.63845 + 12.1506i −0.464784 + 0.850712i
\(205\) −1.58555 14.2298i −0.110740 0.993849i
\(206\) 4.96498 + 8.37028i 0.345927 + 0.583185i
\(207\) −6.78068 6.78068i −0.471290 0.471290i
\(208\) 1.43077 0.918549i 0.0992063 0.0636899i
\(209\) 5.05481i 0.349649i
\(210\) 0.483860 + 22.1232i 0.0333895 + 1.52664i
\(211\) −4.84316 + 4.84316i −0.333417 + 0.333417i −0.853883 0.520466i \(-0.825758\pi\)
0.520466 + 0.853883i \(0.325758\pi\)
\(212\) −8.93740 + 16.3584i −0.613823 + 1.12350i
\(213\) −11.5975 11.5975i −0.794648 0.794648i
\(214\) 0.749141 + 1.26295i 0.0512102 + 0.0863334i
\(215\) −4.97171 2.80395i −0.339068 0.191228i
\(216\) 6.87393 7.37788i 0.467711 0.502001i
\(217\) 20.9319 1.42095
\(218\) −0.322047 0.542927i −0.0218118 0.0367717i
\(219\) −7.13545 7.13545i −0.482169 0.482169i
\(220\) 19.8103 12.3442i 1.33561 0.832248i
\(221\) 1.42307 0.0957263
\(222\) −10.6887 + 6.34020i −0.717379 + 0.425526i
\(223\) 0.307241 + 0.307241i 0.0205744 + 0.0205744i 0.717319 0.696745i \(-0.245369\pi\)
−0.696745 + 0.717319i \(0.745369\pi\)
\(224\) 6.03469 + 18.1671i 0.403210 + 1.21384i
\(225\) −5.45924 + 3.30047i −0.363949 + 0.220031i
\(226\) 5.96875 + 10.0625i 0.397035 + 0.669347i
\(227\) −8.88097 −0.589451 −0.294725 0.955582i \(-0.595228\pi\)
−0.294725 + 0.955582i \(0.595228\pi\)
\(228\) 1.12751 + 3.84331i 0.0746713 + 0.254529i
\(229\) 6.28380 6.28380i 0.415245 0.415245i −0.468316 0.883561i \(-0.655139\pi\)
0.883561 + 0.468316i \(0.155139\pi\)
\(230\) −17.1695 16.4345i −1.13212 1.08366i
\(231\) 25.8256 25.8256i 1.69920 1.69920i
\(232\) 13.5179 0.478006i 0.887495 0.0313827i
\(233\) 18.2587i 1.19617i −0.801433 0.598085i \(-0.795928\pi\)
0.801433 0.598085i \(-0.204072\pi\)
\(234\) 0.743118 + 0.189763i 0.0485792 + 0.0124052i
\(235\) 5.14763 + 18.4643i 0.335794 + 1.20448i
\(236\) 0.823053 + 0.449673i 0.0535762 + 0.0292712i
\(237\) 22.3354 22.3354i 1.45084 1.45084i
\(238\) −3.96428 + 15.5243i −0.256966 + 1.00629i
\(239\) 4.72912 4.72912i 0.305902 0.305902i −0.537416 0.843317i \(-0.680599\pi\)
0.843317 + 0.537416i \(0.180599\pi\)
\(240\) −12.3088 + 13.8045i −0.794529 + 0.891075i
\(241\) 18.6068i 1.19857i −0.800536 0.599284i \(-0.795452\pi\)
0.800536 0.599284i \(-0.204548\pi\)
\(242\) −22.2546 5.68293i −1.43058 0.365313i
\(243\) 12.4636 0.799537
\(244\) 0.200117 0.366281i 0.0128112 0.0234487i
\(245\) 2.67331 + 9.58903i 0.170792 + 0.612621i
\(246\) 7.47997 17.1660i 0.476906 1.09446i
\(247\) 0.291091 0.291091i 0.0185216 0.0185216i
\(248\) 12.8003 + 11.9260i 0.812823 + 0.757302i
\(249\) 11.2174 + 11.2174i 0.710877 + 0.710877i
\(250\) −13.3487 + 8.47418i −0.844247 + 0.535954i
\(251\) −6.58820 −0.415844 −0.207922 0.978145i \(-0.566670\pi\)
−0.207922 + 0.978145i \(0.566670\pi\)
\(252\) −4.14024 + 7.57803i −0.260810 + 0.477371i
\(253\) 39.2278i 2.46623i
\(254\) −15.3606 25.8958i −0.963807 1.62485i
\(255\) −14.9114 + 4.15714i −0.933790 + 0.260330i
\(256\) −6.66036 + 14.5478i −0.416273 + 0.909240i
\(257\) −12.7653 −0.796275 −0.398137 0.917326i \(-0.630343\pi\)
−0.398137 + 0.917326i \(0.630343\pi\)
\(258\) −3.80831 6.42028i −0.237095 0.399709i
\(259\) −10.1692 + 10.1692i −0.631881 + 0.631881i
\(260\) 1.85168 + 0.429945i 0.114836 + 0.0266640i
\(261\) 4.31449 + 4.31449i 0.267060 + 0.267060i
\(262\) −2.42908 + 9.51236i −0.150069 + 0.587676i
\(263\) 4.82813i 0.297715i 0.988859 + 0.148858i \(0.0475596\pi\)
−0.988859 + 0.148858i \(0.952440\pi\)
\(264\) 30.5071 1.07876i 1.87758 0.0663930i
\(265\) −20.0754 + 5.59679i −1.23322 + 0.343808i
\(266\) 2.36460 + 3.98639i 0.144983 + 0.244421i
\(267\) −5.33261 5.33261i −0.326351 0.326351i
\(268\) −7.30281 3.98987i −0.446090 0.243720i
\(269\) 12.5270i 0.763783i −0.924207 0.381891i \(-0.875273\pi\)
0.924207 0.381891i \(-0.124727\pi\)
\(270\) 11.2714 0.246519i 0.685955 0.0150027i
\(271\) 8.44587i 0.513050i −0.966538 0.256525i \(-0.917422\pi\)
0.966538 0.256525i \(-0.0825776\pi\)
\(272\) −11.2692 + 7.23478i −0.683297 + 0.438673i
\(273\) 2.97443 0.180020
\(274\) −5.31857 1.35815i −0.321307 0.0820490i
\(275\) 25.3385 + 6.24449i 1.52797 + 0.376557i
\(276\) −8.75005 29.8260i −0.526691 1.79531i
\(277\) 17.8144 + 17.8144i 1.07036 + 1.07036i 0.997329 + 0.0730342i \(0.0232682\pi\)
0.0730342 + 0.997329i \(0.476732\pi\)
\(278\) −6.63798 + 25.9946i −0.398120 + 1.55905i
\(279\) 7.89186i 0.472473i
\(280\) −9.84850 + 19.0022i −0.588560 + 1.13560i
\(281\) −22.3301 22.3301i −1.33210 1.33210i −0.903489 0.428610i \(-0.859003\pi\)
−0.428610 0.903489i \(-0.640997\pi\)
\(282\) −6.20246 + 24.2891i −0.369351 + 1.44639i
\(283\) 13.3311 + 13.3311i 0.792450 + 0.792450i 0.981892 0.189442i \(-0.0606678\pi\)
−0.189442 + 0.981892i \(0.560668\pi\)
\(284\) −4.46566 15.2219i −0.264988 0.903254i
\(285\) −2.19979 + 3.90048i −0.130305 + 0.231045i
\(286\) −1.60065 2.69847i −0.0946482 0.159564i
\(287\) 3.47183 21.3886i 0.204935 1.26253i
\(288\) −6.84943 + 2.27523i −0.403607 + 0.134069i
\(289\) 5.79142 0.340672
\(290\) 10.9248 + 10.4572i 0.641526 + 0.614065i
\(291\) 27.1409i 1.59102i
\(292\) −2.74753 9.36539i −0.160787 0.548068i
\(293\) 15.7494 0.920089 0.460044 0.887896i \(-0.347834\pi\)
0.460044 + 0.887896i \(0.347834\pi\)
\(294\) −3.22112 + 12.6140i −0.187860 + 0.735664i
\(295\) 0.281595 + 1.01007i 0.0163951 + 0.0588083i
\(296\) −12.0126 + 0.424775i −0.698215 + 0.0246896i
\(297\) −13.1577 13.1577i −0.763488 0.763488i
\(298\) −14.0994 23.7697i −0.816759 1.37694i
\(299\) −2.25901 + 2.25901i −0.130642 + 0.130642i
\(300\) −20.6584 + 0.904082i −1.19271 + 0.0521972i
\(301\) −6.10821 6.10821i −0.352071 0.352071i
\(302\) −17.9628 + 10.6549i −1.03364 + 0.613123i
