Properties

Label 820.2.s.c.583.8
Level $820$
Weight $2$
Character 820.583
Analytic conductor $6.548$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(583,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.583"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(120\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 583.8
Character \(\chi\) \(=\) 820.583
Dual form 820.2.s.c.647.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37024 - 0.349906i) q^{2} +2.06782 q^{3} +(1.75513 + 0.958912i) q^{4} +(-0.600491 + 2.15393i) q^{5} +(-2.83341 - 0.723542i) q^{6} -3.38406i q^{7} +(-2.06943 - 1.92807i) q^{8} +1.27587 q^{9} +(1.57649 - 2.74129i) q^{10} +(3.69062 - 3.69062i) q^{11} +(3.62929 + 1.98286i) q^{12} +0.425062i q^{13} +(-1.18410 + 4.63699i) q^{14} +(-1.24171 + 4.45394i) q^{15} +(2.16098 + 3.36603i) q^{16} -3.34792i q^{17} +(-1.74826 - 0.446436i) q^{18} +(-0.684819 + 0.684819i) q^{19} +(-3.11937 + 3.20461i) q^{20} -6.99763i q^{21} +(-6.34841 + 3.76568i) q^{22} +(5.31453 - 5.31453i) q^{23} +(-4.27920 - 3.98691i) q^{24} +(-4.27882 - 2.58683i) q^{25} +(0.148732 - 0.582438i) q^{26} -3.56518 q^{27} +(3.24502 - 5.93948i) q^{28} +(3.38159 - 3.38159i) q^{29} +(3.25990 - 5.66849i) q^{30} +6.18545i q^{31} +(-1.78327 - 5.36842i) q^{32} +(7.63153 - 7.63153i) q^{33} +(-1.17146 + 4.58747i) q^{34} +(7.28903 + 2.03210i) q^{35} +(2.23933 + 1.22345i) q^{36} +(-3.00501 + 3.00501i) q^{37} +(1.17799 - 0.698746i) q^{38} +0.878951i q^{39} +(5.39561 - 3.29961i) q^{40} +(6.32040 - 1.02593i) q^{41} +(-2.44851 + 9.58845i) q^{42} +(-1.80499 - 1.80499i) q^{43} +(10.0165 - 2.93854i) q^{44} +(-0.766151 + 2.74814i) q^{45} +(-9.14179 + 5.42262i) q^{46} +8.57237 q^{47} +(4.46851 + 6.96035i) q^{48} -4.45188 q^{49} +(4.95788 + 5.04177i) q^{50} -6.92289i q^{51} +(-0.407597 + 0.746040i) q^{52} +9.32035i q^{53} +(4.88516 + 1.24748i) q^{54} +(5.73315 + 10.1655i) q^{55} +(-6.52472 + 7.00308i) q^{56} +(-1.41608 + 1.41608i) q^{57} +(-5.81684 + 3.45036i) q^{58} +0.468941 q^{59} +(-6.45029 + 6.62656i) q^{60} -0.208691i q^{61} +(2.16432 - 8.47557i) q^{62} -4.31764i q^{63} +(0.565069 + 7.98002i) q^{64} +(-0.915554 - 0.255246i) q^{65} +(-13.1274 + 7.78673i) q^{66} -4.16083 q^{67} +(3.21036 - 5.87604i) q^{68} +(10.9895 - 10.9895i) q^{69} +(-9.27670 - 5.33494i) q^{70} +(-5.60857 + 5.60857i) q^{71} +(-2.64033 - 2.45998i) q^{72} +(3.45071 - 3.45071i) q^{73} +(5.16907 - 3.06613i) q^{74} +(-8.84783 - 5.34910i) q^{75} +(-1.85863 + 0.545267i) q^{76} +(-12.4893 - 12.4893i) q^{77} +(0.307550 - 1.20438i) q^{78} +(10.8014 + 10.8014i) q^{79} +(-8.54784 + 2.63332i) q^{80} -11.1998 q^{81} +(-9.01946 - 0.805764i) q^{82} +(5.42477 - 5.42477i) q^{83} +(6.71011 - 12.2818i) q^{84} +(7.21119 + 2.01040i) q^{85} +(1.84170 + 3.10486i) q^{86} +(6.99252 - 6.99252i) q^{87} +(-14.7533 + 0.521689i) q^{88} +(2.57886 - 2.57886i) q^{89} +(2.01140 - 3.49754i) q^{90} +1.43844 q^{91} +(14.4239 - 4.23154i) q^{92} +12.7904i q^{93} +(-11.7462 - 2.99952i) q^{94} +(-1.06382 - 1.88628i) q^{95} +(-3.68747 - 11.1009i) q^{96} -13.1254i q^{97} +(6.10016 + 1.55774i) q^{98} +(4.70877 - 4.70877i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 4 q^{6} - 12 q^{8} + 240 q^{9} - 20 q^{10} + 8 q^{14} + 8 q^{16} - 12 q^{18} - 16 q^{20} - 12 q^{24} - 16 q^{25} - 30 q^{30} - 24 q^{33} + 20 q^{34} - 8 q^{37} - 4 q^{40} - 16 q^{41} + 84 q^{42}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37024 0.349906i −0.968908 0.247421i
\(3\) 2.06782 1.19386 0.596928 0.802295i \(-0.296388\pi\)
0.596928 + 0.802295i \(0.296388\pi\)
\(4\) 1.75513 + 0.958912i 0.877566 + 0.479456i
\(5\) −0.600491 + 2.15393i −0.268548 + 0.963266i
\(6\) −2.83341 0.723542i −1.15674 0.295385i
\(7\) 3.38406i 1.27906i −0.768768 0.639528i \(-0.779130\pi\)
0.768768 0.639528i \(-0.220870\pi\)
\(8\) −2.06943 1.92807i −0.731653 0.681677i
\(9\) 1.27587 0.425291
\(10\) 1.57649 2.74129i 0.498530 0.866872i
\(11\) 3.69062 3.69062i 1.11276 1.11276i 0.119988 0.992775i \(-0.461714\pi\)
0.992775 0.119988i \(-0.0382856\pi\)
\(12\) 3.62929 + 1.98286i 1.04769 + 0.572401i
\(13\) 0.425062i 0.117891i 0.998261 + 0.0589455i \(0.0187738\pi\)
−0.998261 + 0.0589455i \(0.981226\pi\)
\(14\) −1.18410 + 4.63699i −0.316465 + 1.23929i
\(15\) −1.24171 + 4.45394i −0.320607 + 1.15000i
\(16\) 2.16098 + 3.36603i 0.540244 + 0.841508i
\(17\) 3.34792i 0.811990i −0.913875 0.405995i \(-0.866925\pi\)
0.913875 0.405995i \(-0.133075\pi\)
\(18\) −1.74826 0.446436i −0.412068 0.105226i
\(19\) −0.684819 + 0.684819i −0.157108 + 0.157108i −0.781284 0.624176i \(-0.785435\pi\)
0.624176 + 0.781284i \(0.285435\pi\)
\(20\) −3.11937 + 3.20461i −0.697512 + 0.716573i
\(21\) 6.99763i 1.52701i
\(22\) −6.34841 + 3.76568i −1.35349 + 0.802845i
\(23\) 5.31453 5.31453i 1.10816 1.10816i 0.114764 0.993393i \(-0.463389\pi\)
0.993393 0.114764i \(-0.0366112\pi\)
\(24\) −4.27920 3.98691i −0.873489 0.813824i
\(25\) −4.27882 2.58683i −0.855764 0.517366i
\(26\) 0.148732 0.582438i 0.0291687 0.114226i
\(27\) −3.56518 −0.686119
\(28\) 3.24502 5.93948i 0.613251 1.12246i
\(29\) 3.38159 3.38159i 0.627946 0.627946i −0.319605 0.947551i \(-0.603550\pi\)
0.947551 + 0.319605i \(0.103550\pi\)
\(30\) 3.25990 5.66849i 0.595173 1.03492i
\(31\) 6.18545i 1.11094i 0.831537 + 0.555470i \(0.187462\pi\)
−0.831537 + 0.555470i \(0.812538\pi\)
\(32\) −1.78327 5.36842i −0.315240 0.949012i
\(33\) 7.63153 7.63153i 1.32848 1.32848i
\(34\) −1.17146 + 4.58747i −0.200903 + 0.786744i
\(35\) 7.28903 + 2.03210i 1.23207 + 0.343487i
\(36\) 2.23933 + 1.22345i 0.373221 + 0.203909i
\(37\) −3.00501 + 3.00501i −0.494021 + 0.494021i −0.909571 0.415549i \(-0.863589\pi\)
0.415549 + 0.909571i \(0.363589\pi\)
\(38\) 1.17799 0.698746i 0.191095 0.113352i
\(39\) 0.878951i 0.140745i
\(40\) 5.39561 3.29961i 0.853120 0.521714i
\(41\) 6.32040 1.02593i 0.987081 0.160224i
\(42\) −2.44851 + 9.58845i −0.377813 + 1.47953i
\(43\) −1.80499 1.80499i −0.275259 0.275259i 0.555954 0.831213i \(-0.312353\pi\)
−0.831213 + 0.555954i \(0.812353\pi\)
\(44\) 10.0165 2.93854i 1.51004 0.443002i
\(45\) −0.766151 + 2.74814i −0.114211 + 0.409669i
\(46\) −9.14179 + 5.42262i −1.34788 + 0.799521i
\(47\) 8.57237 1.25041 0.625204 0.780461i \(-0.285016\pi\)
0.625204 + 0.780461i \(0.285016\pi\)
\(48\) 4.46851 + 6.96035i 0.644973 + 1.00464i
\(49\) −4.45188 −0.635983
\(50\) 4.95788 + 5.04177i 0.701150 + 0.713014i
\(51\) 6.92289i 0.969399i
\(52\) −0.407597 + 0.746040i −0.0565235 + 0.103457i
\(53\) 9.32035i 1.28025i 0.768271 + 0.640124i \(0.221117\pi\)
−0.768271 + 0.640124i \(0.778883\pi\)
\(54\) 4.88516 + 1.24748i 0.664786 + 0.169760i
\(55\) 5.73315 + 10.1655i 0.773057 + 1.37072i
\(56\) −6.52472 + 7.00308i −0.871902 + 0.935825i
\(57\) −1.41608 + 1.41608i −0.187565 + 0.187565i
\(58\) −5.81684 + 3.45036i −0.763789 + 0.453055i
\(59\) 0.468941 0.0610509 0.0305255 0.999534i \(-0.490282\pi\)
0.0305255 + 0.999534i \(0.490282\pi\)
\(60\) −6.45029 + 6.62656i −0.832729 + 0.855485i
\(61\) 0.208691i 0.0267202i −0.999911 0.0133601i \(-0.995747\pi\)
0.999911 0.0133601i \(-0.00425278\pi\)
\(62\) 2.16432 8.47557i 0.274870 1.07640i
\(63\) 4.31764i 0.543971i
\(64\) 0.565069 + 7.98002i 0.0706336 + 0.997502i
\(65\) −0.915554 0.255246i −0.113560 0.0316594i
\(66\) −13.1274 + 7.78673i −1.61587 + 0.958481i
\(67\) −4.16083 −0.508327 −0.254163 0.967161i \(-0.581800\pi\)
−0.254163 + 0.967161i \(0.581800\pi\)
\(68\) 3.21036 5.87604i 0.389314 0.712575i
\(69\) 10.9895 10.9895i 1.32298 1.32298i
\(70\) −9.27670 5.33494i −1.10878 0.637648i
