Properties

Label 820.2.k.c.83.20
Level $820$
Weight $2$
Character 820.83
Analytic conductor $6.548$
Analytic rank $0$
Dimension $108$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(83,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.83"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [108] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(54\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 83.20
Character \(\chi\) \(=\) 820.83
Dual form 820.2.k.c.247.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.238964 - 1.39388i) q^{2} +(-0.444020 + 0.444020i) q^{3} +(-1.88579 + 0.666174i) q^{4} +(1.32043 - 1.80457i) q^{5} +(0.725014 + 0.512805i) q^{6} +(-0.174110 - 0.174110i) q^{7} +(1.37920 + 2.46937i) q^{8} +2.60569i q^{9} +(-2.83089 - 1.40929i) q^{10} -3.21035i q^{11} +(0.541534 - 1.13312i) q^{12} +(-0.824514 - 0.824514i) q^{13} +(-0.201082 + 0.284294i) q^{14} +(0.214969 + 1.38756i) q^{15} +(3.11242 - 2.51253i) q^{16} +(2.09632 - 2.09632i) q^{17} +(3.63202 - 0.622667i) q^{18} -1.43141 q^{19} +(-1.28789 + 4.28268i) q^{20} +0.154617 q^{21} +(-4.47484 + 0.767159i) q^{22} +(4.09633 - 4.09633i) q^{23} +(-1.70884 - 0.484057i) q^{24} +(-1.51294 - 4.76561i) q^{25} +(-0.952242 + 1.34630i) q^{26} +(-2.48904 - 2.48904i) q^{27} +(0.444323 + 0.212348i) q^{28} -10.2809i q^{29} +(1.88272 - 0.631218i) q^{30} +9.15383i q^{31} +(-4.24592 - 3.73793i) q^{32} +(1.42546 + 1.42546i) q^{33} +(-3.42297 - 2.42107i) q^{34} +(-0.544093 + 0.0842940i) q^{35} +(-1.73585 - 4.91380i) q^{36} +(-3.35446 + 3.35446i) q^{37} +(0.342057 + 1.99522i) q^{38} +0.732201 q^{39} +(6.27729 + 0.771760i) q^{40} +1.00000 q^{41} +(-0.0369478 - 0.215517i) q^{42} +(6.42691 - 6.42691i) q^{43} +(2.13865 + 6.05405i) q^{44} +(4.70215 + 3.44063i) q^{45} +(-6.68867 - 4.73091i) q^{46} +(2.22800 + 2.22800i) q^{47} +(-0.266364 + 2.49759i) q^{48} -6.93937i q^{49} +(-6.28113 + 3.24767i) q^{50} +1.86162i q^{51} +(2.10413 + 1.00559i) q^{52} +(-7.48279 - 7.48279i) q^{53} +(-2.87462 + 4.06421i) q^{54} +(-5.79330 - 4.23903i) q^{55} +(0.189809 - 0.670075i) q^{56} +(0.635576 - 0.635576i) q^{57} +(-14.3303 + 2.45676i) q^{58} -4.94619 q^{59} +(-1.32974 - 2.47344i) q^{60} -13.2727 q^{61} +(12.7593 - 2.18744i) q^{62} +(0.453677 - 0.453677i) q^{63} +(-4.19560 + 6.81153i) q^{64} +(-2.57660 + 0.399182i) q^{65} +(1.64628 - 2.32755i) q^{66} +(-1.93499 - 1.93499i) q^{67} +(-2.55672 + 5.34975i) q^{68} +3.63770i q^{69} +(0.247514 + 0.738256i) q^{70} -14.6976i q^{71} +(-6.43443 + 3.59378i) q^{72} +(5.74025 + 5.74025i) q^{73} +(5.47730 + 3.87411i) q^{74} +(2.78780 + 1.44425i) q^{75} +(2.69935 - 0.953571i) q^{76} +(-0.558954 + 0.558954i) q^{77} +(-0.174970 - 1.02060i) q^{78} -7.25447 q^{79} +(-0.424309 - 8.93420i) q^{80} -5.60671 q^{81} +(-0.238964 - 1.39388i) q^{82} +(4.49891 - 4.49891i) q^{83} +(-0.291575 + 0.103002i) q^{84} +(-1.01492 - 6.55101i) q^{85} +(-10.4941 - 7.42253i) q^{86} +(4.56491 + 4.56491i) q^{87} +(7.92755 - 4.42772i) q^{88} +12.8980i q^{89} +(3.67217 - 7.37642i) q^{90} +0.287112i q^{91} +(-4.99596 + 10.4537i) q^{92} +(-4.06448 - 4.06448i) q^{93} +(2.57314 - 3.63797i) q^{94} +(-1.89008 + 2.58309i) q^{95} +(3.54499 - 0.225556i) q^{96} +(4.04246 - 4.04246i) q^{97} +(-9.67264 + 1.65826i) q^{98} +8.36519 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q + 12 q^{2} - 4 q^{6} - 24 q^{8} + 4 q^{10} - 16 q^{13} + 52 q^{16} - 8 q^{17} + 18 q^{18} + 38 q^{20} + 72 q^{21} + 10 q^{22} - 12 q^{25} + 24 q^{26} - 58 q^{28} - 70 q^{30} - 38 q^{32} + 8 q^{33}+ \cdots + 122 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.238964 1.39388i −0.168973 0.985621i
\(3\) −0.444020 + 0.444020i −0.256355 + 0.256355i −0.823570 0.567215i \(-0.808021\pi\)
0.567215 + 0.823570i \(0.308021\pi\)
\(4\) −1.88579 + 0.666174i −0.942896 + 0.333087i
\(5\) 1.32043 1.80457i 0.590513 0.807028i
\(6\) 0.725014 + 0.512805i 0.295986 + 0.209352i
\(7\) −0.174110 0.174110i −0.0658074 0.0658074i 0.673437 0.739245i \(-0.264817\pi\)
−0.739245 + 0.673437i \(0.764817\pi\)
\(8\) 1.37920 + 2.46937i 0.487622 + 0.873055i
\(9\) 2.60569i 0.868564i
\(10\) −2.83089 1.40929i −0.895204 0.445656i
\(11\) 3.21035i 0.967957i −0.875080 0.483979i \(-0.839191\pi\)
0.875080 0.483979i \(-0.160809\pi\)
\(12\) 0.541534 1.13312i 0.156328 0.327105i
\(13\) −0.824514 0.824514i −0.228679 0.228679i 0.583462 0.812141i \(-0.301698\pi\)
−0.812141 + 0.583462i \(0.801698\pi\)
\(14\) −0.201082 + 0.284294i −0.0537414 + 0.0759808i
\(15\) 0.214969 + 1.38756i 0.0555047 + 0.358267i
\(16\) 3.11242 2.51253i 0.778106 0.628133i
\(17\) 2.09632 2.09632i 0.508433 0.508433i −0.405612 0.914045i \(-0.632942\pi\)
0.914045 + 0.405612i \(0.132942\pi\)
\(18\) 3.63202 0.622667i 0.856075 0.146764i
\(19\) −1.43141 −0.328389 −0.164194 0.986428i \(-0.552502\pi\)
−0.164194 + 0.986428i \(0.552502\pi\)
\(20\) −1.28789 + 4.28268i −0.287982 + 0.957636i
\(21\) 0.154617 0.0337401
\(22\) −4.47484 + 0.767159i −0.954038 + 0.163559i
\(23\) 4.09633 4.09633i 0.854144 0.854144i −0.136496 0.990641i \(-0.543584\pi\)
0.990641 + 0.136496i \(0.0435841\pi\)
\(24\) −1.70884 0.484057i −0.348816 0.0988077i
\(25\) −1.51294 4.76561i −0.302589 0.953121i