\(303\) 16.5485 + 16.5485i 0.950686 + 0.950686i
\(304\) −0.825246 + 3.78500i −0.0473311 + 0.217085i
\(305\) 0.449506 0.125317i 0.0257387 0.00717565i
\(306\) −5.85303 1.49463i −0.334595 0.0854424i
\(307\) 4.51824 + 4.51824i 0.257870 + 0.257870i 0.824187 0.566317i \(-0.191632\pi\)
−0.566317 + 0.824187i \(0.691632\pi\)
\(308\) 33.8965 9.94422i 1.93143 0.566624i
\(309\) −10.0620 + 10.0620i −0.572410 + 0.572410i
\(310\) 0.427701 + 19.5554i 0.0242918 + 1.11067i
\(311\) −1.66046 + 1.66046i −0.0941563 + 0.0941563i −0.752616 0.658460i \(-0.771208\pi\)
0.658460 + 0.752616i \(0.271208\pi\)
\(312\) 1.81893 + 1.69468i 0.102976 + 0.0959425i
\(313\) −14.8719 −0.840612 −0.420306 0.907382i \(-0.638077\pi\)
−0.420306 + 0.907382i \(0.638077\pi\)
\(314\) 6.64961 26.0401i 0.375259 1.46953i
\(315\) −9.29989 + 2.59270i −0.523989 + 0.146082i
\(316\) 29.3155 8.60031i 1.64913 0.483805i
\(317\) −6.55187 −0.367990 −0.183995 0.982927i \(-0.558903\pi\)
−0.183995 + 0.982927i \(0.558903\pi\)
\(318\) −26.4084 6.74366i −1.48091 0.378166i
\(319\) 24.9603i 1.39751i
\(320\) −16.8491 + 6.00905i −0.941892 + 0.335916i
\(321\) −1.51821 + 1.51821i −0.0847383 + 0.0847383i
\(322\) −18.3505 30.9364i −1.02263 1.72402i
\(323\) −2.29272 + 2.29272i −0.127570 + 0.127570i
\(324\) 19.6571 + 10.7396i 1.09206 + 0.596644i
\(325\) 1.09956 + 1.81876i 0.0609928 + 0.100887i
\(326\) −3.21179 + 1.90513i −0.177885 + 0.105516i
\(327\) 0.652662 0.652662i 0.0360923 0.0360923i
\(328\) 14.3093 11.1015i 0.790098 0.612980i
\(329\) 29.0094i 1.59934i
\(330\) 24.6549 + 23.5996i 1.35721 + 1.29911i
\(331\) −12.2573 12.2573i −0.673721 0.673721i 0.284851 0.958572i \(-0.408056\pi\)
−0.958572 + 0.284851i \(0.908056\pi\)
\(332\) 4.31931 + 14.7231i 0.237053 + 0.808034i
\(333\) −3.83402 3.83402i −0.210103 0.210103i
\(334\) 30.6503 + 7.82687i 1.67711 + 0.428267i
\(335\) −2.49854 8.96214i −0.136510 0.489654i
\(336\) −23.5543 + 15.1217i −1.28499 + 0.824957i
\(337\) 22.0976 22.0976i 1.20373 1.20373i 0.230709 0.973023i \(-0.425896\pi\)
0.973023 0.230709i \(-0.0741044\pi\)
\(338\) −4.48555 + 17.5656i −0.243982 + 0.955442i
\(339\) −12.0963 + 12.0963i −0.656980 + 0.656980i
\(340\) −14.5844 3.38638i −0.790949 0.183652i
\(341\) 22.8281 22.8281i 1.23621 1.23621i
\(342\) −1.50297 + 0.891512i −0.0812712 + 0.0482075i
\(343\) 8.62300i 0.465598i
\(344\) −0.255146 7.21546i −0.0137565 0.389032i
\(345\) 17.0715 30.2697i 0.919098 1.62966i
\(346\) 18.6177 11.0434i 1.00090 0.593699i
\(347\) −4.29289 −0.230454 −0.115227 0.993339i \(-0.536760\pi\)
−0.115227 + 0.993339i \(0.536760\pi\)
\(348\) 5.56758 + 18.9780i 0.298454 + 1.01733i
\(349\) 20.3710 1.09044 0.545218 0.838294i \(-0.316447\pi\)
0.545218 + 0.838294i \(0.316447\pi\)
\(350\) −22.9039 + 6.92853i −1.22427 + 0.370346i
\(351\) 1.51542i 0.0808873i
\(352\) 26.3942 + 13.2314i 1.40681 + 0.705238i
\(353\) −6.80856 + 6.80856i −0.362383 + 0.362383i −0.864690 0.502307i \(-0.832485\pi\)
0.502307 + 0.864690i \(0.332485\pi\)
\(354\) −0.339298 + 1.32870i −0.0180335 + 0.0706198i
\(355\) 8.71257 15.4484i 0.462415 0.819914i
\(356\) −2.05334 6.99913i −0.108827 0.370953i
\(357\) −23.4275 −1.23992
\(358\) −12.9906 + 7.70559i −0.686573 + 0.407253i
\(359\) −25.3606 −1.33848 −0.669242 0.743045i \(-0.733381\pi\)
−0.669242 + 0.743045i \(0.733381\pi\)
\(360\) −7.16428 3.71313i −0.377591 0.195699i
\(361\) 18.0620i 0.950634i
\(362\) 25.9790 15.4099i 1.36543 0.809927i
\(363\) 33.5841i 1.76271i
\(364\) 2.52465 + 1.37933i 0.132327 + 0.0722967i
\(365\) 5.36047 9.50471i 0.280580 0.497499i
\(366\) 0.591309 + 0.150997i 0.0309082 + 0.00789273i
\(367\) 11.0994 + 11.0994i 0.579385 + 0.579385i 0.934734 0.355349i \(-0.115638\pi\)
−0.355349 + 0.934734i \(0.615638\pi\)
\(368\) 6.40432 29.3735i 0.333848 1.53120i
\(369\) 8.06404 + 1.30896i 0.419797 + 0.0681419i
\(370\) −9.70821 9.29263i −0.504706 0.483101i
\(371\) −31.5407 −1.63751
\(372\) −12.2649 + 22.4488i −0.635903 + 1.16392i
\(373\) 19.6251 19.6251i 1.01615 1.01615i 0.0162796 0.999867i \(-0.494818\pi\)
0.999867 0.0162796i \(-0.00518218\pi\)
\(374\) 12.6072 + 21.2540i 0.651902 + 1.09902i
\(375\) −16.8346 15.8455i −0.869336 0.818259i
\(376\) −16.5281 + 17.7399i −0.852374 + 0.914865i
\(377\) 1.43739 1.43739i 0.0740292 0.0740292i
\(378\) 16.5317 + 4.22154i 0.850299 + 0.217133i
\(379\) −28.8118 −1.47996 −0.739982 0.672626i \(-0.765166\pi\)
−0.739982 + 0.672626i \(0.765166\pi\)
\(380\) −3.67593 + 2.29056i −0.188571 + 0.117503i
\(381\) 31.1298 31.1298i 1.59483 1.59483i
\(382\) −19.7707 33.3307i −1.01156 1.70534i
\(383\) 13.0719i 0.667944i 0.942583 + 0.333972i \(0.108389\pi\)
−0.942583 + 0.333972i \(0.891611\pi\)
\(384\) −23.0195 4.17280i −1.17471 0.212942i
\(385\) 34.4007 + 19.4013i 1.75322 + 0.988783i
\(386\) −6.85772 1.75119i −0.349049 0.0891332i
\(387\) 2.30295 2.30295i 0.117065 0.117065i
\(388\) 12.5861 23.0367i 0.638960 1.16951i
\(389\) −35.9288 −1.82166 −0.910831 0.412779i \(-0.864558\pi\)
−0.910831 + 0.412779i \(0.864558\pi\)
\(390\) 0.0607763 + 2.77882i 0.00307753 + 0.140711i
\(391\) 17.7926 17.7926i 0.899812 0.899812i
\(392\) −8.58355 + 9.21284i −0.433535 + 0.465319i
\(393\) −14.3550 −0.724114
\(394\) −0.725847 1.22368i −0.0365677 0.0616481i
\(395\) 29.7517 + 16.7793i 1.49697 + 0.844260i
\(396\) 3.74921 + 12.7798i 0.188405 + 0.642209i
\(397\) −32.4990 −1.63108 −0.815539 0.578702i \(-0.803560\pi\)
−0.815539 + 0.578702i \(0.803560\pi\)
\(398\) 5.92737 3.51593i 0.297112 0.176238i
\(399\) −4.79211 + 4.79211i −0.239905 + 0.239905i
\(400\) −17.9538 8.81258i −0.897689 0.440629i
\(401\) 30.1757i 1.50690i 0.657505 + 0.753450i \(0.271612\pi\)