\(71\) −5.60857 + 5.60857i −0.665615 + 0.665615i −0.956698 0.291083i \(-0.905984\pi\)
0.291083 + 0.956698i \(0.405984\pi\)
\(72\) −2.64033 2.45998i −0.311166 0.289911i
\(73\) 3.45071 3.45071i 0.403875 0.403875i −0.475721 0.879596i \(-0.657813\pi\)
0.879596 + 0.475721i \(0.157813\pi\)
\(74\) 5.16907 3.06613i 0.600892 0.356430i
\(75\) −8.84783 5.34910i −1.02166 0.617660i
\(76\) −1.85863 + 0.545267i −0.213199 + 0.0625464i
\(77\) −12.4893 12.4893i −1.42329 1.42329i
\(78\) 0.307550 1.20438i 0.0348232 0.136369i
\(79\) 10.8014 + 10.8014i 1.21525 + 1.21525i 0.969275 + 0.245980i \(0.0791098\pi\)
0.245980 + 0.969275i \(0.420890\pi\)
\(80\) −8.54784 + 2.63332i −0.955678 + 0.294414i
\(81\) −11.1998 −1.24442
\(82\) −9.01946 0.805764i −0.996033 0.0889818i
\(83\) 5.42477 5.42477i 0.595446 0.595446i −0.343651 0.939097i \(-0.611664\pi\)
0.939097 + 0.343651i \(0.111664\pi\)
\(84\) 6.71011 12.2818i 0.732133 1.34005i
\(85\) 7.21119 + 2.01040i 0.782163 + 0.218058i
\(86\) 1.84170 + 3.10486i 0.198596 + 0.334805i
\(87\) 6.99252 6.99252i 0.749677 0.749677i
\(88\) −14.7533 + 0.521689i −1.57270 + 0.0556122i
\(89\) 2.57886 2.57886i 0.273358 0.273358i −0.557092 0.830451i \(-0.688083\pi\)
0.830451 + 0.557092i \(0.188083\pi\)
\(90\) 2.01140 3.49754i 0.212021 0.368673i
\(91\) 1.43844 0.150789
\(92\) 14.4239 4.23154i 1.50379 0.441168i
\(93\) 12.7904i 1.32630i
\(94\) −11.7462 2.99952i −1.21153 0.309377i
\(95\) −1.06382 1.88628i −0.109146 0.193528i
\(96\) −3.68747 11.1009i −0.376351 1.13298i
\(97\) 13.1254i 1.33268i −0.745649 0.666339i \(-0.767860\pi\)
0.745649 0.666339i \(-0.232140\pi\)
\(98\) 6.10016 + 1.55774i 0.616209 + 0.157355i
\(99\) 4.70877 4.70877i 0.473249 0.473249i
\(100\) −5.02935 8.64324i −0.502935 0.864324i
\(101\) −8.00287 + 8.00287i −0.796315 + 0.796315i −0.982512 0.186197i \(-0.940384\pi\)
0.186197 + 0.982512i \(0.440384\pi\)
\(102\) −2.42236 + 9.48605i −0.239849 + 0.939259i
\(103\) −4.86602 4.86602i −0.479463 0.479463i 0.425497 0.904960i \(-0.360099\pi\)
−0.904960 + 0.425497i \(0.860099\pi\)
\(104\) 0.819551 0.879636i 0.0803636 0.0862554i
\(105\) 15.0724 + 4.20201i 1.47092 + 0.410074i
\(106\) 3.26124 12.7711i 0.316760 1.24044i
\(107\) −0.734209 0.734209i −0.0709787 0.0709787i 0.670726 0.741705i \(-0.265983\pi\)
−0.741705 + 0.670726i \(0.765983\pi\)
\(108\) −6.25736 3.41869i −0.602115 0.328964i
\(109\) −0.315628 0.315628i −0.0302317 0.0302317i 0.691829 0.722061i \(-0.256805\pi\)
−0.722061 + 0.691829i \(0.756805\pi\)
\(110\) −4.29883 15.9353i −0.409878 1.51937i
\(111\) −6.21383 + 6.21383i −0.589790 + 0.589790i
\(112\) 11.3909 7.31288i 1.07634 0.691002i
\(113\) 5.84978 + 5.84978i 0.550301 + 0.550301i 0.926528 0.376227i \(-0.122779\pi\)
−0.376227 + 0.926528i \(0.622779\pi\)
\(114\) 2.43587 1.44488i 0.228140 0.135325i
\(115\) 8.25580 + 14.6385i 0.769857 + 1.36504i
\(116\) 9.17779 2.69249i 0.852136 0.249992i
\(117\) 0.542326i 0.0501380i
\(118\) −0.642563 0.164085i −0.0591527 0.0151053i
\(119\) −11.3296 −1.03858
\(120\) 11.1571 6.82300i 1.01850 0.622852i
\(121\) 16.2413i 1.47648i
\(122\) −0.0730223 + 0.285958i −0.00661113 + 0.0258894i
\(123\) 13.0694 2.12145i 1.17843 0.191284i
\(124\) −5.93130 + 10.8563i −0.532647 + 0.974923i
\(125\) 8.14124 7.66291i 0.728175 0.685391i
\(126\) −1.51077 + 5.91621i −0.134590 + 0.527058i
\(127\) 15.0544 + 15.0544i 1.33586 + 1.33586i 0.900027 + 0.435834i \(0.143547\pi\)
0.435834 + 0.900027i \(0.356453\pi\)
\(128\) 2.01797 11.1323i 0.178365 0.983964i
\(129\) −3.73240 3.73240i −0.328619 0.328619i
\(130\) 1.16522 + 0.670106i 0.102196 + 0.0587722i
\(131\) −6.94210 −0.606534 −0.303267 0.952906i \(-0.598077\pi\)
−0.303267 + 0.952906i \(0.598077\pi\)
\(132\) 20.7123 6.07638i 1.80277 0.528881i
\(133\) 2.31747 + 2.31747i 0.200950 + 0.200950i
\(134\) 5.70135 + 1.45590i 0.492522 + 0.125771i
\(135\) 2.14086 7.67914i 0.184256 0.660915i
\(136\) −6.45504 + 6.92828i −0.553515 + 0.594095i
\(137\) 3.88148i 0.331617i −0.986158 0.165809i \(-0.946977\pi\)
0.986158 0.165809i \(-0.0530234\pi\)
\(138\) −18.9036 + 11.2130i −1.60918 + 0.954513i
\(139\) −18.9708 −1.60908 −0.804540 0.593898i \(-0.797588\pi\)
−0.804540 + 0.593898i \(0.797588\pi\)
\(140\) 10.8446 + 10.5561i 0.916537 + 0.892157i
\(141\) 17.7261 1.49281
\(142\) 9.64758 5.72263i 0.809607 0.480233i
\(143\) 1.56874 + 1.56874i 0.131185 + 0.131185i
\(144\) 2.75713 + 4.29464i 0.229761 + 0.357886i
\(145\) 5.25309 + 9.31432i 0.436246 + 0.773512i
\(146\) −5.93574 + 3.52089i −0.491245 + 0.291391i
\(147\) −9.20568 −0.759272
\(148\) −8.15574 + 2.39265i −0.670398 + 0.196675i
\(149\) −13.8184 13.8184i −1.13205 1.13205i −0.989836 0.142212i \(-0.954578\pi\)
−0.142212 0.989836i \(-0.545422\pi\)
\(150\) 10.2520 + 10.4255i 0.837072 + 0.851236i
\(151\) −10.4426 + 10.4426i −0.849804 + 0.849804i −0.990108 0.140305i \(-0.955192\pi\)
0.140305 + 0.990108i \(0.455192\pi\)
\(152\) 2.73756 0.0968029i 0.222046 0.00785175i
\(153\) 4.27153i 0.345333i
\(154\) 12.7433 + 21.4834i 1.02688 + 1.73118i
\(155\) −13.3230 3.71431i −1.07013 0.298340i
\(156\) −0.842837 + 1.54268i −0.0674810 + 0.123513i
\(157\) −19.0040 −1.51669 −0.758343 0.651856i \(-0.773991\pi\)
−0.758343 + 0.651856i \(0.773991\pi\)
\(158\) −11.0211 18.5801i −0.876791 1.47815i
\(159\) 19.2728i 1.52843i
\(160\) 12.6340 0.617344i 0.998808 0.0488053i
\(161\) −17.9847 17.9847i −1.41739 1.41739i
\(162\) 15.3464 + 3.91886i 1.20573 + 0.307895i
\(163\) −1.86716 + 1.86716i −0.146247 + 0.146247i −0.776439 0.630192i \(-0.782976\pi\)
0.630192 + 0.776439i \(0.282976\pi\)
\(164\) 12.0769 + 4.26006i 0.943049 + 0.332654i
\(165\) 11.8551 + 21.0204i 0.922919 + 1.63644i
\(166\) −9.33142 + 5.53510i −0.724259 + 0.429607i
\(167\) 22.3685i 1.73093i −0.500972 0.865463i \(-0.667024\pi\)
0.500972 0.865463i \(-0.332976\pi\)
\(168\) −13.4919 + 14.4811i −1.04093 + 1.11724i
\(169\) 12.8193 0.986102
\(170\) −9.17763 5.27797i −0.703892 0.404802i
\(171\) −0.873743 + 0.873743i −0.0668168 + 0.0668168i
\(172\) −1.43717 4.89883i −0.109583 0.373532i
\(173\) −10.8233 + 10.8233i −0.822883 + 0.822883i −0.986520 0.163638i \(-0.947677\pi\)
0.163638 + 0.986520i \(0.447677\pi\)
\(174\) −12.0282 + 7.13473i −0.911853 + 0.540882i
\(175\) −8.75399 + 14.4798i −0.661740 + 1.09457i
\(176\) 20.3981 + 4.44741i 1.53756 + 0.335236i
\(177\) 0.969685 0.0728860
\(178\) −4.43602 + 2.63131i −0.332494 + 0.197225i
\(179\) −7.55200 + 7.55200i −0.564463 + 0.564463i −0.930572 0.366109i \(-0.880690\pi\)
0.366109 + 0.930572i \(0.380690\pi\)
\(180\) −3.97992 + 4.08868i −0.296646 + 0.304752i
\(181\) −15.1028 + 15.1028i −1.12258 + 1.12258i −0.131227 + 0.991352i \(0.541892\pi\)
−0.991352 + 0.131227i \(0.958108\pi\)
\(182\) −1.97101 0.503317i −0.146101 0.0373084i
\(183\) 0.431536i 0.0319001i
\(184\) −21.2449 + 0.751238i −1.56619 + 0.0553820i
\(185\) −4.66810 8.27707i −0.343206 0.608543i
\(186\) 4.47543 17.5259i 0.328155 1.28506i
\(187\) −12.3559 12.3559i −0.903553 0.903553i
\(188\) 15.0456 + 8.22014i 1.09732 + 0.599516i
\(189\) 12.0648i 0.877584i
\(190\) 0.797677 + 2.95690i 0.0578696 + 0.214516i
\(191\) 19.3766 + 19.3766i 1.40204 + 1.40204i 0.793591 + 0.608452i \(0.208209\pi\)
0.608452 + 0.793591i \(0.291791\pi\)
\(192\) 1.16846 + 16.5012i 0.0843263 + 1.19087i
\(193\) 5.00474i 0.360249i −0.983644 0.180125i \(-0.942350\pi\)
0.983644 0.180125i \(-0.0576501\pi\)
\(194\) −4.59264 + 17.9849i −0.329732 + 1.29124i
\(195\) −1.89320 0.527802i −0.135575 0.0377967i
\(196\) −7.81363 4.26896i −0.558117 0.304926i
\(197\) −0.711380 0.711380i −0.0506837 0.0506837i 0.681311 0.731994i \(-0.261410\pi\)