\(26\) −0.952242 + 1.34630i −0.186750 + 0.264031i
\(27\) −2.48904 2.48904i −0.479016 0.479016i
\(28\) 0.444323 + 0.212348i 0.0839691 + 0.0401299i
\(29\) 10.2809i 1.90911i −0.298036 0.954555i \(-0.596332\pi\)
0.298036 0.954555i \(-0.403668\pi\)
\(30\) 1.88272 0.631218i 0.343736 0.115244i
\(31\) 9.15383i 1.64408i 0.569432 + 0.822038i \(0.307163\pi\)
−0.569432 + 0.822038i \(0.692837\pi\)
\(32\) −4.24592 3.73793i −0.750580 0.660780i
\(33\) 1.42546 + 1.42546i 0.248141 + 0.248141i
\(34\) −3.42297 2.42107i −0.587034 0.415211i
\(35\) −0.544093 + 0.0842940i −0.0919685 + 0.0142483i
\(36\) −1.73585 4.91380i −0.289308 0.818966i
\(37\) −3.35446 + 3.35446i −0.551469 + 0.551469i −0.926865 0.375396i \(-0.877507\pi\)
0.375396 + 0.926865i \(0.377507\pi\)
\(38\) 0.342057 + 1.99522i 0.0554890 + 0.323667i
\(39\) 0.732201 0.117246
\(40\) 6.27729 + 0.771760i 0.992527 + 0.122026i
\(41\) 1.00000 0.156174
\(42\) −0.0369478 0.215517i −0.00570117 0.0332549i
\(43\) 6.42691 6.42691i 0.980095 0.980095i −0.0197110 0.999806i \(-0.506275\pi\)
0.999806 + 0.0197110i \(0.00627461\pi\)
\(44\) 2.13865 + 6.05405i 0.322414 + 0.912683i
\(45\) 4.70215 + 3.44063i 0.700956 + 0.512899i
\(46\) −6.68867 4.73091i −0.986190 0.697535i
\(47\) 2.22800 + 2.22800i 0.324987 + 0.324987i 0.850676 0.525690i \(-0.176193\pi\)
−0.525690 + 0.850676i \(0.676193\pi\)
\(48\) −0.266364 + 2.49759i −0.0384463 + 0.360496i
\(49\) 6.93937i 0.991339i
\(50\) −6.28113 + 3.24767i −0.888287 + 0.459290i
\(51\) 1.86162i 0.260679i
\(52\) 2.10413 + 1.00559i 0.291790 + 0.139450i
\(53\) −7.48279 7.48279i −1.02784 1.02784i −0.999601 0.0282396i \(-0.991010\pi\)
−0.0282396 0.999601i \(-0.508990\pi\)
\(54\) −2.87462 + 4.06421i −0.391187 + 0.553069i
\(55\) −5.79330 4.23903i −0.781169 0.571591i
\(56\) 0.189809 0.670075i 0.0253644 0.0895426i
\(57\) 0.635576 0.635576i 0.0841841 0.0841841i
\(58\) −14.3303 + 2.45676i −1.88166 + 0.322588i
\(59\) −4.94619 −0.643939 −0.321969 0.946750i \(-0.604345\pi\)
−0.321969 + 0.946750i \(0.604345\pi\)
\(60\) −1.32974 2.47344i −0.171669 0.319320i
\(61\) −13.2727 −1.69940 −0.849700 0.527267i \(-0.823217\pi\)
−0.849700 + 0.527267i \(0.823217\pi\)
\(62\) 12.7593 2.18744i 1.62044 0.277805i
\(63\) 0.453677 0.453677i 0.0571579 0.0571579i
\(64\) −4.19560 + 6.81153i −0.524450 + 0.851441i
\(65\) −2.57660 + 0.399182i −0.319588 + 0.0495124i
\(66\) 1.64628 2.32755i 0.202643 0.286502i
\(67\) −1.93499 1.93499i −0.236397 0.236397i 0.578960 0.815356i \(-0.303459\pi\)
−0.815356 + 0.578960i \(0.803459\pi\)
\(68\) −2.55672 + 5.34975i −0.310047 + 0.648752i
\(69\) 3.63770i 0.437928i