−0.657505 + 0.753450i \(0.728388\pi\)
\(402\) 3.01054 11.7894i 0.150152 0.588000i
\(403\) 2.62920 0.130970
\(404\) 6.37205 + 21.7201i 0.317021 + 1.08062i
\(405\) 6.72536 + 24.1235i 0.334186 + 1.19871i
\(406\) 11.6762 + 19.6846i 0.579482 + 0.976928i
\(407\) 22.1807i 1.09946i
\(408\) −14.3264 13.3478i −0.709264 0.660817i
\(409\) 24.3353i 1.20330i 0.798758 + 0.601652i \(0.205491\pi\)
−0.798758 + 0.601652i \(0.794509\pi\)
\(410\) 20.0530 + 2.80648i 0.990348 + 0.138602i
\(411\) 8.02619i 0.395903i
\(412\) −13.2066 + 3.87442i −0.650642 + 0.190879i
\(413\) 1.58693i 0.0780875i
\(414\) 11.6638 6.91858i 0.573243 0.340030i
\(415\) −8.42705 + 14.9421i −0.413668 + 0.733479i
\(416\) 0.758000 + 2.28191i 0.0371640 + 0.111880i
\(417\) −39.2281 −1.92101
\(418\) 6.92632 + 1.76871i 0.338777 + 0.0865103i
\(419\) 31.6294i 1.54520i −0.634893 0.772600i \(-0.718956\pi\)
0.634893 0.772600i \(-0.281044\pi\)
\(420\) −30.4834 7.07801i −1.48744 0.345372i
\(421\) −10.1879 + 10.1879i −0.496529 + 0.496529i −0.910356 0.413827i \(-0.864192\pi\)
0.413827 + 0.910356i \(0.364192\pi\)
\(422\) −4.94166 8.33096i −0.240556 0.405545i
\(423\) −10.9373 −0.531788
\(424\) −19.2878 17.9703i −0.936698 0.872716i
\(425\) −8.66050 14.3252i −0.420096 0.694872i
\(426\) 19.9494 11.8334i 0.966554 0.573329i
\(427\) 0.706225 0.0341766
\(428\) −1.99268 + 0.584592i −0.0963196 + 0.0282573i
\(429\) 3.24387 3.24387i 0.156616 0.156616i
\(430\) 5.58172 5.83133i 0.269174 0.281212i
\(431\) −2.97987 −0.143535 −0.0717676 0.997421i \(-0.522864\pi\)
−0.0717676 + 0.997421i \(0.522864\pi\)
\(432\) 7.70427 + 12.0005i 0.370672 + 0.577375i
\(433\) −9.51380 + 9.51380i −0.457204 + 0.457204i −0.897737 0.440533i \(-0.854790\pi\)
0.440533 + 0.897737i \(0.354790\pi\)
\(434\) −7.32421 + 28.6819i −0.351573 + 1.37677i
\(435\) −10.8624 + 19.2603i −0.520814 + 0.923462i
\(436\) 0.856628 0.251309i 0.0410251 0.0120355i
\(437\) 7.27898i 0.348201i
\(438\) 12.2740 7.28056i 0.586476 0.347879i
\(439\) −5.31814 + 5.31814i −0.253821 + 0.253821i −0.822535 0.568714i \(-0.807441\pi\)
0.568714 + 0.822535i \(0.307441\pi\)
\(440\) 9.98288 + 31.4642i 0.475915 + 1.50000i
\(441\) −5.68004 −0.270478
\(442\) −0.497942 + 1.94996i −0.0236847 + 0.0927500i
\(443\) −17.8204 + 17.8204i −0.846675 + 0.846675i −0.989717 0.143042i \(-0.954312\pi\)
0.143042 + 0.989717i \(0.454312\pi\)
\(444\) −4.94757 16.8646i −0.234801 0.800358i
\(445\) 4.00610 7.10326i 0.189907 0.336727i
\(446\) −0.528500 + 0.313489i −0.0250252 + 0.0148441i
\(447\) 28.5740 28.5740i 1.35150 1.35150i
\(448\) −27.0049 + 1.91223i −1.27586 + 0.0903442i
\(449\) 5.00475 0.236189 0.118094 0.993002i \(-0.462321\pi\)
0.118094 + 0.993002i \(0.462321\pi\)
\(450\) −2.61223 8.63534i −0.123142 0.407074i
\(451\) −19.5399 27.1125i −0.920096 1.27668i
\(452\) −15.8766 + 4.65771i −0.746771 + 0.219080i
\(453\) −21.5933 21.5933i −1.01454 1.01454i
\(454\) 3.10750 12.1691i 0.145842 0.571124i
\(455\) 0.863768 + 3.09829i 0.0404941 + 0.145250i
\(456\) −5.66079 + 0.200171i −0.265091 + 0.00937386i
\(457\) 3.28010i 0.153436i −0.997053 0.0767182i \(-0.975556\pi\)
0.997053 0.0767182i \(-0.0244442\pi\)
\(458\) 6.41159 + 10.8091i 0.299594 + 0.505075i
\(459\) 11.9359i 0.557122i
\(460\) 28.5270 17.7758i 1.33008 0.828803i
\(461\) −31.6581 −1.47447 −0.737233 0.675638i \(-0.763868\pi\)
−0.737233 + 0.675638i \(0.763868\pi\)
\(462\) 26.3508 + 44.4238i 1.22595 + 2.06678i
\(463\) 24.3680 1.13248 0.566238 0.824241i \(-0.308398\pi\)
0.566238 + 0.824241i \(0.308398\pi\)
\(464\) −4.07501 + 18.6901i −0.189178 + 0.867666i
\(465\) −27.5496 + 7.68051i −1.27758 + 0.356175i
\(466\) 25.0189 + 6.38884i 1.15898 + 0.295957i
\(467\) −15.9882 + 15.9882i −0.739844 + 0.739844i −0.972548 0.232703i \(-0.925243\pi\)
0.232703 + 0.972548i \(0.425243\pi\)
\(468\) −0.520043 + 0.951853i −0.0240390 + 0.0439994i
\(469\) 14.0805i 0.650178i
\(470\) −27.1017 + 0.592748i −1.25011 + 0.0273414i
\(471\) 39.2969 1.81070
\(472\) −0.904153 + 0.970440i −0.0416170 + 0.0446681i
\(473\) −13.3231 −0.612596
\(474\) 22.7896 + 38.4202i 1.04676 + 1.76470i
\(475\) −4.70173 1.15871i −0.215730 0.0531652i
\(476\) −19.8849 10.8641i −0.911423 0.497954i
\(477\) 11.8916i 0.544479i
\(478\) 4.82530 + 8.13479i 0.220704 + 0.372077i
\(479\) 15.9255 15.9255i 0.727655 0.727655i −0.242497 0.970152i \(-0.577967\pi\)
0.970152 + 0.242497i \(0.0779666\pi\)
\(480\) −14.6086 21.6963i −0.666787 0.990296i
\(481\) −1.27732 + 1.27732i −0.0582407 + 0.0582407i
\(482\) 25.4958 + 6.51062i 1.16130 + 0.296551i
\(483\) 37.1891 37.1891i 1.69216 1.69216i
\(484\) 15.5740 28.5057i 0.707909 1.29571i
\(485\) 28.2711 7.88166i 1.28372 0.357888i
\(486\) −4.36107 + 17.0781i −0.197822 + 0.774678i
\(487\) 10.1928 + 10.1928i 0.461879 + 0.461879i 0.899271 0.437392i \(-0.144098\pi\)
−0.437392 + 0.899271i \(0.644098\pi\)
\(488\) 0.431872 + 0.402372i 0.0195499 + 0.0182145i
\(489\) −3.86095 3.86095i −0.174598 0.174598i
\(490\) −14.0747 + 0.307831i −0.635831 + 0.0139064i
\(491\) 16.0820i 0.725769i −0.931834 0.362884i \(-0.881792\pi\)
0.931834 0.362884i \(-0.118208\pi\)
\(492\) 20.9043 + 16.2559i 0.942439 + 0.732871i
\(493\) −11.3213 + 11.3213i −0.509886 + 0.509886i
\(494\) 0.297011 + 0.500719i 0.0133631 + 0.0225284i
\(495\) −7.31478 + 12.9699i −0.328775 + 0.582954i
\(496\) −20.8204 + 13.3666i −0.934865 + 0.600179i
\(497\) 18.9798 18.9798i 0.851358 0.851358i
\(498\) −19.2957 + 11.4456i −0.864660 + 0.512889i
\(499\) −16.4691 + 16.4691i −0.737259 + 0.737259i −0.972047 0.234788i \(-0.924561\pi\)
0.234788 + 0.972047i \(0.424561\pi\)
\(500\) −6.94090 21.2562i −0.310406 0.950604i
\(501\) 46.2540i 2.06648i