−0.731994 + 0.681311i \(0.761410\pi\)
\(198\) −8.09978 + 4.80453i −0.575626 + 0.341443i
\(199\) 3.44585 3.44585i 0.244270 0.244270i −0.574344 0.818614i \(-0.694743\pi\)
0.818614 + 0.574344i \(0.194743\pi\)
\(200\) 3.86712 + 13.6031i 0.273446 + 0.961887i
\(201\) −8.60385 −0.606869
\(202\) 13.7661 8.16563i 0.968581 0.574531i
\(203\) −11.4435 11.4435i −0.803177 0.803177i
\(204\) 6.63845 12.1506i 0.464784 0.850712i
\(205\) −1.58555 + 14.2298i −0.110740 + 0.993849i
\(206\) 4.96498 + 8.37028i 0.345927 + 0.583185i
\(207\) 6.78068 6.78068i 0.471290 0.471290i
\(208\) −1.43077 + 0.918549i −0.0992063 + 0.0636899i
\(209\) 5.05481i 0.349649i
\(210\) −19.1825 11.0317i −1.32372 0.761259i
\(211\) 4.84316 + 4.84316i 0.333417 + 0.333417i 0.853883 0.520466i \(-0.174242\pi\)
−0.520466 + 0.853883i \(0.674242\pi\)
\(212\) −8.93740 + 16.3584i −0.613823 + 1.12350i
\(213\) −11.5975 + 11.5975i −0.794648 + 0.794648i
\(214\) 0.749141 + 1.26295i 0.0512102 + 0.0863334i
\(215\) 4.97171 2.80395i 0.339068 0.191228i
\(216\) 7.37788 + 6.87393i 0.502001 + 0.467711i
\(217\) 20.9319 1.42095
\(218\) 0.322047 + 0.542927i 0.0218118 + 0.0367717i
\(219\) 7.13545 7.13545i 0.482169 0.482169i
\(220\) 0.314599 + 23.3394i 0.0212102 + 1.57354i
\(221\) 1.42307 0.0957263
\(222\) 10.6887 6.34020i 0.717379 0.425526i
\(223\) −0.307241 + 0.307241i −0.0205744 + 0.0205744i −0.717319 0.696745i \(-0.754631\pi\)
0.696745 + 0.717319i \(0.254631\pi\)
\(224\) −18.1671 + 6.03469i −1.21384 + 0.403210i
\(225\) −5.45924 3.30047i −0.363949 0.220031i
\(226\) −5.96875 10.0625i −0.397035 0.669347i
\(227\) 8.88097 0.589451 0.294725 0.955582i \(-0.404772\pi\)
0.294725 + 0.955582i \(0.404772\pi\)
\(228\) −3.84331 + 1.12751i −0.254529 + 0.0746713i
\(229\) 6.28380 + 6.28380i 0.415245 + 0.415245i 0.883561 0.468316i \(-0.155139\pi\)
−0.468316 + 0.883561i \(0.655139\pi\)
\(230\) −6.19037 22.9470i −0.408181 1.51308i
\(231\) −25.8256 25.8256i −1.69920 1.69920i
\(232\) −13.5179 + 0.478006i −0.887495 + 0.0313827i
\(233\) 18.2587i 1.19617i 0.801433 + 0.598085i \(0.204072\pi\)
−0.801433 + 0.598085i \(0.795928\pi\)
\(234\) 0.189763 0.743118i 0.0124052 0.0485792i
\(235\) −5.14763 + 18.4643i −0.335794 + 1.20448i
\(236\) 0.823053 + 0.449673i 0.0535762 + 0.0292712i
\(237\) 22.3354 + 22.3354i 1.45084 + 1.45084i
\(238\) 15.5243 + 3.96428i 1.00629 + 0.256966i
\(239\) −4.72912 4.72912i −0.305902 0.305902i 0.537416 0.843317i \(-0.319401\pi\)
−0.843317 + 0.537416i \(0.819401\pi\)
\(240\) −17.6754 + 5.44522i −1.14094 + 0.351488i
\(241\) 18.6068i 1.19857i 0.800536 + 0.599284i \(0.204548\pi\)
−0.800536 + 0.599284i \(0.795452\pi\)
\(242\) −5.68293 + 22.2546i −0.365313 + 1.43058i
\(243\) −12.4636 −0.799537
\(244\) 0.200117 0.366281i 0.0128112 0.0234487i
\(245\) 2.67331 9.58903i 0.170792 0.612621i
\(246\) −18.6506 1.66617i −1.18912 0.106231i
\(247\) −0.291091 0.291091i −0.0185216 0.0185216i
\(248\) 11.9260 12.8003i 0.757302 0.812823i
\(249\) 11.2174 11.2174i 0.710877 0.710877i
\(250\) −13.8368 + 7.65138i −0.875115 + 0.483916i
\(251\) 6.58820 0.415844 0.207922 0.978145i \(-0.433330\pi\)
0.207922 + 0.978145i \(0.433330\pi\)
\(252\) 4.14024 7.57803i 0.260810 0.477371i
\(253\) 39.2278i 2.46623i
\(254\) −15.3606 25.8958i −0.963807 1.62485i
\(255\) 14.9114 + 4.15714i 0.933790 + 0.260330i
\(256\) −6.66036 + 14.5478i −0.416273 + 0.909240i
\(257\) −12.7653 −0.796275 −0.398137 0.917326i \(-0.630343\pi\)
−0.398137 + 0.917326i \(0.630343\pi\)
\(258\) 3.80831 + 6.42028i 0.237095 + 0.399709i
\(259\) 10.1692 + 10.1692i 0.631881 + 0.631881i
\(260\) −1.36216 1.32593i −0.0844775 0.0822304i
\(261\) 4.31449 4.31449i 0.267060 0.267060i
\(262\) 9.51236 + 2.42908i 0.587676 + 0.150069i
\(263\) 4.82813i 0.297715i 0.988859 + 0.148858i \(0.0475596\pi\)
−0.988859 + 0.148858i \(0.952440\pi\)
\(264\) −30.5071 + 1.07876i −1.87758 + 0.0663930i
\(265\) −20.0754 5.59679i −1.23322 0.343808i
\(266\) −2.36460 3.98639i −0.144983 0.244421i
\(267\) 5.33261 5.33261i 0.326351 0.326351i
\(268\) −7.30281 3.98987i −0.446090 0.243720i
\(269\) 12.5270i 0.763783i 0.924207 + 0.381891i \(0.124727\pi\)
−0.924207 + 0.381891i \(0.875273\pi\)
\(270\) −5.62047 + 9.77319i −0.342051 + 0.594778i
\(271\) 8.44587i 0.513050i −0.966538 0.256525i \(-0.917422\pi\)
0.966538 0.256525i \(-0.0825776\pi\)
\(272\) 11.2692 7.23478i 0.683297 0.438673i
\(273\) 2.97443 0.180020
\(274\) −1.35815 + 5.31857i −0.0820490 + 0.321307i
\(275\) −25.3385 + 6.24449i −1.52797 + 0.376557i
\(276\) 29.8260 8.75005i 1.79531 0.526691i
\(277\) 17.8144 17.8144i 1.07036 1.07036i 0.0730342 0.997329i \(-0.476732\pi\)
0.997329 0.0730342i \(-0.0232682\pi\)
\(278\) 25.9946 + 6.63798i 1.55905 + 0.398120i
\(279\) 7.89186i 0.472473i
\(280\) −11.1661 18.2591i −0.667302 1.09119i
\(281\) −22.3301 + 22.3301i −1.33210 + 1.33210i −0.428610 + 0.903489i \(0.640997\pi\)
−0.903489 + 0.428610i \(0.859003\pi\)
\(282\) −24.2891 6.20246i −1.44639 0.369351i
\(283\) −13.3311 + 13.3311i −0.792450 + 0.792450i −0.981892 0.189442i \(-0.939332\pi\)
0.189442 + 0.981892i \(0.439332\pi\)
\(284\) −15.2219 + 4.46566i −0.903254 + 0.264988i
\(285\) −2.19979 3.90048i −0.130305 0.231045i
\(286\) −1.60065 2.69847i −0.0946482 0.159564i
\(287\) −3.47183 21.3886i −0.204935 1.26253i
\(288\) −2.27523 6.84943i −0.134069 0.403607i
\(289\) 5.79142 0.340672
\(290\) −3.93888 14.6010i −0.231299 0.857399i
\(291\) 27.1409i 1.59102i
\(292\) 9.36539 2.74753i 0.548068 0.160787i
\(293\) 15.7494 0.920089 0.460044 0.887896i \(-0.347834\pi\)
0.460044 + 0.887896i \(0.347834\pi\)
\(294\) 12.6140 + 3.22112i 0.735664 + 0.187860i
\(295\) −0.281595 + 1.01007i −0.0163951 + 0.0588083i
\(296\) 12.0126 0.424775i 0.698215 0.0246896i
\(297\) −13.1577 + 13.1577i −0.763488 + 0.763488i
\(298\) 14.0994 + 23.7697i 0.816759 + 1.37694i
\(299\) 2.25901 + 2.25901i 0.130642 + 0.130642i
\(300\) −10.3998 17.8727i −0.600432 1.03188i
\(301\) −6.10821 + 6.10821i −0.352071 + 0.352071i
\(302\) 17.9628 10.6549i 1.03364 0.613123i
\(303\) −16.5485 + 16.5485i −0.950686 + 0.950686i
\(304\) −3.78500 0.825246i −0.217085 0.0473311i
\(305\) 0.449506 + 0.125317i 0.0257387 + 0.00717565i
\(306\) −1.49463 + 5.85303i −0.0854424 + 0.334595i
\(307\) −4.51824 + 4.51824i −0.257870 + 0.257870i −0.824187 0.566317i \(-0.808368\pi\)
0.566317 + 0.824187i \(0.308368\pi\)
\(308\) −9.94422 33.8965i −0.566624 1.93143i
\(309\) −10.0620 10.0620i −0.572410 0.572410i
\(310\) 16.9561 + 9.75131i 0.963043 + 0.553837i
\(311\) 1.66046 + 1.66046i 0.0941563 + 0.0941563i 0.752616 0.658460i \(-0.228792\pi\)
−0.658460 + 0.752616i \(0.728792\pi\)
\(312\) 1.69468 1.81893i 0.0959425 0.102976i
\(313\) −14.8719 −0.840612 −0.420306 0.907382i \(-0.638077\pi\)
−0.420306 + 0.907382i \(0.638077\pi\)
\(314\) 26.0401 + 6.64961i 1.46953 + 0.375259i
\(315\) 9.29989 + 2.59270i 0.523989 + 0.146082i
\(316\) 8.60031 + 29.3155i 0.483805 + 1.64913i
\(317\) −6.55187 −0.367990 −0.183995 0.982927i \(-0.558903\pi\)
−0.183995 + 0.982927i \(0.558903\pi\)
\(318\) 6.74366 26.4084i 0.378166 1.48091i
\(319\) 24.9603i 1.39751i
\(320\) −17.5277 3.57481i −0.979829 0.199838i
\(321\) −1.51821 1.51821i −0.0847383 0.0847383i
\(322\) 18.3505 + 30.9364i 1.02263 + 1.72402i
\(323\) 2.29272 + 2.29272i 0.127570 + 0.127570i
\(324\) −19.6571 10.7396i −1.09206 0.596644i
\(325\) 1.09956 1.81876i 0.0609928 0.100887i
\(326\) 3.21179 1.90513i 0.177885 0.105516i
\(327\) −0.652662 0.652662i −0.0360923 0.0360923i
\(328\) −15.0577 10.0631i −0.831422 0.555641i
\(329\) 29.0094i 1.59934i
\(330\) −8.88921 32.9513i −0.489335 1.81391i