\(70\) 0.247514 + 0.738256i 0.0295836 + 0.0882385i
\(71\) 14.6976i 1.74428i −0.489254 0.872141i \(-0.662731\pi\)
0.489254 0.872141i \(-0.337269\pi\)
\(72\) −6.43443 + 3.59378i −0.758304 + 0.423531i
\(73\) 5.74025 + 5.74025i 0.671846 + 0.671846i 0.958141 0.286296i \(-0.0924240\pi\)
−0.286296 + 0.958141i \(0.592424\pi\)
\(74\) 5.47730 + 3.87411i 0.636723 + 0.450356i
\(75\) 2.78780 + 1.44425i 0.321907 + 0.166767i
\(76\) 2.69935 0.953571i 0.309637 0.109382i
\(77\) −0.558954 + 0.558954i −0.0636987 + 0.0636987i
\(78\) −0.174970 1.02060i −0.0198114 0.115560i
\(79\) −7.25447 −0.816192 −0.408096 0.912939i \(-0.633807\pi\)
−0.408096 + 0.912939i \(0.633807\pi\)
\(80\) −0.424309 8.93420i −0.0474392 0.998874i
\(81\) −5.60671 −0.622968
\(82\) −0.238964 1.39388i −0.0263892 0.153928i
\(83\) 4.49891 4.49891i 0.493819 0.493819i −0.415688 0.909507i \(-0.636459\pi\)
0.909507 + 0.415688i \(0.136459\pi\)
\(84\) −0.291575 + 0.103002i −0.0318134 + 0.0112384i
\(85\) −1.01492 6.55101i −0.110083 0.710557i
\(86\) −10.4941 7.42253i −1.13161 0.800392i
\(87\) 4.56491 + 4.56491i 0.489410 + 0.489410i
\(88\) 7.92755 4.42772i 0.845080 0.471997i
\(89\) 12.8980i 1.36718i 0.729866 + 0.683591i \(0.239583\pi\)
−0.729866 + 0.683591i \(0.760417\pi\)
\(90\) 3.67217 7.37642i 0.387081 0.777543i
\(91\) 0.287112i 0.0300975i
\(92\) −4.99596 + 10.4537i −0.520865 + 1.08987i
\(93\) −4.06448 4.06448i −0.421467 0.421467i
\(94\) 2.57314 3.63797i 0.265400 0.375228i
\(95\) −1.89008 + 2.58309i −0.193918 + 0.265019i
\(96\) 3.54499 0.225556i 0.361809 0.0230207i
\(97\) 4.04246 4.04246i 0.410449 0.410449i −0.471446 0.881895i \(-0.656268\pi\)
0.881895 + 0.471446i \(0.156268\pi\)
\(98\) −9.67264 + 1.65826i −0.977084 + 0.167510i
\(99\) 8.36519 0.840733
\(100\) 6.02782 + 7.97906i 0.602782 + 0.797906i
\(101\) 8.70498 0.866178 0.433089 0.901351i \(-0.357424\pi\)
0.433089 + 0.901351i \(0.357424\pi\)
\(102\) 2.59487 0.444860i 0.256930 0.0440477i
\(103\) 13.4957 13.4957i 1.32977 1.32977i 0.424196 0.905571i \(-0.360557\pi\)
0.905571 0.424196i \(-0.139443\pi\)
\(104\) 0.898860 3.17320i 0.0881405 0.311158i
\(105\) 0.204160 0.279016i 0.0199240 0.0272292i
\(106\) −8.64198 + 12.2182i −0.839384 + 1.18674i
\(107\) 11.6366 + 11.6366i 1.12496 + 1.12496i 0.990985 + 0.133971i \(0.0427729\pi\)
0.133971 + 0.990985i \(0.457227\pi\)
\(108\) 6.35194 + 3.03568i 0.611216 + 0.292108i
\(109\) 10.0792i 0.965412i 0.875783 + 0.482706i \(0.160346\pi\)
−0.875783 + 0.482706i \(0.839654\pi\)
\(110\) −4.52431 + 9.08813i −0.431376 + 0.866520i
\(111\) 2.97889i 0.282744i