\(502\) 2.30525 9.02744i 0.102888 0.402914i
\(503\) −27.9393 −1.24575 −0.622877 0.782320i \(-0.714036\pi\)
−0.622877 + 0.782320i \(0.714036\pi\)
\(504\) −8.93504 8.32472i −0.397999 0.370813i
\(505\) −12.4320 + 22.0433i −0.553215 + 0.980912i
\(506\) −53.7517 13.7260i −2.38955 0.610197i
\(507\) −26.5080 −1.17726
\(508\) 40.8583 11.9866i 1.81279 0.531820i
\(509\) 22.7655 22.7655i 1.00906 1.00906i 0.00910388 0.999959i \(-0.497102\pi\)
0.999959 0.00910388i \(-0.00289790\pi\)
\(510\) −0.478693 21.8869i −0.0211969 0.969167i
\(511\) 11.6774 11.6774i 0.516579 0.516579i
\(512\) −17.6036 14.2167i −0.777975 0.628295i
\(513\) 2.44150 + 2.44150i 0.107795 + 0.107795i
\(514\) 4.46664 17.4915i 0.197015 0.771517i
\(515\) −13.4031 7.55906i −0.590610 0.333092i
\(516\) 10.1299 2.97181i 0.445944 0.130827i
\(517\) 31.6373 + 31.6373i 1.39141 + 1.39141i
\(518\) −10.3760 17.4925i −0.455894 0.768575i
\(519\) 22.3807 + 22.3807i 0.982403 + 0.982403i
\(520\) −1.23704 + 2.38681i −0.0542478 + 0.104668i
\(521\) −10.9539 + 10.9539i −0.479897 + 0.479897i −0.905099 0.425202i \(-0.860203\pi\)
0.425202 + 0.905099i \(0.360203\pi\)
\(522\) −7.42156 + 4.40223i −0.324833 + 0.192680i
\(523\) −15.8783 15.8783i −0.694308 0.694308i 0.268869 0.963177i \(-0.413350\pi\)
−0.963177 + 0.268869i \(0.913350\pi\)
\(524\) −12.1843 6.65686i −0.532274 0.290806i
\(525\) −18.1017 29.9416i −0.790022 1.30676i
\(526\) −6.61571 1.68939i −0.288459 0.0736609i
\(527\) −20.7084 −0.902072
\(528\) −9.19643 + 42.1795i −0.400223 + 1.83563i
\(529\) 33.4885i 1.45602i
\(530\) −0.644468 29.4665i −0.0279939 1.27994i
\(531\) −0.598310 −0.0259644
\(532\) −6.28971 + 1.84522i −0.272694 + 0.0800003i
\(533\) 0.436086 2.68656i 0.0188890 0.116368i
\(534\) 9.17289 5.44106i 0.396950 0.235458i
\(535\) −2.02232 1.14055i −0.0874325 0.0493102i
\(536\) 8.02239 8.61055i 0.346515 0.371919i
\(537\) −15.6162 15.6162i −0.673888 0.673888i
\(538\) 17.1650 + 4.38326i 0.740035 + 0.188976i
\(539\) 16.4302 + 16.4302i 0.707698 + 0.707698i
\(540\) −3.60613 + 15.5308i −0.155183 + 0.668339i
\(541\) 28.8087i 1.23858i 0.785162 + 0.619291i \(0.212580\pi\)
−0.785162 + 0.619291i \(0.787420\pi\)
\(542\) 11.5729 + 2.95526i 0.497098 + 0.126939i
\(543\) 31.2298 + 31.2298i 1.34020 + 1.34020i
\(544\) −5.97024 17.9731i −0.255972 0.770588i
\(545\) 0.869372 + 0.490309i 0.0372398 + 0.0210025i
\(546\) −1.04077 + 4.07569i −0.0445408 + 0.174423i
\(547\) 24.4985 1.04748 0.523741 0.851877i \(-0.324536\pi\)
0.523741 + 0.851877i \(0.324536\pi\)
\(548\) 3.72200 6.81251i 0.158996 0.291016i
\(549\) 0.266264i 0.0113639i
\(550\) −17.4226 + 32.5349i −0.742900 + 1.38729i
\(551\) 4.63156i 0.197311i
\(552\) 43.9305 1.55342i 1.86981 0.0661181i
\(553\) 36.5527 + 36.5527i 1.55438 + 1.55438i
\(554\) −30.6434 + 18.1767i −1.30191 + 0.772254i
\(555\) 9.65279 17.1155i 0.409738 0.726512i
\(556\) −33.2962 18.1913i −1.41207 0.771483i
\(557\) 15.6020i 0.661080i −0.943792 0.330540i \(-0.892769\pi\)
0.943792 0.330540i \(-0.107231\pi\)
\(558\) −10.8138 2.76141i −0.457783 0.116900i
\(559\) −0.767234 0.767234i −0.0324506 0.0324506i
\(560\) −22.5915 20.1438i −0.954667 0.851231i
\(561\) −25.5498 + 25.5498i −1.07871 + 1.07871i
\(562\) 38.4110 22.7842i 1.62027 0.961093i
\(563\) 34.3618 1.44818 0.724089 0.689707i \(-0.242260\pi\)
0.724089 + 0.689707i \(0.242260\pi\)
\(564\) −31.1116 16.9978i −1.31004 0.715735i
\(565\) −16.1128 9.08727i −0.677869 0.382304i
\(566\) −22.9314 + 13.6022i −0.963880 + 0.571743i
\(567\) 37.9007i 1.59168i
\(568\) 22.4203 0.792802i 0.940734 0.0332652i
\(569\) 18.2622 0.765593 0.382796 0.923833i \(-0.374961\pi\)
0.382796 + 0.923833i \(0.374961\pi\)
\(570\) −4.57489 4.37905i −0.191621 0.183418i
\(571\) −1.16438 1.16438i −0.0487279 0.0487279i 0.682323 0.731051i \(-0.260970\pi\)
−0.731051 + 0.682323i \(0.760970\pi\)
\(572\) 4.25763 1.24906i 0.178021 0.0522260i
\(573\) 40.0673 40.0673i 1.67384 1.67384i
\(574\) 28.0928 + 12.2413i 1.17257 + 0.510940i
\(575\) 36.4877 + 8.99214i 1.52164 + 0.374998i
\(576\) −0.720957 10.1815i −0.0300399 0.424229i
\(577\) −39.3687 −1.63894 −0.819470 0.573122i \(-0.805732\pi\)
−0.819470 + 0.573122i \(0.805732\pi\)
\(578\) −2.02645 + 7.93566i −0.0842893 + 0.330080i
\(579\) 10.3489i 0.430086i
\(580\) −18.1515 + 11.3106i −0.753699 + 0.469648i
\(581\) −18.3578 + 18.3578i −0.761609 + 0.761609i
\(582\) 37.1896 + 9.49674i 1.54156 + 0.393653i
\(583\) −34.3979 + 34.3979i −1.42461 + 1.42461i
\(584\) 13.7942 0.487777i 0.570809 0.0201844i
\(585\) −1.16813 + 0.325662i −0.0482963 + 0.0134645i
\(586\) −5.51080 + 21.5805i −0.227649 + 0.891481i
\(587\) 5.74840i 0.237262i 0.992938 + 0.118631i \(0.0378506\pi\)
−0.992938 + 0.118631i \(0.962149\pi\)
\(588\) −16.1572 8.82743i −0.666311 0.364037i
\(589\) −4.23591 + 4.23591i −0.174538 + 0.174538i
\(590\) −1.48257 + 0.0324256i −0.0610363 + 0.00133494i
\(591\) 1.47100 1.47100i 0.0605090 0.0605090i
\(592\) 3.62122 16.6087i 0.148831 0.682615i
\(593\) −22.1695 −0.910391 −0.455195 0.890392i \(-0.650431\pi\)
−0.455195 + 0.890392i \(0.650431\pi\)
\(594\) 22.6332 13.4253i 0.928653 0.550847i
\(595\) −6.80331 24.4031i −0.278908 1.00043i
\(596\) 37.5038 11.0025i 1.53621 0.450680i
\(597\) 7.12539 + 7.12539i 0.291623 + 0.291623i
\(598\) −2.30495 3.88583i −0.0942563 0.158903i
\(599\) −36.2303 −1.48033 −0.740166 0.672425i \(-0.765253\pi\)
−0.740166 + 0.672425i \(0.765253\pi\)
\(600\) 5.98969 28.6234i 0.244528 1.16855i
\(601\) 11.4756 + 11.4756i 0.468099 + 0.468099i 0.901298 0.433199i \(-0.142615\pi\)
−0.433199 + 0.901298i \(0.642615\pi\)
\(602\) 10.5070 6.23244i 0.428235 0.254015i
\(603\) 5.30870 0.216187