\(331\) 12.2573 12.2573i 0.673721 0.673721i −0.284851 0.958572i \(-0.591944\pi\)
0.958572 + 0.284851i \(0.0919442\pi\)
\(332\) 14.7231 4.31931i 0.808034 0.237053i
\(333\) −3.83402 + 3.83402i −0.210103 + 0.210103i
\(334\) −7.82687 + 30.6503i −0.428267 + 1.67711i
\(335\) 2.49854 8.96214i 0.136510 0.489654i
\(336\) 23.5543 15.1217i 1.28499 0.824957i
\(337\) 22.0976 + 22.0976i 1.20373 + 1.20373i 0.973023 + 0.230709i \(0.0741044\pi\)
0.230709 + 0.973023i \(0.425896\pi\)
\(338\) −17.5656 4.48555i −0.955442 0.243982i
\(339\) 12.0963 + 12.0963i 0.656980 + 0.656980i
\(340\) 10.7288 + 10.4434i 0.581850 + 0.566373i
\(341\) 22.8281 + 22.8281i 1.23621 + 1.23621i
\(342\) 1.50297 0.891512i 0.0812712 0.0482075i
\(343\) 8.62300i 0.465598i
\(344\) 0.255146 + 7.21546i 0.0137565 + 0.389032i
\(345\) 17.0715 + 30.2697i 0.919098 + 1.62966i
\(346\) 18.6177 11.0434i 1.00090 0.593699i
\(347\) 4.29289 0.230454 0.115227 0.993339i \(-0.463240\pi\)
0.115227 + 0.993339i \(0.463240\pi\)
\(348\) 18.9780 5.56758i 1.01733 0.298454i
\(349\) 20.3710 1.09044 0.545218 0.838294i \(-0.316447\pi\)
0.545218 + 0.838294i \(0.316447\pi\)
\(350\) 17.0617 16.7778i 0.911984 0.896810i
\(351\) 1.51542i 0.0808873i
\(352\) −26.3942 13.2314i −1.40681 0.705238i
\(353\) −6.80856 6.80856i −0.362383 0.362383i 0.502307 0.864690i \(-0.332485\pi\)
−0.864690 + 0.502307i \(0.832485\pi\)
\(354\) −1.32870 0.339298i −0.0706198 0.0180335i
\(355\) −8.71257 15.4484i −0.462415 0.819914i
\(356\) 6.99913 2.05334i 0.370953 0.108827i
\(357\) −23.4275 −1.23992
\(358\) 12.9906 7.70559i 0.686573 0.407253i
\(359\) 25.3606 1.33848 0.669242 0.743045i \(-0.266619\pi\)
0.669242 + 0.743045i \(0.266619\pi\)
\(360\) 6.88412 4.20989i 0.362825 0.221881i
\(361\) 18.0620i 0.950634i
\(362\) 25.9790 15.4099i 1.36543 0.809927i
\(363\) 33.5841i 1.76271i
\(364\) 2.52465 + 1.37933i 0.132327 + 0.0722967i
\(365\) 5.36047 + 9.50471i 0.280580 + 0.497499i
\(366\) −0.150997 + 0.591309i −0.00789273 + 0.0309082i
\(367\) −11.0994 + 11.0994i −0.579385 + 0.579385i −0.934734 0.355349i \(-0.884362\pi\)
0.355349 + 0.934734i \(0.384362\pi\)
\(368\) 29.3735 + 6.40432i 1.53120 + 0.333848i
\(369\) 8.06404 1.30896i 0.419797 0.0681419i
\(370\) 3.50024 + 12.9750i 0.181969 + 0.674538i
\(371\) 31.5407 1.63751
\(372\) −12.2649 + 22.4488i −0.635903 + 1.16392i
\(373\) 19.6251 + 19.6251i 1.01615 + 1.01615i 0.999867 + 0.0162796i \(0.00518218\pi\)
0.0162796 + 0.999867i \(0.494818\pi\)
\(374\) 12.6072 + 21.2540i 0.651902 + 1.09902i
\(375\) 16.8346 15.8455i 0.869336 0.818259i
\(376\) −17.7399 16.5281i −0.914865 0.852374i
\(377\) 1.43739 + 1.43739i 0.0740292 + 0.0740292i
\(378\) 4.22154 16.5317i 0.217133 0.850299i
\(379\) 28.8118 1.47996 0.739982 0.672626i \(-0.234834\pi\)
0.739982 + 0.672626i \(0.234834\pi\)
\(380\) −0.0583759 4.33078i −0.00299462 0.222164i
\(381\) 31.1298 + 31.1298i 1.59483 + 1.59483i
\(382\) −19.7707 33.3307i −1.01156 1.70534i
\(383\) 13.0719i 0.667944i 0.942583 + 0.333972i \(0.108389\pi\)
−0.942583 + 0.333972i \(0.891611\pi\)
\(384\) 4.17280 23.0195i 0.212942 1.17471i
\(385\) 34.4007 19.4013i 1.75322 0.988783i
\(386\) −1.75119 + 6.85772i −0.0891332 + 0.349049i
\(387\) −2.30295 2.30295i −0.117065 0.117065i
\(388\) 12.5861 23.0367i 0.638960 1.16951i
\(389\) −35.9288 −1.82166 −0.910831 0.412779i \(-0.864558\pi\)
−0.910831 + 0.412779i \(0.864558\pi\)
\(390\) 2.40946 + 1.38566i 0.122008 + 0.0701656i
\(391\) −17.7926 17.7926i −0.899812 0.899812i
\(392\) 9.21284 + 8.58355i 0.465319 + 0.433535i
\(393\) −14.3550 −0.724114
\(394\) 0.725847 + 1.22368i 0.0365677 + 0.0616481i
\(395\) −29.7517 + 16.7793i −1.49697 + 0.844260i
\(396\) 12.7798 3.74921i 0.642209 0.188405i
\(397\) −32.4990 −1.63108 −0.815539 0.578702i \(-0.803560\pi\)
−0.815539 + 0.578702i \(0.803560\pi\)
\(398\) −5.92737 + 3.51593i −0.297112 + 0.176238i
\(399\) 4.79211 + 4.79211i 0.239905 + 0.239905i
\(400\) −0.539074 19.9927i −0.0269537 0.999637i
\(401\) 30.1757i 1.50690i −0.657505 0.753450i \(-0.728388\pi\)
0.657505 0.753450i \(-0.271612\pi\)
\(402\) 11.7894 + 3.01054i 0.588000 + 0.150152i
\(403\) −2.62920 −0.130970
\(404\) −21.7201 + 6.37205i −1.08062 + 0.317021i
\(405\) 6.72536 24.1235i 0.334186 1.19871i
\(406\) 11.6762 + 19.6846i 0.579482 + 0.976928i
\(407\) 22.1807i 1.09946i
\(408\) −13.3478 + 14.3264i −0.660817 + 0.709264i
\(409\) 24.3353i 1.20330i −0.798758 0.601652i \(-0.794509\pi\)
0.798758 0.601652i \(-0.205491\pi\)
\(410\) 7.15167 18.9434i 0.353196 0.935549i
\(411\) 8.02619i 0.395903i
\(412\) −3.87442 13.2066i −0.190879 0.650642i
\(413\) 1.58693i 0.0780875i
\(414\) −11.6638 + 6.91858i −0.573243 + 0.340030i
\(415\) 8.42705 + 14.9421i 0.413668 + 0.733479i
\(416\) 2.28191 0.758000i 0.111880 0.0371640i
\(417\) −39.2281 −1.92101
\(418\) 1.76871 6.92632i 0.0865103 0.338777i
\(419\) 31.6294i 1.54520i −0.634893 0.772600i \(-0.718956\pi\)
0.634893 0.772600i \(-0.281044\pi\)
\(420\) 22.4247 + 21.8282i 1.09421 + 1.06511i
\(421\) −10.1879 10.1879i −0.496529 0.496529i 0.413827 0.910356i \(-0.364192\pi\)
−0.910356 + 0.413827i \(0.864192\pi\)
\(422\) −4.94166 8.33096i −0.240556 0.405545i
\(423\) 10.9373 0.531788
\(424\) 17.9703 19.2878i 0.872716 0.936698i
\(425\) −8.66050 + 14.3252i −0.420096 + 0.694872i
\(426\) 19.9494 11.8334i 0.966554 0.573329i
\(427\) −0.706225 −0.0341766
\(428\) −0.584592 1.99268i −0.0282573 0.0963196i
\(429\) 3.24387 + 3.24387i 0.156616 + 0.156616i
\(430\) −7.79357 + 2.10246i −0.375839 + 0.101389i
\(431\) 2.97987 0.143535 0.0717676 0.997421i \(-0.477136\pi\)
0.0717676 + 0.997421i \(0.477136\pi\)
\(432\) −7.70427 12.0005i −0.370672 0.577375i
\(433\) −9.51380 9.51380i −0.457204 0.457204i 0.440533 0.897737i \(-0.354790\pi\)
−0.897737 + 0.440533i \(0.854790\pi\)
\(434\) −28.6819 7.32421i −1.37677 0.351573i
\(435\) 10.8624 + 19.2603i 0.520814 + 0.923462i
\(436\) −0.251309 0.856628i −0.0120355 0.0410251i
\(437\) 7.27898i 0.348201i
\(438\) −12.2740 + 7.28056i −0.586476 + 0.347879i
\(439\) 5.31814 + 5.31814i 0.253821 + 0.253821i 0.822535 0.568714i \(-0.192559\pi\)
−0.568714 + 0.822535i \(0.692559\pi\)
\(440\) 7.73551 32.0907i 0.368776 1.52987i
\(441\) −5.68004 −0.270478
\(442\) −1.94996 0.497942i −0.0927500 0.0236847i
\(443\) 17.8204 + 17.8204i 0.846675 + 0.846675i 0.989717 0.143042i \(-0.0456883\pi\)
−0.143042 + 0.989717i \(0.545688\pi\)
\(444\) −16.8646 + 4.94757i −0.800358 + 0.234801i
\(445\) 4.00610 + 7.10326i 0.189907 + 0.336727i
\(446\) 0.528500 0.313489i 0.0250252 0.0148441i
\(447\) −28.5740 28.5740i −1.35150 1.35150i
\(448\) 27.0049 1.91223i 1.27586 0.0903442i
\(449\) 5.00475 0.236189 0.118094 0.993002i \(-0.462321\pi\)
0.118094 + 0.993002i \(0.462321\pi\)
\(450\) 6.32563 + 6.43267i 0.298193 + 0.303239i
\(451\) 19.5399 27.1125i 0.920096 1.27668i
\(452\) 4.65771 + 15.8766i 0.219080 + 0.746771i
\(453\) −21.5933 + 21.5933i −1.01454 + 1.01454i
\(454\) −12.1691 3.10750i −0.571124 0.145842i
\(455\) −0.863768 + 3.09829i −0.0404941 + 0.145250i
\(456\) 5.66079 0.200171i 0.265091 0.00937386i
\(457\) 3.28010i 0.153436i 0.997053 + 0.0767182i \(0.0244442\pi\)
−0.997053 + 0.0767182i \(0.975556\pi\)
\(458\) −6.41159 10.8091i −0.299594 0.505075i
\(459\) 11.9359i 0.557122i
\(460\) 0.453026 + 33.6090i 0.0211224 + 1.56703i
\(461\) −31.6581 −1.47447 −0.737233 0.675638i \(-0.763868\pi\)
−0.737233 + 0.675638i \(0.763868\pi\)
\(462\) 26.3508 + 44.4238i 1.22595 + 2.06678i
\(463\) −24.3680 −1.13248 −0.566238 0.824241i \(-0.691602\pi\)
−0.566238 + 0.824241i \(0.691602\pi\)
\(464\) 18.6901 + 4.07501i 0.867666 + 0.189178i
