gp: [N,k,chi] = [820,2,Mod(583,820)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(820, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 3]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("820.583");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [240,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(820, [\chi])\):
\( T_{3}^{120} - 240 T_{3}^{118} + 27984 T_{3}^{116} - 2112528 T_{3}^{114} + 116091792 T_{3}^{112} + \cdots + 40\!\cdots\!72 \)
T3^120 - 240*T3^118 + 27984*T3^116 - 2112528*T3^114 + 116091792*T3^112 - 4950926968*T3^110 + 170579892728*T3^108 - 4880807675344*T3^106 + 118318963206630*T3^104 - 2466980532741464*T3^102 + 44763057062905152*T3^100 - 713457116392438968*T3^98 + 10064401187242767740*T3^96 - 126434708444219069032*T3^94 + 1421758086428296388336*T3^92 - 14372004067354279109464*T3^90 + 131065643798609505601049*T3^88 - 1081522617715466767584152*T3^86 + 8095423015063320642410032*T3^84 - 55080720220035876716050776*T3^82 + 341236333087442784270943932*T3^80 - 1927547542246508728763012096*T3^78 + 9938513486524211986661036584*T3^76 - 46812499751864547284592846936*T3^74 + 201547808261222591215636977912*T3^72 - 793456314791305941012387901312*T3^70 + 2856640888522482130535658626656*T3^68 - 9404692608901380198130064119808*T3^66 + 28305464350282466274699281107120*T3^64 - 77844082775071509806524462599872*T3^62 + 195485944089870680964722901053968*T3^60 - 447873460816172635193852713692896*T3^58 + 935120253106633351286606122450320*T3^56 - 1776958093977991231395426203827072*T3^54 + 3068361489940984840346239649158784*T3^52 - 4805809821373884306652268245081984*T3^50 + 6813148836396414544205156773682560*T3^48 - 8721845516440369326342355996192640*T3^46 + 10054463484046976053704858194028736*T3^44 - 10405071886367255451591349761462272*T3^42 + 9632204058584429078206405420166912*T3^40 - 7944120129790929606429849658868736*T3^38 + 5810377926653242590718921763469056*T3^36 - 3748987799872932607634267877861888*T3^34 + 2121053368730030350199265362599680*T3^32 - 1044952992233260159809997350221824*T3^30 + 444687750015853610821433930254336*T3^28 - 161942817203060455475681309497344*T3^26 + 49918008869799073896285237388288*T3^24 - 12856733199274892652008330573824*T3^22 + 2724662698899919571361770771456*T3^20 - 466450947778939377964769394688*T3^18 + 63084712008940411888632737792*T3^16 - 6558594976665834151092338688*T3^14 + 506753311886600842649473024*T3^12 - 27895507628633618078990336*T3^10 + 1036856408375854846427136*T3^8 - 24243719749768664317952*T3^6 + 322324592457911959552*T3^4 - 2038116419490021376*T3^2 + 4009174312681472
\( T_{13}^{120} + 804 T_{13}^{118} + 312792 T_{13}^{116} + 78459264 T_{13}^{114} + 14264927322 T_{13}^{112} + \cdots + 99\!\cdots\!00 \)
T13^120 + 804*T13^118 + 312792*T13^116 + 78459264*T13^114 + 14264927322*T13^112 + 2003750566800*T13^110 + 226342563436216*T13^108 + 21131477863295912*T13^106 + 1663160826273885459*T13^104 + 112008184297489002332*T13^102 + 6529621117292442600756*T13^100 + 332518052648005144414168*T13^98 + 14901205486521637715432250*T13^96 + 591156268547001243637823544*T13^94 + 20863513100613972507014435620*T13^92 + 657706730827553950946642253144*T13^90 + 18581736792793119661522678473857*T13^88 + 471785036013950030119898369838508*T13^86 + 10789091528941150453513552009730812*T13^84 + 222639444612034425302386699055522704*T13^82 + 4151717822858655749932542145756037168*T13^80 + 70040770408455350485932969874362177696*T13^78 + 1069871981575369714059736493649994391712*T13^76 + 14805192026844765096559183911546333569600*T13^74 + 185666324988658561089300826610145502041472*T13^72 + 2110199284792867743519747165331568065820160*T13^70 + 21733177473935888881644763547316956394892032*T13^68 + 202757909544469869732907921654819937925398016*T13^66 + 1712543992302867558666978478300037213665882368*T13^64 + 13085165732524249025590346489319451351720173568*T13^62 + 90357323795350991055553276632609773716763934720*T13^60 + 563214618937739603387225454611709388721474240512*T13^58 + 3164417573678531454451044807231398108703753617408*T13^56 + 15999402451449690622667236457306772183069654056960*T13^54 + 72656691174881088726815418840299418411940735369216*T13^52 + 295708034955457395735365559136155848864076915933184*T13^50 + 1075946614348048145885086280841392146187867296628736*T13^48 + 3490111413491541795065205528410342115313610340171776*T13^46 + 10060706734205743878198602602833069266694502421102592*T13^44 + 25679989625788669180206705840276086536540451812409344*T13^42 + 57804888141668098583320292736537746327118452191395840*T13^40 + 114214125119003001406265729492033691001347489138737152*T13^38 + 197041073907470056697806627039190124454961239161831424*T13^36 + 295007652322878549794901074192810865576135361099202560*T13^34 + 380630512380394281955419880460258452191227759130836992*T13^32 + 419794267537295209022380170907721780865850915380264960*T13^30 + 392024067252218532918332243616838975763828028737585152*T13^28 + 306546392887913956608101541109729273910332947913768960*T13^26 + 198094483749564684970576790938855014240008195805282304*T13^24 + 104146471515758724989733518858089657032689810938003456*T13^22 + 43719412201402814852069626440830484582332017496031232*T13^20 + 14326418472161300595820603049402685470952502224486400*T13^18 + 3564740510330174762912421325863156750219901640114176*T13^16 + 650627066171245042528226742889829710564111255863296*T13^14 + 83271301340940591610436404583034715884831377457152*T13^12 + 7022871707404679336681082459212788553618252890112*T13^10 + 356042180305955547808761353706824338157466550272*T13^8 + 9383258183355233763614277959030946769169022976*T13^6 + 99544898358290134968700696102053239534387200*T13^4 + 101459444150584674704796280560057057280000*T13^2 + 9979419684367372227834202292224000000