\(604\) −8.31458 28.3416i −0.338315 1.15320i
\(605\) 34.9827 9.75277i 1.42225 0.396506i
\(606\) −28.4659 + 16.8850i −1.15635 + 0.685908i
\(607\) 27.7777 + 27.7777i 1.12746 + 1.12746i 0.990589 + 0.136873i \(0.0437051\pi\)
0.136873 + 0.990589i \(0.456295\pi\)
\(608\) −4.89761 2.45518i −0.198624 0.0995708i
\(609\) −23.6631 + 23.6631i −0.958878 + 0.958878i
\(610\) 0.0144302 + 0.659782i 0.000584264 + 0.0267138i
\(611\) 3.64379i 0.147412i
\(612\) 4.09602 7.49709i 0.165572 0.303052i
\(613\) −23.3151 23.3151i −0.941690 0.941690i 0.0567016 0.998391i \(-0.481942\pi\)
−0.998391 + 0.0567016i \(0.981942\pi\)
\(614\) −7.77205 + 4.61013i −0.313654 + 0.186050i
\(615\) 3.27864 + 29.4246i 0.132207 + 1.18651i
\(616\) 1.76543 + 49.9259i 0.0711311 + 2.01157i
\(617\) 7.81689 7.81689i 0.314696 0.314696i −0.532030 0.846726i \(-0.678571\pi\)
0.846726 + 0.532030i \(0.178571\pi\)
\(618\) −10.2667 17.3082i −0.412987 0.696239i
\(619\) 12.1833 0.489689 0.244844 0.969562i \(-0.421263\pi\)
0.244844 + 0.969562i \(0.421263\pi\)
\(620\) −26.9454 6.25650i −1.08215 0.251267i
\(621\) −18.9473 18.9473i −0.760327 0.760327i
\(622\) −1.69423 2.85625i −0.0679326 0.114525i
\(623\) 8.72702 8.72702i 0.349641 0.349641i
\(624\) −2.95858 + 1.89939i −0.118438 + 0.0760366i
\(625\) 11.6166 22.1372i 0.464665 0.885487i
\(626\) 5.20378 20.3782i 0.207985 0.814476i
\(627\) 10.4524i 0.417430i
\(628\) 33.3546 + 18.2232i 1.33099 + 0.727184i
\(629\) 10.0606 10.0606i 0.401141 0.401141i
\(630\) −0.298549 13.6503i −0.0118945 0.543841i
\(631\) 11.6522i 0.463867i 0.972732 + 0.231933i \(0.0745051\pi\)
−0.972732 + 0.231933i \(0.925495\pi\)
\(632\) 1.52684 + 43.1787i 0.0607344 + 1.71756i
\(633\) 10.0148 10.0148i 0.398052 0.398052i
\(634\) 2.29254 8.97766i 0.0910483 0.356548i
\(635\) 41.4661 + 23.3861i 1.64553 + 0.928048i
\(636\) 18.4809 33.8263i 0.732816 1.34130i
\(637\) 1.89232i 0.0749766i
\(638\) 34.2017 + 8.73376i 1.35406 + 0.345773i
\(639\) 7.15583 + 7.15583i 0.283080 + 0.283080i
\(640\) −2.33827 25.1899i −0.0924281 0.995719i
\(641\) 20.0509 + 20.0509i 0.791961 + 0.791961i 0.981813 0.189852i \(-0.0608007\pi\)
−0.189852 + 0.981813i \(0.560801\pi\)
\(642\) −1.54909 2.61155i −0.0611376 0.103070i
\(643\) −24.9600 −0.984326 −0.492163 0.870503i \(-0.663794\pi\)
−0.492163 + 0.870503i \(0.663794\pi\)
\(644\) 48.8113 14.3198i 1.92343 0.564279i
\(645\) 10.2806 + 5.79805i 0.404798 + 0.228298i
\(646\) −2.33935 3.94382i −0.0920404 0.155167i
\(647\) −29.0538 29.0538i −1.14222 1.14222i −0.988043 0.154178i \(-0.950727\pi\)
−0.154178 0.988043i \(-0.549273\pi\)
\(648\) −21.5940 + 23.1771i −0.848291 + 0.910483i
\(649\) 1.73068 + 1.73068i 0.0679352 + 0.0679352i
\(650\) −2.87689 + 0.870273i −0.112841 + 0.0341349i
\(651\) −43.2835 −1.69641
\(652\) −1.48667 5.06755i −0.0582225 0.198461i
\(653\) 15.9494i 0.624150i 0.950057 + 0.312075i \(0.101024\pi\)
−0.950057 + 0.312075i \(0.898976\pi\)
\(654\) 0.665935 + 1.12268i 0.0260401 + 0.0439001i
\(655\) −4.16867 14.9528i −0.162883 0.584254i
\(656\) 10.2049 + 23.4917i 0.398435 + 0.917197i
\(657\) 4.40268 + 4.40268i 0.171765 + 0.171765i
\(658\) −39.7500 10.1506i −1.54961 0.395710i
\(659\) 2.75615 2.75615i 0.107365 0.107365i −0.651384 0.758748i \(-0.725811\pi\)
0.758748 + 0.651384i \(0.225811\pi\)
\(660\) −40.9640 + 25.5256i −1.59452 + 0.993584i
\(661\) 34.4292i 1.33914i −0.742749 0.669570i \(-0.766479\pi\)
0.742749 0.669570i \(-0.233521\pi\)
\(662\) 21.0843 12.5066i 0.819466 0.486081i
\(663\) −2.94266 −0.114283
\(664\) −21.6855 + 0.766821i −0.841562 + 0.0297584i
\(665\) −6.38329 3.60005i −0.247533 0.139604i
\(666\) 6.59509 3.91200i 0.255554 0.151587i
\(667\) 35.9432i 1.39172i
\(668\) −21.4494 + 39.2597i −0.829903 + 1.51900i
\(669\) −0.635318 0.635318i −0.0245628 0.0245628i
\(670\) 13.1546 0.287706i 0.508205 0.0111151i
\(671\) 0.770200 0.770200i 0.0297332 0.0297332i
\(672\) −12.4786 37.5662i −0.481374 1.44915i
\(673\) −25.2810 −0.974512 −0.487256 0.873259i \(-0.662002\pi\)
−0.487256 + 0.873259i \(0.662002\pi\)
\(674\) 22.5470 + 38.0111i 0.868477 + 1.46413i
\(675\) −15.2548 + 9.22251i −0.587156 + 0.354975i
\(676\) −22.4996 12.2926i −0.865369 0.472792i
\(677\) −11.4071 + 11.4071i −0.438412 + 0.438412i −0.891477 0.453066i \(-0.850330\pi\)
0.453066 + 0.891477i \(0.350330\pi\)
\(678\) −12.3423 20.8074i −0.474003 0.799104i
\(679\) 44.4170 1.70457
\(680\) 9.74332 18.7992i 0.373639 0.720917i
\(681\) 18.3642 0.703719
\(682\) 23.2924 + 39.2678i 0.891912 + 1.50364i
\(683\) 38.2037i 1.46182i 0.682472 + 0.730911i \(0.260905\pi\)
−0.682472 + 0.730911i \(0.739095\pi\)
\(684\) −0.695692 2.37138i −0.0266004 0.0906719i
\(685\) 8.36043 2.33079i 0.319436 0.0890550i
\(686\) 11.8156 + 3.01724i 0.451122 + 0.115199i
\(687\) −12.9938 + 12.9938i −0.495743 + 0.495743i
\(688\) 9.97622 + 2.17512i 0.380340 + 0.0829257i
\(689\) −3.96173 −0.150930
\(690\) 35.5034 + 33.9836i 1.35159 + 1.29373i
\(691\) −25.6067 + 25.6067i −0.974123 + 0.974123i −0.999674 0.0255504i \(-0.991866\pi\)
0.0255504 + 0.999674i \(0.491866\pi\)
\(692\) 8.61775 + 29.3750i 0.327598 + 1.11667i
\(693\) −15.9348 + 15.9348i −0.605311 + 0.605311i
\(694\) 1.50211 5.88230i 0.0570192 0.223289i
\(695\) −11.3918 40.8617i −0.432115 1.54997i
\(696\) −27.9526 + 0.988430i −1.05954 + 0.0374664i
\(697\) −3.43475 + 21.1602i −0.130100 + 0.801500i
\(698\) −7.12794 + 27.9133i −0.269796 + 1.05653i
\(699\) 37.7558i 1.42805i
\(700\) −1.47956 33.8083i −0.0559223 1.27783i
\(701\) 48.7303 1.84052 0.920259 0.391310i \(-0.127978\pi\)
0.920259 + 0.391310i \(0.127978\pi\)
\(702\) 2.07650 + 0.530255i 0.0783723 + 0.0200132i
\(703\) 4.11578i 0.155230i