\(465\) −27.5496 7.68051i −1.27758 0.356175i
\(466\) 6.38884 25.0189i 0.295957 1.15898i
\(467\) 15.9882 + 15.9882i 0.739844 + 0.739844i 0.972548 0.232703i \(-0.0747571\pi\)
−0.232703 + 0.972548i \(0.574757\pi\)
\(468\) −0.520043 + 0.951853i −0.0240390 + 0.0439994i
\(469\) 14.0805i 0.650178i
\(470\) 13.5143 23.4993i 0.623366 1.08394i
\(471\) −39.2969 −1.81070
\(472\) −0.970440 0.904153i −0.0446681 0.0416170i
\(473\) −13.3231 −0.612596
\(474\) −22.7896 38.4202i −1.04676 1.76470i
\(475\) 4.70173 1.15871i 0.215730 0.0531652i
\(476\) −19.8849 10.8641i −0.911423 0.497954i
\(477\) 11.8916i 0.544479i
\(478\) 4.82530 + 8.13479i 0.220704 + 0.372077i
\(479\) −15.9255 15.9255i −0.727655 0.727655i 0.242497 0.970152i \(-0.422033\pi\)
−0.970152 + 0.242497i \(0.922033\pi\)
\(480\) 26.1249 1.27655i 1.19243 0.0582665i
\(481\) −1.27732 1.27732i −0.0582407 0.0582407i
\(482\) 6.51062 25.4958i 0.296551 1.16130i
\(483\) −37.1891 37.1891i −1.69216 1.69216i
\(484\) 15.5740 28.5057i 0.707909 1.29571i
\(485\) 28.2711 + 7.88166i 1.28372 + 0.357888i
\(486\) 17.0781 + 4.36107i 0.774678 + 0.197822i
\(487\) −10.1928 + 10.1928i −0.461879 + 0.461879i −0.899271 0.437392i \(-0.855902\pi\)
0.437392 + 0.899271i \(0.355902\pi\)
\(488\) −0.402372 + 0.431872i −0.0182145 + 0.0195499i
\(489\) −3.86095 + 3.86095i −0.174598 + 0.174598i
\(490\) −7.01835 + 12.2039i −0.317057 + 0.551316i
\(491\) 16.0820i 0.725769i −0.931834 0.362884i \(-0.881792\pi\)
0.931834 0.362884i \(-0.118208\pi\)
\(492\) 24.9729 + 8.80902i 1.12586 + 0.397141i
\(493\) −11.3213 11.3213i −0.509886 0.509886i
\(494\) 0.297011 + 0.500719i 0.0133631 + 0.0225284i
\(495\) 7.31478 + 12.9699i 0.328775 + 0.582954i
\(496\) −20.8204 + 13.3666i −0.934865 + 0.600179i
\(497\) 18.9798 + 18.9798i 0.851358 + 0.851358i
\(498\) −19.2957 + 11.4456i −0.864660 + 0.512889i
\(499\) 16.4691 + 16.4691i 0.737259 + 0.737259i 0.972047 0.234788i \(-0.0754395\pi\)
−0.234788 + 0.972047i \(0.575439\pi\)
\(500\) 21.6370 5.64268i 0.967636 0.252348i
\(501\) 46.2540i 2.06648i
\(502\) −9.02744 2.30525i −0.402914 0.102888i
\(503\) 27.9393 1.24575 0.622877 0.782320i \(-0.285964\pi\)
0.622877 + 0.782320i \(0.285964\pi\)
\(504\) −8.32472 + 8.93504i −0.370813 + 0.397999i
\(505\) −12.4320 22.0433i −0.553215 0.980912i
\(506\) −13.7260 + 53.7517i −0.610197 + 2.38955i
\(507\) 26.5080 1.17726
\(508\) 11.9866 + 40.8583i 0.531820 + 1.81279i
\(509\) 22.7655 + 22.7655i 1.00906 + 1.00906i 0.999959 + 0.00910388i \(0.00289790\pi\)
0.00910388 + 0.999959i \(0.497102\pi\)
\(510\) −18.9777 10.9139i −0.840345 0.483275i
\(511\) −11.6774 11.6774i −0.516579 0.516579i
\(512\) 14.2167 17.6036i 0.628295 0.777975i
\(513\) 2.44150 2.44150i 0.107795 0.107795i
\(514\) 17.4915 + 4.46664i 0.771517 + 0.197015i
\(515\) 13.4031 7.55906i 0.590610 0.333092i
\(516\) −2.97181 10.1299i −0.130827 0.445944i
\(517\) 31.6373 31.6373i 1.39141 1.39141i
\(518\) −10.3760 17.4925i −0.455894 0.768575i
\(519\) −22.3807 + 22.3807i −0.982403 + 0.982403i
\(520\) 1.40254 + 2.29347i 0.0615054 + 0.100575i
\(521\) −10.9539 10.9539i −0.479897 0.479897i 0.425202 0.905099i \(-0.360203\pi\)
−0.905099 + 0.425202i \(0.860203\pi\)
\(522\) −7.42156 + 4.40223i −0.324833 + 0.192680i
\(523\) 15.8783 15.8783i 0.694308 0.694308i −0.268869 0.963177i \(-0.586650\pi\)
0.963177 + 0.268869i \(0.0866498\pi\)
\(524\) −12.1843 6.65686i −0.532274 0.290806i
\(525\) −18.1017 + 29.9416i −0.790022 + 1.30676i
\(526\) 1.68939 6.61571i 0.0736609 0.288459i
\(527\) 20.7084 0.902072
\(528\) 42.1795 + 9.19643i 1.83563 + 0.400223i
\(529\) 33.4885i 1.45602i
\(530\) 25.5498 + 14.6934i 1.10981 + 0.638243i
\(531\) 0.598310 0.0259644
\(532\) 1.84522 + 6.28971i 0.0800003 + 0.272694i
\(533\) 0.436086 + 2.68656i 0.0188890 + 0.116368i
\(534\) −9.17289 + 5.44106i −0.396950 + 0.235458i
\(535\) 2.02232 1.14055i 0.0874325 0.0493102i
\(536\) 8.61055 + 8.02239i 0.371919 + 0.346515i
\(537\) −15.6162 + 15.6162i −0.673888 + 0.673888i
\(538\) 4.38326 17.1650i 0.188976 0.740035i
\(539\) −16.4302 + 16.4302i −0.707698 + 0.707698i
\(540\) 11.1211 11.4250i 0.478576 0.491654i
\(541\) 28.8087i 1.23858i −0.785162 0.619291i \(-0.787420\pi\)
0.785162 0.619291i \(-0.212580\pi\)
\(542\) −2.95526 + 11.5729i −0.126939 + 0.497098i
\(543\) −31.2298 + 31.2298i −1.34020 + 1.34020i
\(544\) −17.9731 + 5.97024i −0.770588 + 0.255972i
\(545\) 0.869372 0.490309i 0.0372398 0.0210025i
\(546\) −4.07569 1.04077i −0.174423 0.0445408i
\(547\) −24.4985 −1.04748 −0.523741 0.851877i \(-0.675464\pi\)
−0.523741 + 0.851877i \(0.675464\pi\)
\(548\) 3.72200 6.81251i 0.158996 0.291016i
\(549\) 0.266264i 0.0113639i
\(550\) 36.9049 + 0.309612i 1.57363 + 0.0132019i
\(551\) 4.63156i 0.197311i
\(552\) −43.9305 + 1.55342i −1.86981 + 0.0661181i
\(553\) 36.5527 36.5527i 1.55438 1.55438i
\(554\) −30.6434 + 18.1767i −1.30191 + 0.772254i
\(555\) −9.65279 17.1155i −0.409738 0.726512i
\(556\) −33.2962 18.1913i −1.41207 0.771483i
\(557\) 15.6020i 0.661080i 0.943792 + 0.330540i \(0.107231\pi\)
−0.943792 + 0.330540i \(0.892769\pi\)
\(558\) 2.76141 10.8138i 0.116900 0.457783i
\(559\) 0.767234 0.767234i 0.0324506 0.0324506i
\(560\) 8.91131 + 28.9264i 0.376571 + 1.22237i
\(561\) −25.5498 25.5498i −1.07871 1.07871i
\(562\) 38.4110 22.7842i 1.62027 0.961093i
\(563\) −34.3618 −1.44818 −0.724089 0.689707i \(-0.757740\pi\)
−0.724089 + 0.689707i \(0.757740\pi\)
\(564\) 31.1116 + 16.9978i 1.31004 + 0.715735i
\(565\) −16.1128 + 9.08727i −0.677869 + 0.382304i
\(566\) 22.9314 13.6022i 0.963880 0.571743i
\(567\) 37.9007i 1.59168i
\(568\) 22.4203 0.792802i 0.940734 0.0332652i
\(569\) 18.2622 0.765593 0.382796 0.923833i \(-0.374961\pi\)
0.382796 + 0.923833i \(0.374961\pi\)
\(570\) 1.64945 + 6.11433i 0.0690879 + 0.256101i
\(571\) 1.16438 1.16438i 0.0487279 0.0487279i −0.682323 0.731051i \(-0.739030\pi\)
0.731051 + 0.682323i \(0.239030\pi\)
\(572\) 1.24906 + 4.25763i 0.0522260 + 0.178021i
\(573\) 40.0673 + 40.0673i 1.67384 + 1.67384i
\(574\) −2.72676 + 30.5224i −0.113813 + 1.27398i
\(575\) −36.4877 + 8.99214i −1.52164 + 0.374998i
\(576\) 0.720957 + 10.1815i 0.0300399 + 0.424229i
\(577\) −39.3687 −1.63894 −0.819470 0.573122i \(-0.805732\pi\)
−0.819470 + 0.573122i \(0.805732\pi\)
\(578\) −7.93566 2.02645i −0.330080 0.0842893i
\(579\) 10.3489i 0.430086i
\(580\) 0.288256 + 21.3851i 0.0119692 + 0.887969i
\(581\) −18.3578 18.3578i −0.761609 0.761609i
\(582\) −9.49674 + 37.1896i −0.393653 + 1.54156i
\(583\) 34.3979 + 34.3979i 1.42461 + 1.42461i
\(584\) −13.7942 + 0.487777i −0.570809 + 0.0201844i
\(585\) −1.16813 0.325662i −0.0482963 0.0134645i
\(586\) −21.5805 5.51080i −0.891481 0.227649i
\(587\) 5.74840i 0.237262i 0.992938 + 0.118631i \(0.0378506\pi\)
−0.992938 + 0.118631i \(0.962149\pi\)
\(588\) −16.1572 8.82743i −0.666311 0.364037i
\(589\) −4.23591 4.23591i −0.174538 0.174538i
\(590\) 0.739281 1.28550i 0.0304357 0.0529234i
\(591\) −1.47100 1.47100i −0.0605090 0.0605090i
\(592\) −16.6087 3.62122i −0.682615 0.148831i
\(593\) −22.1695 −0.910391 −0.455195 0.890392i \(-0.650431\pi\)
−0.455195 + 0.890392i \(0.650431\pi\)
\(594\) 22.6332 13.4253i 0.928653 0.550847i
\(595\) 6.80331 24.4031i 0.278908 1.00043i
\(596\) −11.0025 37.5038i −0.450680 1.53621i
\(597\) 7.12539 7.12539i 0.291623 0.291623i
\(598\) −2.30495 3.88583i −0.0942563 0.158903i
\(599\) 36.2303 1.48033 0.740166 0.672425i \(-0.234747\pi\)
0.740166 + 0.672425i \(0.234747\pi\)
\(600\) 7.99650 + 28.1288i 0.326456 + 1.14835i
\(601\) 11.4756 11.4756i 0.468099 0.468099i −0.433199 0.901298i \(-0.642615\pi\)