\(112\) −0.979361 0.104447i −0.0925409 0.00986934i
\(113\) 5.37622 + 5.37622i 0.505752 + 0.505752i 0.913220 0.407467i \(-0.133588\pi\)
−0.407467 + 0.913220i \(0.633588\pi\)
\(114\) −1.03780 0.734036i −0.0971985 0.0687487i
\(115\) −1.98321 12.8010i −0.184935 1.19370i
\(116\) 6.84885 + 19.3876i 0.635900 + 1.80009i
\(117\) 2.14843 2.14843i 0.198622 0.198622i
\(118\) 1.18196 + 6.89438i 0.108808 + 0.634679i
\(119\) −0.729982 −0.0669173
\(120\) −3.12992 + 2.44456i −0.285721 + 0.223157i
\(121\) 0.693650 0.0630591
\(122\) 3.17171 + 18.5006i 0.287153 + 1.67496i
\(123\) −0.444020 + 0.444020i −0.0400359 + 0.0400359i
\(124\) −6.09805 17.2622i −0.547621 1.55019i
\(125\) −10.5976 3.56242i −0.947878 0.318633i
\(126\) −0.740783 0.523958i −0.0659942 0.0466779i
\(127\) 7.84211 + 7.84211i 0.695875 + 0.695875i 0.963518 0.267643i \(-0.0862449\pi\)
−0.267643 + 0.963518i \(0.586245\pi\)
\(128\) 10.4970 + 4.22045i 0.927816 + 0.373038i
\(129\) 5.70735i 0.502504i
\(130\) 1.17213 + 3.49608i 0.102802 + 0.306626i
\(131\) 10.6008i 0.926199i 0.886306 + 0.463100i \(0.153263\pi\)
−0.886306 + 0.463100i \(0.846737\pi\)
\(132\) −3.63772 1.73852i −0.316623 0.151318i
\(133\) 0.249224 + 0.249224i 0.0216104 + 0.0216104i
\(134\) −2.23475 + 3.15953i −0.193053 + 0.272942i
\(135\) −7.77824 + 1.20505i −0.669444 + 0.103714i
\(136\) 8.06786 + 2.28535i 0.691814 + 0.195967i
\(137\) 2.60999 2.60999i 0.222986 0.222986i −0.586768 0.809755i \(-0.699600\pi\)
0.809755 + 0.586768i \(0.199600\pi\)
\(138\) 5.07052 0.869281i 0.431631 0.0739982i
\(139\) −9.94177 −0.843250 −0.421625 0.906770i \(-0.638540\pi\)
−0.421625 + 0.906770i \(0.638540\pi\)
\(140\) 0.969892 0.521422i 0.0819708 0.0440682i
\(141\) −1.97855 −0.166624
\(142\) −20.4866 + 3.51220i −1.71920 + 0.294737i
\(143\) −2.64698 + 2.64698i −0.221351 + 0.221351i
\(144\) 6.54689 + 8.11002i 0.545574 + 0.675835i
\(145\) −18.5525 13.5751i −1.54070 1.12735i
\(146\) 6.62950 9.37292i 0.548661 0.775709i
\(147\) 3.08122 + 3.08122i 0.254135 + 0.254135i
\(148\) 4.09115 8.56046i 0.336291 0.703665i
\(149\) 4.13860i 0.339047i −0.985526 0.169524i \(-0.945777\pi\)
0.985526 0.169524i \(-0.0542229\pi\)
\(150\) 1.34692 4.23098i 0.109975 0.345458i
\(151\) 1.97386i 0.160630i 0.996770 + 0.0803152i \(0.0255927\pi\)
−0.996770 + 0.0803152i \(0.974407\pi\)
\(152\) −1.97421 3.53470i −0.160130 0.286702i
\(153\) 5.46238 + 5.46238i 0.441607 + 0.441607i
\(154\) 0.912684 + 0.645544i 0.0735462 + 0.0520194i
\(155\) 16.5187 + 12.0870i 1.32682 + 0.970849i
\(156\) −1.38078 + 0.487773i −0.110551 + 0.0390531i
\(157\) 8.57021 8.57021i 0.683977 0.683977i −0.276917 0.960894i \(-0.589313\pi\)