\(704\) −27.3658 + 31.5367i −1.03139 + 1.18858i
\(705\) −10.6444 38.1808i −0.400890 1.43797i
\(706\) −6.94703 11.7117i −0.261455 0.440777i
\(707\) −27.0822 + 27.0822i −1.01853 + 1.01853i
\(708\) −1.70193 0.929843i −0.0639623 0.0349456i
\(709\) 10.2025 + 10.2025i 0.383163 + 0.383163i 0.872240 0.489077i \(-0.162666\pi\)
−0.489077 + 0.872240i \(0.662666\pi\)
\(710\) 18.1194 + 17.3438i 0.680010 + 0.650901i
\(711\) −13.7813 + 13.7813i −0.516838 + 0.516838i
\(712\) 10.3090 0.364536i 0.386346 0.0136616i
\(713\) 32.8728 32.8728i 1.23110 1.23110i
\(714\) 8.19742 32.1014i 0.306781 1.20136i
\(715\) 4.32097 + 2.43694i 0.161595 + 0.0911365i
\(716\) −6.01306 20.4965i −0.224718 0.765989i
\(717\) −9.77897 + 9.77897i −0.365202 + 0.365202i
\(718\) 8.87383 34.7502i 0.331168 1.29687i
\(719\) 2.55264 + 2.55264i 0.0951974 + 0.0951974i 0.753102 0.657904i \(-0.228557\pi\)
−0.657904 + 0.753102i \(0.728557\pi\)
\(720\) 7.59471 8.51756i 0.283038 0.317431i
\(721\) −16.4669 16.4669i −0.613260 0.613260i
\(722\) 24.7494 + 6.32001i 0.921077 + 0.235207i
\(723\) 38.4755i 1.43092i
\(724\) 12.0251 + 40.9896i 0.446910 + 1.52336i
\(725\) −23.2168 5.72162i −0.862251 0.212496i
\(726\) 46.0184 + 11.7513i 1.70790 + 0.436131i
\(727\) 21.0340i 0.780108i −0.920792 0.390054i \(-0.872456\pi\)
0.920792 0.390054i \(-0.127544\pi\)
\(728\) −2.77341 + 2.97674i −0.102789 + 0.110325i
\(729\) 7.82694 0.289887
\(730\) 11.1481 + 10.6709i 0.412610 + 0.394948i
\(731\) 6.04298 + 6.04298i 0.223508 + 0.223508i
\(732\) −0.413805 + 0.757402i −0.0152947 + 0.0279944i
\(733\) 15.6779 + 15.6779i 0.579076 + 0.579076i 0.934649 0.355572i \(-0.115714\pi\)
−0.355572 + 0.934649i \(0.615714\pi\)
\(734\) −19.0927 + 11.3252i −0.704723 + 0.418019i
\(735\) −5.52793 19.8284i −0.203901 0.731381i
\(736\) 38.0079 + 19.0534i 1.40099 + 0.702318i
\(737\) −15.3560 15.3560i −0.565647 0.565647i
\(738\) −4.61525 + 10.5917i −0.169890 + 0.389885i
\(739\) −17.4890 −0.643342 −0.321671 0.946852i \(-0.604244\pi\)
−0.321671 + 0.946852i \(0.604244\pi\)
\(740\) 16.1301 10.0511i 0.592955 0.369484i
\(741\) −0.601922 + 0.601922i −0.0221122 + 0.0221122i
\(742\) 11.0363 43.2184i 0.405154 1.58660i
\(743\) −5.66456 + 5.66456i −0.207813 + 0.207813i −0.803337 0.595524i \(-0.796944\pi\)
0.595524 + 0.803337i \(0.296944\pi\)
\(744\) −26.4688 24.6608i −0.970393 0.904109i
\(745\) 38.0617 + 21.4661i 1.39447 + 0.786455i
\(746\) 20.0242 + 33.7580i 0.733137 + 1.23597i
\(747\) −6.92133 6.92133i −0.253238 0.253238i
\(748\) −33.5345 + 9.83802i −1.22614 + 0.359713i
\(749\) −2.48461 2.48461i −0.0907857 0.0907857i
\(750\) 27.6027 17.5231i 1.00791 0.639852i
\(751\) 29.8104 + 29.8104i 1.08780 + 1.08780i 0.995755 + 0.0920412i \(0.0293391\pi\)
0.0920412 + 0.995755i \(0.470661\pi\)
\(752\) −18.5247 28.8549i −0.675525 1.05223i
\(753\) 13.6232 0.496457
\(754\) 1.46662 + 2.47252i 0.0534111 + 0.0900438i
\(755\) 16.2219 28.7632i 0.590374 1.04680i
\(756\) −11.5691 + 21.1753i −0.420763 + 0.770138i
\(757\) 9.54778i 0.347020i 0.984832 + 0.173510i \(0.0555109\pi\)
−0.984832 + 0.173510i \(0.944489\pi\)
\(758\) 10.0814 39.4792i 0.366174 1.43395i
\(759\) 81.1160i 2.94433i
\(760\) −1.85239 5.83839i −0.0671932 0.211781i
\(761\) 45.4193 1.64645 0.823225 0.567716i \(-0.192173\pi\)
0.823225 + 0.567716i \(0.192173\pi\)
\(762\) 31.7628 + 53.5478i 1.15065 + 1.93983i
\(763\) 1.06811 + 1.06811i 0.0386680 + 0.0386680i
\(764\) 52.5890 15.4280i 1.90260 0.558167i
\(765\) 9.20057 2.56501i 0.332647 0.0927383i
\(766\) −17.9117 4.57394i −0.647177 0.165263i
\(767\) 0.199329i 0.00719736i
\(768\) 13.7724 30.0823i 0.496970 1.08550i
\(769\) 3.30422i 0.119153i 0.998224 + 0.0595767i \(0.0189751\pi\)
−0.998224 + 0.0595767i \(0.981025\pi\)
\(770\) −38.6215 + 40.3487i −1.39182 + 1.45407i
\(771\) 26.3962 0.950637
\(772\) 4.79911 8.78399i 0.172724 0.316143i
\(773\) 29.3349 1.05510 0.527551 0.849523i \(-0.323110\pi\)
0.527551 + 0.849523i \(0.323110\pi\)
\(774\) 2.34978 + 3.96141i 0.0844611 + 0.142390i
\(775\) −16.0007 26.4664i −0.574762 0.950702i
\(776\) 27.1620 + 25.3066i 0.975058 + 0.908455i
\(777\) 21.0280 21.0280i 0.754374 0.754374i
\(778\) 12.5717 49.2312i 0.450717 1.76502i
\(779\) 3.62575 + 5.03091i 0.129906 + 0.180251i
\(780\) −3.82893 0.889048i −0.137098 0.0318330i
\(781\) 41.3982i 1.48134i
\(782\) 18.1545 + 30.6060i 0.649203 + 1.09447i
\(783\) 12.0560 + 12.0560i 0.430846 + 0.430846i
\(784\) −9.62040 14.9852i −0.343586 0.535185i
\(785\) 11.4117 + 40.9333i 0.407302 + 1.46097i
\(786\) 5.02290 19.6698i 0.179161 0.701600i
\(787\) −16.1923 16.1923i −0.577195 0.577195i 0.356935 0.934129i \(-0.383822\pi\)
−0.934129 + 0.356935i \(0.883822\pi\)
\(788\) 1.93072 0.566415i 0.0687789 0.0201777i
\(789\) 9.98370i 0.355429i
\(790\) −33.4021 + 34.8958i −1.18839 + 1.24154i
\(791\) −19.7960 19.7960i −0.703865 0.703865i
\(792\) −18.8233 + 0.665610i −0.668857 + 0.0236514i
\(793\) 0.0887068 0.00315007
\(794\) 11.3716 44.5315i 0.403563 1.58037i
\(795\) 41.5122 11.5731i 1.47229 0.410457i
\(796\) 2.74365 + 9.35219i 0.0972463 + 0.331479i
\(797\) 1.10655 + 1.10655i 0.0391960 + 0.0391960i 0.726433 0.687237i \(-0.241177\pi\)
−0.687237 + 0.726433i \(0.741177\pi\)
\(798\) −4.88957 8.24314i −0.173089 0.291804i
\(799\) 28.6996i 1.01532i
\(800\) 18.3575 21.5175i 0.649036 0.760758i
\(801\) 3.29030 + 3.29030i 0.116257 + 0.116257i
\(802\) −41.3480 10.5586i −1.46005 0.372838i
\(803\) 25.4705i 0.898835i
\(804\) 15.1009 + 8.25033i 0.532567 + 0.290967i
\(805\) 49.5374 + 27.9381i 1.74597 + 0.984690i
\(806\) −0.919972 + 3.60264i −0.0324046 + 0.126898i
\(807\) 25.9035i 0.911846i
\(808\) −31.9915 + 1.13125i −1.12546 + 0.0397972i