0.901298 + 0.433199i \(0.142615\pi\)
\(602\) 10.5070 6.23244i 0.428235 0.254015i
\(603\) −5.30870 −0.216187
\(604\) −28.3416 + 8.31458i −1.15320 + 0.338315i
\(605\) 34.9827 + 9.75277i 1.42225 + 0.396506i
\(606\) 28.4659 16.8850i 1.15635 0.685908i
\(607\) −27.7777 + 27.7777i −1.12746 + 1.12746i −0.136873 + 0.990589i \(0.543705\pi\)
−0.990589 + 0.136873i \(0.956295\pi\)
\(608\) 4.89761 + 2.45518i 0.198624 + 0.0995708i
\(609\) −23.6631 23.6631i −0.958878 0.958878i
\(610\) −0.572084 0.329000i −0.0231630 0.0133208i
\(611\) 3.64379i 0.147412i
\(612\) 4.09602 7.49709i 0.165572 0.303052i
\(613\) −23.3151 + 23.3151i −0.941690 + 0.941690i −0.998391 0.0567016i \(-0.981942\pi\)
0.0567016 + 0.998391i \(0.481942\pi\)
\(614\) 7.77205 4.61013i 0.313654 0.186050i
\(615\) −3.27864 + 29.4246i −0.132207 + 1.18651i
\(616\) 1.76543 + 49.9259i 0.0711311 + 2.01157i
\(617\) 7.81689 + 7.81689i 0.314696 + 0.314696i 0.846726 0.532030i \(-0.178571\pi\)
−0.532030 + 0.846726i \(0.678571\pi\)
\(618\) 10.2667 + 17.3082i 0.412987 + 0.696239i
\(619\) −12.1833 −0.489689 −0.244844 0.969562i \(-0.578737\pi\)
−0.244844 + 0.969562i \(0.578737\pi\)
\(620\) −19.8220 19.2947i −0.796069 0.774894i
\(621\) −18.9473 + 18.9473i −0.760327 + 0.760327i
\(622\) −1.69423 2.85625i −0.0679326 0.114525i
\(623\) −8.72702 8.72702i −0.349641 0.349641i
\(624\) −2.95858 + 1.89939i −0.118438 + 0.0760366i
\(625\) 11.6166 + 22.1372i 0.464665 + 0.885487i
\(626\) 20.3782 + 5.20378i 0.814476 + 0.207985i
\(627\) 10.4524i 0.417430i
\(628\) −33.3546 18.2232i −1.33099 0.727184i
\(629\) 10.0606 + 10.0606i 0.401141 + 0.401141i
\(630\) −11.8359 6.80672i −0.471554 0.271186i
\(631\) 11.6522i 0.463867i 0.972732 + 0.231933i \(0.0745051\pi\)
−0.972732 + 0.231933i \(0.925495\pi\)
\(632\) −1.52684 43.1787i −0.0607344 1.71756i
\(633\) 10.0148 + 10.0148i 0.398052 + 0.398052i
\(634\) 8.97766 + 2.29254i 0.356548 + 0.0910483i
\(635\) −41.4661 + 23.3861i −1.64553 + 0.928048i
\(636\) −18.4809 + 33.8263i −0.732816 + 1.34130i
\(637\) 1.89232i 0.0749766i
\(638\) −8.73376 + 34.2017i −0.345773 + 1.35406i
\(639\) −7.15583 + 7.15583i −0.283080 + 0.283080i
\(640\) 22.7664 + 11.0314i 0.899920 + 0.436055i
\(641\) 20.0509 20.0509i 0.791961 0.791961i −0.189852 0.981813i \(-0.560801\pi\)
0.981813 + 0.189852i \(0.0608007\pi\)
\(642\) 1.54909 + 2.61155i 0.0611376 + 0.103070i
\(643\) 24.9600 0.984326 0.492163 0.870503i \(-0.336206\pi\)
0.492163 + 0.870503i \(0.336206\pi\)
\(644\) −14.3198 48.8113i −0.564279 1.92343i
\(645\) 10.2806 5.79805i 0.404798 0.228298i
\(646\) −2.33935 3.94382i −0.0920404 0.155167i
\(647\) 29.0538 29.0538i 1.14222 1.14222i 0.154178 0.988043i \(-0.450727\pi\)
0.988043 0.154178i \(-0.0492730\pi\)
\(648\) 23.1771 + 21.5940i 0.910483 + 0.848291i
\(649\) 1.73068 1.73068i 0.0679352 0.0679352i
\(650\) −2.14307 + 2.10741i −0.0840579 + 0.0826593i
\(651\) 43.2835 1.69641
\(652\) −5.06755 + 1.48667i −0.198461 + 0.0582225i
\(653\) 15.9494i 0.624150i −0.950057 0.312075i \(-0.898976\pi\)
0.950057 0.312075i \(-0.101024\pi\)
\(654\) 0.665935 + 1.12268i 0.0260401 + 0.0439001i
\(655\) 4.16867 14.9528i 0.162883 0.584254i
\(656\) 17.1116 + 19.0577i 0.668094 + 0.744077i
\(657\) 4.40268 4.40268i 0.171765 0.171765i
\(658\) −10.1506 + 39.7500i −0.395710 + 1.54961i
\(659\) −2.75615 2.75615i −0.107365 0.107365i 0.651384 0.758748i \(-0.274189\pi\)
−0.758748 + 0.651384i \(0.774189\pi\)
\(660\) 0.650533 + 48.2616i 0.0253220 + 1.87858i
\(661\) 34.4292i 1.33914i 0.742749 + 0.669570i \(0.233521\pi\)
−0.742749 + 0.669570i \(0.766479\pi\)
\(662\) −21.0843 + 12.5066i −0.819466 + 0.486081i
\(663\) 2.94266 0.114283
\(664\) −21.6855 + 0.766821i −0.841562 + 0.0297584i
\(665\) −6.38329 + 3.60005i −0.247533 + 0.139604i
\(666\) 6.59509 3.91200i 0.255554 0.151587i
\(667\) 35.9432i 1.39172i
\(668\) 21.4494 39.2597i 0.829903 1.51900i
\(669\) −0.635318 + 0.635318i −0.0245628 + 0.0245628i
\(670\) −6.55952 + 11.4061i −0.253416 + 0.440654i
\(671\) −0.770200 0.770200i −0.0297332 0.0297332i
\(672\) −37.5662 + 12.4786i −1.44915 + 0.481374i
\(673\) −25.2810 −0.974512 −0.487256 0.873259i \(-0.662002\pi\)
−0.487256 + 0.873259i \(0.662002\pi\)
\(674\) −22.5470 38.0111i −0.868477 1.46413i
\(675\) 15.2548 + 9.22251i 0.587156 + 0.354975i
\(676\) 22.4996 + 12.2926i 0.865369 + 0.472792i
\(677\) −11.4071 11.4071i −0.438412 0.438412i 0.453066 0.891477i \(-0.350330\pi\)
−0.891477 + 0.453066i \(0.850330\pi\)
\(678\) −12.3423 20.8074i −0.474003 0.799104i
\(679\) −44.4170 −1.70457
\(680\) −11.0468 18.0641i −0.423627 0.692725i
\(681\) 18.3642 0.703719
\(682\) −23.2924 39.2678i −0.891912 1.50364i
\(683\) 38.2037i 1.46182i 0.682472 + 0.730911i \(0.260905\pi\)
−0.682472 + 0.730911i \(0.739095\pi\)
\(684\) −2.37138 + 0.695692i −0.0906719 + 0.0266004i
\(685\) 8.36043 + 2.33079i 0.319436 + 0.0890550i
\(686\) −3.01724 + 11.8156i −0.115199 + 0.451122i
\(687\) 12.9938 + 12.9938i 0.495743 + 0.495743i
\(688\) 2.17512 9.97622i 0.0829257 0.380340i
\(689\) −3.96173 −0.150930
\(690\) −12.8006 47.4502i −0.487309 1.80640i
\(691\) 25.6067 + 25.6067i 0.974123 + 0.974123i 0.999674 0.0255504i \(-0.00813382\pi\)
−0.0255504 + 0.999674i \(0.508134\pi\)
\(692\) −29.3750 + 8.61775i −1.11667 + 0.327598i
\(693\) −15.9348 15.9348i −0.605311 0.605311i
\(694\) −5.88230 1.50211i −0.223289 0.0570192i
\(695\) 11.3918 40.8617i 0.432115 1.54997i
\(696\) −27.9526 + 0.988430i −1.05954 + 0.0374664i
\(697\) −3.43475 21.1602i −0.130100 0.801500i
\(698\) −27.9133 7.12794i −1.05653 0.269796i
\(699\) 37.7558i 1.42805i
\(700\) −29.2493 + 17.0196i −1.10552 + 0.643282i
\(701\) 48.7303 1.84052 0.920259 0.391310i \(-0.127978\pi\)
0.920259 + 0.391310i \(0.127978\pi\)
\(702\) −0.530255 + 2.07650i −0.0200132 + 0.0783723i
\(703\) 4.11578i 0.155230i
\(704\) 31.5367 + 27.3658i 1.18858 + 1.03139i
\(705\) −10.6444 + 38.1808i −0.400890 + 1.43797i
\(706\) 6.94703 + 11.7117i 0.261455 + 0.440777i
\(707\) 27.0822 + 27.0822i 1.01853 + 1.01853i
\(708\) 1.70193 + 0.929843i 0.0639623 + 0.0349456i
\(709\) 10.2025 10.2025i 0.383163 0.383163i −0.489077 0.872240i \(-0.662666\pi\)
0.872240 + 0.489077i \(0.162666\pi\)
\(710\) 6.53287 + 24.2166i 0.245174 + 0.908832i
\(711\) 13.7813 + 13.7813i 0.516838 + 0.516838i
\(712\) −10.3090 + 0.364536i −0.386346 + 0.0136616i
\(713\) 32.8728 + 32.8728i 1.23110 + 1.23110i
\(714\) 32.1014 + 8.19742i 1.20136 + 0.306781i
\(715\) −4.32097 + 2.43694i −0.161595 + 0.0911365i
\(716\) −20.4965 + 6.01306i −0.765989 + 0.224718i
\(717\) −9.77897 9.77897i −0.365202 0.365202i
\(718\) −34.7502 8.87383i −1.29687 0.331168i
\(719\) −2.55264 + 2.55264i −0.0951974 + 0.0951974i −0.753102 0.657904i \(-0.771443\pi\)
0.657904 + 0.753102i \(0.271443\pi\)
\(720\) −10.9060 + 3.35978i −0.406442 + 0.125212i
\(721\) −16.4669 + 16.4669i −0.613260 + 0.613260i
\(722\) 6.32001 24.7494i 0.235207 0.921077i
\(723\) 38.4755i 1.43092i
\(724\) −40.9896 + 12.0251i −1.52336 + 0.446910i
\(725\) −23.2168 + 5.72162i −0.862251 + 0.212496i
\(726\) −11.7513 + 46.0184i −0.436131 + 1.70790i
\(727\) 21.0340i 0.780108i −0.920792 0.390054i \(-0.872456\pi\)
0.920792 0.390054i \(-0.127544\pi\)
\(728\) −2.97674 2.77341i −0.110325 0.102789i
\(729\) 7.82694 0.289887
\(730\) −4.01939 14.8994i −0.148764 0.551452i
\(731\) −6.04298 + 6.04298i −0.223508 + 0.223508i
\(732\) 0.413805 0.757402i 0.0152947 0.0279944i
\(733\) 15.6779 15.6779i 0.579076 0.579076i −0.355572 0.934649i \(-0.615714\pi\)
0.934649 + 0.355572i \(0.115714\pi\)
\(734\) 19.0927 11.3252i 0.704723 0.418019i
\(735\) 5.52793 19.8284i 0.203901 0.731381i