\(809\) −14.4832 14.4832i −0.509204 0.509204i 0.405078 0.914282i \(-0.367244\pi\)
−0.914282 + 0.405078i \(0.867244\pi\)
\(810\) −35.4083 + 0.774423i −1.24412 + 0.0272105i
\(811\) −7.05461 −0.247721 −0.123860 0.992300i \(-0.539527\pi\)
−0.123860 + 0.992300i \(0.539527\pi\)
\(812\) −31.0582 + 9.11156i −1.08993 + 0.319753i
\(813\) 17.4645i 0.612508i
\(814\) −30.3930 7.76116i −1.06527 0.272029i
\(815\) 2.90052 5.14294i 0.101601 0.180149i
\(816\) 23.3027 14.9602i 0.815758 0.523712i
\(817\) 2.47219 0.0864909
\(818\) −33.3453 8.51507i −1.16589 0.297723i
\(819\) −1.83526 −0.0641293
\(820\) −10.8622 + 26.4955i −0.379326 + 0.925263i
\(821\) 14.8675 0.518880 0.259440 0.965759i \(-0.416462\pi\)
0.259440 + 0.965759i \(0.416462\pi\)
\(822\) 10.9978 + 2.80841i 0.383594 + 0.0979546i
\(823\) −37.3427 −1.30168 −0.650842 0.759213i \(-0.725584\pi\)
−0.650842 + 0.759213i \(0.725584\pi\)
\(824\) −0.687838 19.4519i −0.0239620 0.677640i
\(825\) −52.3954 12.9125i −1.82417 0.449555i
\(826\) −2.17447 0.555275i −0.0756596 0.0193205i
\(827\) 39.4208i 1.37080i 0.728169 + 0.685398i \(0.240372\pi\)
−0.728169 + 0.685398i \(0.759628\pi\)
\(828\) 5.39891 + 18.4031i 0.187625 + 0.639550i
\(829\) −19.0341 −0.661080 −0.330540 0.943792i \(-0.607231\pi\)
−0.330540 + 0.943792i \(0.607231\pi\)
\(830\) −17.5256 16.7754i −0.608324 0.582284i
\(831\) −36.8370 36.8370i −1.27786 1.27786i
\(832\) −3.39200 + 0.240189i −0.117597 + 0.00832706i
\(833\) 14.9045i 0.516412i
\(834\) 13.7261 53.7521i 0.475298 1.86128i
\(835\) −48.1802 + 13.4321i −1.66734 + 0.464836i
\(836\) −4.84712 + 8.87186i −0.167641 + 0.306840i
\(837\) 22.0522i 0.762237i
\(838\) 43.3400 + 11.0673i 1.49716 + 0.382314i
\(839\) −17.9725 17.9725i −0.620480 0.620480i 0.325174 0.945654i \(-0.394577\pi\)
−0.945654 + 0.325174i \(0.894577\pi\)
\(840\) 20.3649 39.2930i 0.702656 1.35574i
\(841\) 6.12968i 0.211368i
\(842\) −10.3951 17.5247i −0.358239 0.603942i
\(843\) 46.1745 + 46.1745i 1.59033 + 1.59033i
\(844\) 13.1445 3.85622i 0.452454 0.132737i
\(845\) −7.69789 27.6119i −0.264815 0.949879i
\(846\) 3.82701 14.9867i 0.131575 0.515254i
\(847\) 54.9617 1.88851
\(848\) 31.3726 20.1411i 1.07734 0.691647i
\(849\) −27.5663 27.5663i −0.946071 0.946071i
\(850\) 22.6593 6.85454i 0.777208 0.235109i
\(851\) 31.9405i 1.09491i
\(852\) 9.23417 + 31.4761i 0.316357 + 1.07836i
\(853\) 20.2190 + 20.2190i 0.692286 + 0.692286i 0.962735 0.270448i \(-0.0871719\pi\)
−0.270448 + 0.962735i \(0.587172\pi\)
\(854\) −0.247112 + 0.967699i −0.00845600 + 0.0331140i
\(855\) 1.35731 2.40666i 0.0464189 0.0823059i
\(856\) −0.103784 2.93500i −0.00354728 0.100316i
\(857\) −11.0226 11.0226i −0.376526 0.376526i 0.493321 0.869847i \(-0.335783\pi\)
−0.869847 + 0.493321i \(0.835783\pi\)
\(858\) 3.30985 + 5.57995i 0.112996 + 0.190496i
\(859\) 43.7306i 1.49207i −0.665908 0.746034i \(-0.731956\pi\)
0.665908 0.746034i \(-0.268044\pi\)
\(860\) 6.03727 + 9.68873i 0.205869 + 0.330383i
\(861\) −7.17911 + 44.2278i −0.244663 + 1.50728i
\(862\) 1.04267 4.08315i 0.0355136 0.139073i
\(863\) 25.3477 25.3477i 0.862844 0.862844i −0.128823 0.991668i \(-0.541120\pi\)
0.991668 + 0.128823i \(0.0411200\pi\)
\(864\) −19.1394 + 6.35767i −0.651135 + 0.216292i
\(865\) −16.8134 + 29.8120i −0.571672 + 1.01364i
\(866\) −9.70728 16.3651i −0.329867 0.556110i
\(867\) −11.9756 −0.406713
\(868\) −36.7383 20.0719i −1.24698 0.681284i
\(869\) 79.7279 2.70458
\(870\) −22.5905 21.6235i −0.765890 0.733105i
\(871\) 1.76861i 0.0599272i
\(872\) 0.0446157 + 1.26172i 0.00151088 + 0.0427274i
\(873\) 16.7463i 0.566776i
\(874\) 9.97398 + 2.54696i 0.337375 + 0.0861522i
\(875\) 25.9318 27.5505i 0.876654 0.931376i
\(876\) 5.68139 + 19.3659i 0.191956 + 0.654314i
\(877\) 2.43394 + 2.43394i 0.0821884 + 0.0821884i 0.747006 0.664817i \(-0.231491\pi\)
−0.664817 + 0.747006i \(0.731491\pi\)
\(878\) −5.42630 9.14799i −0.183129 0.308730i
\(879\) −32.5669 −1.09845
\(880\) −46.6067 + 2.66946i −1.57111 + 0.0899876i
\(881\) 45.4208i 1.53026i 0.643873 + 0.765132i \(0.277326\pi\)
−0.643873 + 0.765132i \(0.722674\pi\)
\(882\) 1.98748 7.78303i 0.0669219 0.262068i
\(883\) 19.5241i 0.657039i 0.944497 + 0.328519i \(0.106550\pi\)
−0.944497 + 0.328519i \(0.893450\pi\)
\(884\) −2.49768 1.36460i −0.0840062 0.0458966i
\(885\) −0.582287 2.08863i −0.0195734 0.0702086i
\(886\) −18.1829 30.6538i −0.610865 1.02984i
\(887\) 34.7765 1.16768 0.583840 0.811869i \(-0.301550\pi\)
0.583840 + 0.811869i \(0.301550\pi\)
\(888\) 24.8398 0.878358i 0.833568 0.0294758i
\(889\) 50.9450 + 50.9450i 1.70864 + 1.70864i
\(890\) 8.33144 + 7.97480i 0.279270 + 0.267316i
\(891\) 41.3341 + 41.3341i 1.38474 + 1.38474i
\(892\) −0.244631 0.833865i −0.00819086 0.0279199i
\(893\) −5.87052 5.87052i −0.196449 0.196449i
\(894\) 29.1551 + 49.1515i 0.975092 + 1.64387i
\(895\) 11.7316 20.8014i 0.392143 0.695314i
\(896\) 6.82895 37.6723i 0.228139 1.25854i
\(897\) 4.67122 4.67122i 0.155967 0.155967i
\(898\) −1.75119 + 6.85773i −0.0584380 + 0.228845i
\(899\) −20.9167 + 20.9167i −0.697610 + 0.697610i
\(900\) 12.7465 0.557832i 0.424885 0.0185944i
\(901\) 31.2038 1.03955
\(902\) 43.9878 17.2875i 1.46464 0.575611i
\(903\) 12.6307 + 12.6307i 0.420322 + 0.420322i
\(904\) −0.826898 23.3845i −0.0275022 0.777757i
\(905\) −23.4612 + 41.5994i −0.779877 + 1.38281i
\(906\) 37.1437 22.0325i 1.23402 0.731980i
\(907\) −11.4830 11.4830i −0.381288 0.381288i 0.490278 0.871566i \(-0.336895\pi\)
−0.871566 + 0.490278i \(0.836895\pi\)
\(908\) 15.5873 + 8.51607i 0.517282 + 0.282616i
\(909\) −10.2107 10.2107i −0.338666 0.338666i
\(910\) −4.54765 + 0.0994626i −0.150753 + 0.00329715i
\(911\) −24.0407 −0.796505 −0.398252 0.917276i \(-0.630383\pi\)
−0.398252 + 0.917276i \(0.630383\pi\)
\(912\) 1.70646 7.82670i 0.0565065 0.259168i
\(913\) 40.0415i 1.32518i
\(914\) 4.49453 + 1.14772i 0.148666 + 0.0379634i
\(915\) −0.929498 + 0.259133i −0.0307282 + 0.00856669i
\(916\) −17.0545 + 5.00329i −0.563497 + 0.165313i
\(917\) 23.4925i 0.775791i
\(918\) −16.3551 4.17645i −0.539800 0.137844i
\(919\) −39.5730 39.5730i −1.30539 1.30539i −0.924704 0.380687i \(-0.875687\pi\)
−0.380687 0.924704i \(-0.624313\pi\)
\(920\) 14.3755 + 45.3088i 0.473945 + 1.49379i
\(921\) −9.34291 9.34291i −0.307859 0.307859i
\(922\) 11.0774 43.3794i 0.364814 1.42862i
\(923\) 2.38399 2.38399i 0.0784700 0.0784700i
\(924\) −70.0917 + 20.5628i −2.30585 + 0.676468i
\(925\) 20.6314 + 5.08446i 0.678356 + 0.167176i
\(926\) −8.52650 + 33.3901i −0.280198 + 1.09727i
\(927\) 6.20843 6.20843i 0.203912 0.203912i
\(928\) −24.1841 12.1235i −0.793882 0.397974i
\(929\) −6.05660 + 6.05660i −0.198711 + 0.198711i −0.799447 0.600737i \(-0.794874\pi\)
0.600737 + 0.799447i \(0.294874\pi\)
\(930\) −0.884409 40.4371i −0.0290009 1.32598i
\(931\) −3.04873 3.04873i −0.0999181 0.0999181i
\(932\) −17.5085 + 32.0465i −0.573511 + 1.04972i
\(933\) 3.43354 3.43354i 0.112409 0.112409i
\(934\) −16.3133 27.5020i −0.533788 0.899894i
\(935\) −34.0333 19.1941i −1.11301 0.627715i
\(936\) −1.12230 1.04564i −0.0366837 0.0341779i
\(937\) 25.7234i 0.840348i −0.907444 0.420174i \(-0.861969\pi\)
0.907444 0.420174i \(-0.138031\pi\)
\(938\) 19.2937 + 4.92686i 0.629963 + 0.160868i
\(939\) 30.7525 1.00357
\(940\) 8.67084 37.3433i 0.282812 1.21801i
\(941\) 16.8282i 0.548585i 0.961646 + 0.274293i \(0.0884437\pi\)
−0.961646 + 0.274293i \(0.911556\pi\)
\(942\) −13.7502 + 53.8462i −0.448006 + 1.75441i
\(943\) −28.1376 39.0423i −0.916287 1.27139i
\(944\) −1.01337 1.57847i −0.0329824 0.0513749i
\(945\) −25.9867 + 7.24480i −0.845347 + 0.235673i
\(946\) 4.66182 18.2559i 0.151569 0.593549i
\(947\) 2.13068 2.13068i 0.0692377 0.0692377i −0.671640 0.740878i \(-0.734410\pi\)
0.740878 + 0.671640i \(0.234410\pi\)
\(948\) −60.6192 + 17.7839i −1.96882 + 0.577594i
\(949\) 1.46677 1.46677i 0.0476133 0.0476133i
\(950\) 3.23287 6.03707i 0.104888 0.195868i
\(951\) 13.5481 0.439327
\(952\) 21.8442 23.4457i 0.707976 0.759881i
\(953\) −28.9977 + 28.9977i −0.939327 + 0.939327i −0.998262 0.0589353i \(-0.981229\pi\)
0.0589353 + 0.998262i \(0.481229\pi\)
\(954\) 16.2944 + 4.16094i 0.527550 + 0.134715i
\(955\) 53.3713 + 30.1004i 1.72706 + 0.974025i
\(956\) −12.8350 + 3.76542i −0.415115 + 0.121782i
\(957\) 51.6134i 1.66843i
\(958\) 16.2494 + 27.3942i 0.524994 + 0.885067i
\(959\) 13.1352 0.424157
\(960\) 34.8408 12.4256i 1.12448 0.401035i
\(961\) −7.25979 −0.234187
\(962\) −1.30329 2.19718i −0.0420199 0.0708398i
\(963\) 0.936759 0.936759i 0.0301866 0.0301866i
\(964\) −17.8423 + 32.6574i −0.574661 + 1.05182i
\(965\) 10.7799 3.00530i 0.347016 0.0967441i
\(966\) 37.9454 + 63.9708i 1.22087 + 2.05823i
\(967\) −6.48310 −0.208482 −0.104241 0.994552i \(-0.533241\pi\)
−0.104241 + 0.994552i \(0.533241\pi\)
\(968\) 33.6103 + 31.3145i 1.08027 + 1.00649i
\(969\) 4.74093 4.74093i 0.152301 0.152301i
\(970\) 0.907570 + 41.4961i 0.0291403 + 1.33236i
\(971\) 3.85798 + 3.85798i 0.123809 + 0.123809i 0.766296 0.642488i \(-0.222098\pi\)
−0.642488 + 0.766296i \(0.722098\pi\)
\(972\) −21.8752 11.9514i −0.701647 0.383343i
\(973\) 64.1983i 2.05810i
\(974\) −17.5331 + 10.4001i −0.561797 + 0.333240i
\(975\) −2.27370 3.76088i −0.0728166 0.120444i
\(976\) −0.702462 + 0.450977i −0.0224853 + 0.0144354i
\(977\) −24.7565 −0.792032 −0.396016 0.918244i \(-0.629607\pi\)
−0.396016 + 0.918244i \(0.629607\pi\)
\(978\) 6.64141 3.93947i 0.212369 0.125970i
\(979\) 19.0352i 0.608366i
\(980\) 4.50302 19.3935i 0.143844 0.619502i
\(981\) −0.402702 + 0.402702i −0.0128573 + 0.0128573i
\(982\) 22.0362 + 5.62717i 0.703203 + 0.179570i
\(983\) −18.0539 18.0539i −0.575830 0.575830i 0.357922 0.933752i \(-0.383485\pi\)
−0.933752 + 0.357922i \(0.883485\pi\)
\(984\) −29.5890 + 22.9560i −0.943264 + 0.731810i
\(985\) 1.95944 + 1.10508i 0.0624329 + 0.0352109i
\(986\) −11.5515 19.4743i −0.367876 0.620189i
\(987\) 59.9862i 1.90938i
\(988\) −0.790032 + 0.231772i −0.0251343 + 0.00737365i
\(989\) −19.1854 −0.610060
\(990\) −15.2125 14.5613i −0.483484 0.462788i
\(991\) −20.1485 20.1485i −0.640040 0.640040i 0.310525 0.950565i \(-0.399495\pi\)
−0.950565 + 0.310525i \(0.899495\pi\)
\(992\) −11.0303 33.2061i −0.350213 1.05429i
\(993\) 25.3458 + 25.3458i 0.804325 + 0.804325i
\(994\) 19.3658 + 32.6480i 0.614244 + 1.03553i
\(995\) −5.35291 + 9.49132i −0.169699 + 0.300895i
\(996\) −8.93156 30.4446i −0.283007 0.964676i
\(997\) −41.2931 −1.30777 −0.653883 0.756596i \(-0.726861\pi\)
−0.653883 + 0.756596i \(0.726861\pi\)
\(998\) −16.8041 28.3293i −0.531923 0.896749i
\(999\) −10.7134 10.7134i −0.338957 0.338957i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.s.c.647.54 yes 240
4.3 odd 2 inner 820.2.s.c.647.8 yes 240
5.3 odd 4 820.2.j.c.483.113 yes 240
20.3 even 4 820.2.j.c.483.67 240
41.9 even 4 820.2.j.c.747.67 yes 240
164.91 odd 4 820.2.j.c.747.113 yes 240
205.173 odd 4 inner 820.2.s.c.583.8 yes 240
820.583 even 4 inner 820.2.s.c.583.54 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.j.c.483.67 240 20.3 even 4
820.2.j.c.483.113 yes 240 5.3 odd 4
820.2.j.c.747.67 yes 240 41.9 even 4
820.2.j.c.747.113 yes 240 164.91 odd 4
820.2.s.c.583.8 yes 240 205.173 odd 4 inner
820.2.s.c.583.54 yes 240 820.583 even 4 inner
820.2.s.c.647.8 yes 240 4.3 odd 2 inner
820.2.s.c.647.54 yes 240 1.1 even 1 trivial