\(736\) −38.0079 19.0534i −1.40099 0.702318i
\(737\) −15.3560 + 15.3560i −0.565647 + 0.565647i
\(738\) −11.5077 1.02805i −0.423604 0.0378432i
\(739\) 17.4890 0.643342 0.321671 0.946852i \(-0.395756\pi\)
0.321671 + 0.946852i \(0.395756\pi\)
\(740\) −0.256156 19.0037i −0.00941648 0.698588i
\(741\) −0.601922 0.601922i −0.0221122 0.0221122i
\(742\) −43.2184 11.0363i −1.58660 0.405154i
\(743\) 5.66456 + 5.66456i 0.207813 + 0.207813i 0.803337 0.595524i \(-0.203056\pi\)
−0.595524 + 0.803337i \(0.703056\pi\)
\(744\) 24.6608 26.4688i 0.904109 0.970393i
\(745\) 38.0617 21.4661i 1.39447 0.786455i
\(746\) −20.0242 33.7580i −0.733137 1.23597i
\(747\) 6.92133 6.92133i 0.253238 0.253238i
\(748\) −9.83802 33.5345i −0.359713 1.22614i
\(749\) −2.48461 + 2.48461i −0.0907857 + 0.0907857i
\(750\) −28.6119 + 15.8217i −1.04476 + 0.577726i
\(751\) −29.8104 + 29.8104i −1.08780 + 1.08780i −0.0920412 + 0.995755i \(0.529339\pi\)
−0.995755 + 0.0920412i \(0.970661\pi\)
\(752\) 18.5247 + 28.8549i 0.675525 + 1.05223i
\(753\) 13.6232 0.496457
\(754\) −1.46662 2.47252i −0.0534111 0.0900438i
\(755\) −16.2219 28.7632i −0.590374 1.04680i
\(756\) −11.5691 + 21.1753i −0.420763 + 0.770138i
\(757\) 9.54778i 0.347020i −0.984832 0.173510i \(-0.944489\pi\)
0.984832 0.173510i \(-0.0555109\pi\)
\(758\) −39.4792 10.0814i −1.43395 0.366174i
\(759\) 81.1160i 2.94433i
\(760\) −1.43538 + 5.95465i −0.0520666 + 0.215998i
\(761\) 45.4193 1.64645 0.823225 0.567716i \(-0.192173\pi\)
0.823225 + 0.567716i \(0.192173\pi\)
\(762\) −31.7628 53.5478i −1.15065 1.93983i
\(763\) −1.06811 + 1.06811i −0.0386680 + 0.0386680i
\(764\) 15.4280 + 52.5890i 0.558167 + 1.90260i
\(765\) 9.20057 + 2.56501i 0.332647 + 0.0927383i
\(766\) 4.57394 17.9117i 0.165263 0.647177i
\(767\) 0.199329i 0.00719736i
\(768\) −13.7724 + 30.0823i −0.496970 + 1.08550i
\(769\) 3.30422i 0.119153i −0.998224 0.0595767i \(-0.981025\pi\)
0.998224 0.0595767i \(-0.0189751\pi\)
\(770\) −53.9260 + 14.5475i −1.94336 + 0.524256i
\(771\) −26.3962 −0.950637
\(772\) 4.79911 8.78399i 0.172724 0.316143i
\(773\) 29.3349 1.05510 0.527551 0.849523i \(-0.323110\pi\)
0.527551 + 0.849523i \(0.323110\pi\)
\(774\) 2.34978 + 3.96141i 0.0844611 + 0.142390i
\(775\) 16.0007 26.4664i 0.574762 0.950702i
\(776\) −25.3066 + 27.1620i −0.908455 + 0.975058i
\(777\) 21.0280 + 21.0280i 0.754374 + 0.754374i
\(778\) 49.2312 + 12.5717i 1.76502 + 0.450717i
\(779\) −3.62575 + 5.03091i −0.129906 + 0.180251i
\(780\) −2.81670 2.74177i −0.100854 0.0981712i
\(781\) 41.3982i 1.48134i
\(782\) 18.1545 + 30.6060i 0.649203 + 1.09447i
\(783\) −12.0560 + 12.0560i −0.430846 + 0.430846i
\(784\) −9.62040 14.9852i −0.343586 0.535185i
\(785\) 11.4117 40.9333i 0.407302 1.46097i
\(786\) 19.6698 + 5.02290i 0.701600 + 0.179161i
\(787\) 16.1923 16.1923i 0.577195 0.577195i −0.356935 0.934129i \(-0.616178\pi\)
0.934129 + 0.356935i \(0.116178\pi\)
\(788\) −0.566415 1.93072i −0.0201777 0.0687789i
\(789\) 9.98370i 0.355429i
\(790\) 46.6382 12.5815i 1.65931 0.447630i
\(791\) 19.7960 19.7960i 0.703865 0.703865i
\(792\) −18.8233 + 0.665610i −0.668857 + 0.0236514i
\(793\) 0.0887068 0.00315007
\(794\) 44.5315 + 11.3716i 1.58037 + 0.403563i
\(795\) −41.5122 11.5731i −1.47229 0.410457i
\(796\) 9.35219 2.74365i 0.331479 0.0972463i
\(797\) 1.10655 1.10655i 0.0391960 0.0391960i −0.687237 0.726433i \(-0.741177\pi\)
0.726433 + 0.687237i \(0.241177\pi\)
\(798\) −4.88957 8.24314i −0.173089 0.291804i
\(799\) 28.6996i 1.01532i
\(800\) −6.25691 + 27.5835i −0.221215 + 0.975225i
\(801\) 3.29030 3.29030i 0.116257 0.116257i
\(802\) −10.5586 + 41.3480i −0.372838 + 1.46005i
\(803\) 25.4705i 0.898835i
\(804\) −15.1009 8.25033i −0.532567 0.290967i
\(805\) 49.5374 27.9381i 1.74597 0.984690i
\(806\) 3.60264 + 0.919972i 0.126898 + 0.0324046i
\(807\) 25.9035i 0.911846i
\(808\) 31.9915 1.13125i 1.12546 0.0397972i
\(809\) −14.4832 + 14.4832i −0.509204 + 0.509204i −0.914282 0.405078i \(-0.867244\pi\)
0.405078 + 0.914282i \(0.367244\pi\)
\(810\) −17.6563 + 30.7018i −0.620380 + 1.07875i
\(811\) 7.05461 0.247721 0.123860 0.992300i \(-0.460473\pi\)
0.123860 + 0.992300i \(0.460473\pi\)
\(812\) −9.11156 31.0582i −0.319753 1.08993i
\(813\) 17.4645i 0.612508i
\(814\) 7.76116 30.3930i 0.272029 1.06527i
\(815\) −2.90052 5.14294i −0.101601 0.180149i
\(816\) 23.3027 14.9602i 0.815758 0.523712i
\(817\) 2.47219 0.0864909
\(818\) −8.51507 + 33.3453i −0.297723 + 1.16589i
\(819\) 1.83526 0.0641293
\(820\) −16.4279 + 23.4547i −0.573688 + 0.819074i
\(821\) 14.8675 0.518880 0.259440 0.965759i \(-0.416462\pi\)
0.259440 + 0.965759i \(0.416462\pi\)
\(822\) −2.80841 + 10.9978i −0.0979546 + 0.383594i
\(823\) 37.3427 1.30168 0.650842 0.759213i \(-0.274416\pi\)
0.650842 + 0.759213i \(0.274416\pi\)
\(824\) 0.687838 + 19.4519i 0.0239620 + 0.677640i
\(825\) −52.3954 + 12.9125i −1.82417 + 0.449555i
\(826\) −0.555275 + 2.17447i −0.0193205 + 0.0756596i
\(827\) 39.4208i 1.37080i 0.728169 + 0.685398i \(0.240372\pi\)
−0.728169 + 0.685398i \(0.759628\pi\)
\(828\) 18.4031 5.39891i 0.639550 0.187625i
\(829\) −19.0341 −0.661080 −0.330540 0.943792i \(-0.607231\pi\)
−0.330540 + 0.943792i \(0.607231\pi\)
\(830\) −6.31878 23.4230i −0.219328 0.813024i
\(831\) 36.8370 36.8370i 1.27786 1.27786i
\(832\) −3.39200 + 0.240189i −0.117597 + 0.00832706i
\(833\) 14.9045i 0.516412i
\(834\) 53.7521 + 13.7261i 1.86128 + 0.475298i
\(835\) 48.1802 + 13.4321i 1.66734 + 0.464836i
\(836\) −4.84712 + 8.87186i −0.167641 + 0.306840i
\(837\) 22.0522i 0.762237i
\(838\) −11.0673 + 43.3400i −0.382314 + 1.49716i
\(839\) 17.9725 17.9725i 0.620480 0.620480i −0.325174 0.945654i \(-0.605423\pi\)
0.945654 + 0.325174i \(0.105423\pi\)
\(840\) −23.0895 37.7564i −0.796662 1.30272i
\(841\) 6.12968i 0.211368i
\(842\) 10.3951 + 17.5247i 0.358239 + 0.603942i
\(843\) −46.1745 + 46.1745i −1.59033 + 1.59033i
\(844\) 3.85622 + 13.1445i 0.132737 + 0.452454i
\(845\) −7.69789 + 27.6119i −0.264815 + 0.949879i
\(846\) −14.9867 3.82701i −0.515254 0.131575i
\(847\) −54.9617 −1.88851
\(848\) −31.3726 + 20.1411i −1.07734 + 0.691647i
\(849\) −27.5663 + 27.5663i −0.946071 + 0.946071i
\(850\) 16.8794 16.5986i 0.578960 0.569327i
\(851\) 31.9405i 1.09491i
\(852\) −31.4761 + 9.23417i −1.07836 + 0.316357i
\(853\) 20.2190 20.2190i 0.692286 0.692286i −0.270448 0.962735i \(-0.587172\pi\)
0.962735 + 0.270448i \(0.0871719\pi\)
\(854\) 0.967699 + 0.247112i 0.0331140 + 0.00845600i
\(855\) −1.35731 2.40666i −0.0464189 0.0823059i
\(856\) 0.103784 + 2.93500i 0.00354728 + 0.100316i
\(857\) −11.0226 + 11.0226i −0.376526 + 0.376526i −0.869847 0.493321i \(-0.835783\pi\)
0.493321 + 0.869847i \(0.335783\pi\)
\(858\) −3.30985 5.57995i −0.112996 0.190496i
\(859\) 43.7306i 1.49207i −0.665908 0.746034i \(-0.731956\pi\)
0.665908 0.746034i \(-0.268044\pi\)
\(860\) 11.4147 0.153863i 0.389240 0.00524668i
\(861\) −7.17911 44.2278i −0.244663 1.50728i
\(862\) −4.08315 1.04267i −0.139073 0.0355136i
\(863\) −25.3477 25.3477i −0.862844 0.862844i 0.128823 0.991668i \(-0.458880\pi\)
−0.991668 + 0.128823i \(0.958880\pi\)
\(864\) 6.35767 + 19.1394i 0.216292 + 0.651135i
\(865\) −16.8134 29.8120i −0.571672 1.01364i
\(866\) 9.70728 + 16.3651i 0.329867 + 0.556110i
\(867\) 11.9756 0.406713
\(868\) 36.7383 + 20.0719i 1.24698 + 0.681284i
\(869\) 79.7279 2.70458
\(870\) −8.14489 30.1922i −0.276138 1.02361i
\(871\) 1.76861i 0.0599272i
\(872\) 0.0446157 + 1.26172i 0.00151088 + 0.0427274i
\(873\) 16.7463i 0.566776i
\(874\) 2.54696 9.97398i 0.0861522 0.337375i
\(875\) −25.9318 27.5505i −0.876654 0.931376i
\(876\) 19.3659 5.68139i 0.654314 0.191956i
\(877\) 2.43394 2.43394i 0.0821884 0.0821884i −0.664817 0.747006i \(-0.731491\pi\)
0.747006 + 0.664817i \(0.231491\pi\)
\(878\) −5.42630 9.14799i −0.183129 0.308730i
\(879\) 32.5669 1.09845
\(880\) −21.8283 + 41.2654i −0.735831 + 1.39106i
\(881\) 45.4208i 1.53026i −0.643873 0.765132i \(-0.722674\pi\)
0.643873 0.765132i \(-0.277326\pi\)
\(882\) 7.78303 + 1.98748i 0.262068 + 0.0669219i
\(883\) 19.5241i 0.657039i 0.944497 + 0.328519i \(0.106550\pi\)
−0.944497 + 0.328519i \(0.893450\pi\)
\(884\) 2.49768 + 1.36460i 0.0840062 + 0.0458966i
\(885\) −0.582287 + 2.08863i −0.0195734 + 0.0702086i
\(886\) −18.1829 30.6538i −0.610865 1.02984i
\(887\) −34.7765 −1.16768 −0.583840 0.811869i \(-0.698450\pi\)
−0.583840 + 0.811869i \(0.698450\pi\)
\(888\) 24.8398 0.878358i 0.833568 0.0294758i
\(889\) 50.9450 50.9450i 1.70864 1.70864i
\(890\) −3.00386 11.1349i −0.100689 0.373244i
\(891\) −41.3341 + 41.3341i −1.38474 + 1.38474i
\(892\) −0.833865 + 0.244631i −0.0279199 + 0.00819086i
\(893\) −5.87052 + 5.87052i −0.196449 + 0.196449i
\(894\) 29.1551 + 49.1515i 0.975092 + 1.64387i
\(895\) −11.7316 20.8014i −0.392143 0.695314i
\(896\) −37.6723 6.82895i −1.25854 0.228139i
\(897\) 4.67122 + 4.67122i 0.155967 + 0.155967i
\(898\) −6.85773 1.75119i −0.228845 0.0584380i
\(899\) 20.9167 + 20.9167i 0.697610 + 0.697610i
\(900\) −6.41682 11.0277i −0.213894 0.367590i
\(901\) 31.2038 1.03955
\(902\) −36.2612 + 30.3136i −1.20736 + 1.00933i
\(903\) −12.6307 + 12.6307i −0.420322 + 0.420322i
\(904\) −0.826898 23.3845i −0.0275022 0.777757i
\(905\) −23.4612 41.5994i −0.779877 1.38281i
\(906\) 37.1437 22.0325i 1.23402 0.731980i
\(907\) 11.4830 11.4830i 0.381288 0.381288i −0.490278 0.871566i \(-0.663105\pi\)
0.871566 + 0.490278i \(0.163105\pi\)
\(908\) 15.5873 + 8.51607i 0.517282 + 0.282616i
\(909\) −10.2107 + 10.2107i −0.338666 + 0.338666i
\(910\) 2.26768 3.94317i 0.0751729 0.130715i
\(911\) 24.0407 0.796505 0.398252 0.917276i \(-0.369617\pi\)
0.398252 + 0.917276i \(0.369617\pi\)
\(912\) −7.82670 1.70646i −0.259168 0.0565065i
\(913\) 40.0415i 1.32518i
\(914\) 1.14772 4.49453i 0.0379634 0.148666i
\(915\) 0.929498 + 0.259133i 0.0307282 + 0.00856669i
\(916\) 5.00329 + 17.0545i 0.165313 + 0.563497i
\(917\) 23.4925i 0.775791i
\(918\) 4.17645 16.3551i 0.137844 0.539800i
\(919\) 39.5730 39.5730i 1.30539 1.30539i 0.380687 0.924704i \(-0.375687\pi\)
0.924704 0.380687i \(-0.124313\pi\)
\(920\) 11.1392 46.2110i 0.367249 1.52353i
\(921\) −9.34291 + 9.34291i −0.307859 + 0.307859i
\(922\) 43.3794 + 11.0774i 1.42862 + 0.364814i
\(923\) −2.38399 2.38399i −0.0784700 0.0784700i
\(924\) −20.5628 70.0917i −0.676468 2.30585i
\(925\) 20.6314 5.08446i 0.678356 0.167176i
\(926\) 33.3901 + 8.52650i 1.09727 + 0.280198i
\(927\) −6.20843 6.20843i −0.203912 0.203912i
\(928\) −24.1841 12.1235i −0.793882 0.397974i
\(929\) −6.05660 6.05660i −0.198711 0.198711i 0.600737 0.799447i \(-0.294874\pi\)
−0.799447 + 0.600737i \(0.794874\pi\)
\(930\) 35.0622 + 20.1639i 1.14973 + 0.661201i
\(931\) 3.04873 3.04873i 0.0999181 0.0999181i
\(932\) −17.5085 + 32.0465i −0.573511 + 1.04972i
\(933\) 3.43354 + 3.43354i 0.112409 + 0.112409i
\(934\) −16.3133 27.5020i −0.533788 0.899894i
\(935\) 34.0333 19.1941i 1.11301 0.627715i
\(936\) 1.04564 1.12230i 0.0341779 0.0366837i
\(937\) 25.7234i 0.840348i 0.907444 + 0.420174i \(0.138031\pi\)
−0.907444 + 0.420174i \(0.861969\pi\)
\(938\) 4.92686 19.2937i 0.160868 0.629963i
\(939\) −30.7525 −1.00357
\(940\) −26.7404 + 27.4711i −0.872175 + 0.896009i
\(941\) 16.8282i 0.548585i −0.961646 0.274293i \(-0.911556\pi\)
0.961646 0.274293i \(-0.0884437\pi\)
\(942\) 53.8462 + 13.7502i 1.75441 + 0.448006i
\(943\) 28.1376 39.0423i 0.916287 1.27139i
\(944\) 1.01337 + 1.57847i 0.0329824 + 0.0513749i
\(945\) −25.9867 7.24480i −0.845347 0.235673i
\(946\) 18.2559 + 4.66182i 0.593549 + 0.151569i
\(947\) −2.13068 2.13068i −0.0692377 0.0692377i 0.671640 0.740878i \(-0.265590\pi\)
−0.740878 + 0.671640i \(0.765590\pi\)
\(948\) 17.7839 + 60.6192i 0.577594 + 1.96882i
\(949\) 1.46677 + 1.46677i 0.0476133 + 0.0476133i
\(950\) −6.84795 0.0574505i −0.222177 0.00186394i
\(951\) −13.5481 −0.439327
\(952\) 23.4457 + 21.8442i 0.759881 + 0.707976i
\(953\) −28.9977 28.9977i −0.939327 0.939327i 0.0589353 0.998262i \(-0.481229\pi\)
−0.998262 + 0.0589353i \(0.981229\pi\)
\(954\) 4.16094 16.2944i 0.134715 0.527550i
\(955\) −53.3713 + 30.1004i −1.72706 + 0.974025i
\(956\) −3.76542 12.8350i −0.121782 0.415115i
\(957\) 51.6134i 1.66843i
\(958\) 16.2494 + 27.3942i 0.524994 + 0.885067i
\(959\) −13.1352 −0.424157
\(960\) −36.2441 7.39206i −1.16977 0.238578i
\(961\) −7.25979 −0.234187
\(962\) 1.30329 + 2.19718i 0.0420199 + 0.0708398i
\(963\) −0.936759 0.936759i −0.0301866 0.0301866i
\(964\) −17.8423 + 32.6574i −0.574661 + 1.05182i
\(965\) 10.7799 + 3.00530i 0.347016 + 0.0967441i
\(966\) 37.9454 + 63.9708i 1.22087 + 2.05823i
\(967\) 6.48310 0.208482 0.104241 0.994552i \(-0.466759\pi\)
0.104241 + 0.994552i \(0.466759\pi\)
\(968\) −31.3145 + 33.6103i −1.00649 + 1.08027i
\(969\) 4.74093 + 4.74093i 0.152301 + 0.152301i
\(970\) −35.9804 20.6920i −1.15526 0.664380i
\(971\) −3.85798 + 3.85798i −0.123809 + 0.123809i −0.766296 0.642488i \(-0.777902\pi\)
0.642488 + 0.766296i \(0.277902\pi\)
\(972\) −21.8752 11.9514i −0.701647 0.383343i
\(973\) 64.1983i 2.05810i
\(974\) 17.5331 10.4001i 0.561797 0.333240i
\(975\) 2.27370 3.76088i 0.0728166 0.120444i
\(976\) 0.702462 0.450977i 0.0224853 0.0144354i
\(977\) −24.7565 −0.792032 −0.396016 0.918244i \(-0.629607\pi\)
−0.396016 + 0.918244i \(0.629607\pi\)
\(978\) 6.64141 3.93947i 0.212369 0.125970i
\(979\) 19.0352i 0.608366i
\(980\) 13.8871 14.2665i 0.443606 0.455728i
\(981\) −0.402702 0.402702i −0.0128573 0.0128573i
\(982\) −5.62717 + 22.0362i −0.179570 + 0.703203i
\(983\) 18.0539 18.0539i 0.575830 0.575830i −0.357922 0.933752i \(-0.616515\pi\)
0.933752 + 0.357922i \(0.116515\pi\)
\(984\) −31.1366 20.8087i −0.992598 0.663356i
\(985\) 1.95944 1.10508i 0.0624329 0.0352109i
\(986\) 11.5515 + 19.4743i 0.367876 + 0.620189i
\(987\) 59.9862i 1.90938i
\(988\) −0.231772 0.790032i −0.00737365 0.0251343i
\(989\) −19.1854 −0.610060
\(990\) −5.48477 20.3314i −0.174317 0.646175i
\(991\) 20.1485 20.1485i 0.640040 0.640040i −0.310525 0.950565i \(-0.600505\pi\)
0.950565 + 0.310525i \(0.100505\pi\)
\(992\) 33.2061 11.0303i 1.05429 0.350213i
\(993\) 25.3458 25.3458i 0.804325 0.804325i
\(994\) −19.3658 32.6480i −0.614244 1.03553i
\(995\) 5.35291 + 9.49132i 0.169699 + 0.300895i
\(996\) 30.4446 8.93156i 0.964676 0.283007i
\(997\) −41.2931 −1.30777 −0.653883 0.756596i \(-0.726861\pi\)
−0.653883 + 0.756596i \(0.726861\pi\)
\(998\) −16.8041 28.3293i −0.531923 0.896749i
\(999\) 10.7134 10.7134i 0.338957 0.338957i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.s.c.583.8 yes 240
4.3 odd 2 inner 820.2.s.c.583.54 yes 240
5.2 odd 4 820.2.j.c.747.67 yes 240
20.7 even 4 820.2.j.c.747.113 yes 240
41.32 even 4 820.2.j.c.483.113 yes 240
164.155 odd 4 820.2.j.c.483.67 240
205.32 odd 4 inner 820.2.s.c.647.54 yes 240
820.647 even 4 inner 820.2.s.c.647.8 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.j.c.483.67 240 164.155 odd 4
820.2.j.c.483.113 yes 240 41.32 even 4
820.2.j.c.747.67 yes 240 5.2 odd 4
820.2.j.c.747.113 yes 240 20.7 even 4
820.2.s.c.583.8 yes 240 1.1 even 1 trivial
820.2.s.c.583.54 yes 240 4.3 odd 2 inner
820.2.s.c.647.8 yes 240 820.647 even 4 inner
820.2.s.c.647.54 yes 240 205.32 odd 4 inner