0.960894 + 0.276917i \(0.0893127\pi\)
\(158\) 1.73356 + 10.1118i 0.137915 + 0.804455i
\(159\) 6.64502 0.526984
\(160\) −12.3518 + 2.72639i −0.976495 + 0.215540i
\(161\) −1.42642 −0.112418
\(162\) 1.33980 + 7.81508i 0.105265 + 0.614010i
\(163\) −9.69093 + 9.69093i −0.759052 + 0.759052i −0.976150 0.217098i \(-0.930341\pi\)
0.217098 + 0.976150i \(0.430341\pi\)
\(164\) −1.88579 + 0.666174i −0.147256 + 0.0520195i
\(165\) 4.45455 0.690125i 0.346787 0.0537262i
\(166\) −7.34601 5.19585i −0.570161 0.403276i
\(167\) 15.6517 + 15.6517i 1.21117 + 1.21117i 0.970644 + 0.240522i \(0.0773188\pi\)
0.240522 + 0.970644i \(0.422681\pi\)
\(168\) 0.213247 + 0.381806i 0.0164524 + 0.0294570i
\(169\) 11.6404i 0.895412i
\(170\) −8.88878 + 2.98013i −0.681738 + 0.228566i
\(171\) 3.72983i 0.285227i
\(172\) −7.83838 + 16.4013i −0.597671 + 1.25058i
\(173\) −4.88315 4.88315i −0.371259 0.371259i 0.496677 0.867936i \(-0.334554\pi\)
−0.867936 + 0.496677i \(0.834554\pi\)
\(174\) 5.27208 7.45378i 0.399675 0.565069i
\(175\) −0.566321 + 1.09316i −0.0428098 + 0.0826350i
\(176\) −8.06611 9.99197i −0.608006 0.753173i
\(177\) 2.19621 2.19621i 0.165077 0.165077i
\(178\) 17.9782 3.08215i 1.34752 0.231017i
\(179\) 20.4713 1.53010 0.765049 0.643972i \(-0.222714\pi\)
0.765049 + 0.643972i \(0.222714\pi\)
\(180\) −11.1593 3.35586i −0.831768 0.250131i
\(181\) 6.56161 0.487721 0.243860 0.969810i \(-0.421586\pi\)
0.243860 + 0.969810i \(0.421586\pi\)
\(182\) 0.400199 0.0686095i 0.0296647 0.00508568i
\(183\) 5.89335 5.89335i 0.435649 0.435649i
\(184\) 15.7650 + 4.46570i 1.16221 + 0.329216i
\(185\) 1.62403 + 10.4827i 0.119401 + 0.770701i
\(186\) −4.69413 + 6.63666i −0.344190 + 0.486623i
\(187\) −6.72994 6.72994i −0.492142 0.492142i
\(188\) −5.68577 2.71730i −0.414678 0.198180i
\(189\) 0.866733i 0.0630455i
\(190\) 4.05217 + 2.01727i 0.293975 + 0.146348i
\(191\) 2.31236i 0.167317i 0.996494 + 0.0836583i \(0.0266604\pi\)
−0.996494 + 0.0836583i \(0.973340\pi\)
\(192\) −1.16152 4.88738i −0.0838257 0.352716i
\(193\) 15.8110 + 15.8110i 1.13810 + 1.13810i 0.988790 + 0.149312i \(0.0477059\pi\)
0.149312 + 0.988790i \(0.452294\pi\)
\(194\) −6.60069 4.66869i −0.473902 0.335192i
\(195\) 0.966818 1.32131i 0.0692352 0.0946208i
\(196\) 4.62283 + 13.0862i 0.330202 + 0.934729i
\(197\) −5.48130 + 5.48130i −0.390526 + 0.390526i −0.874875 0.484349i \(-0.839057\pi\)
0.484349 + 0.874875i \(0.339057\pi\)
\(198\) −1.99898 11.6601i −0.142061 0.828644i
\(199\) −9.94424 −0.704929 −0.352464 0.935825i \(-0.614656\pi\)
−0.352464 + 0.935825i \(0.614656\pi\)
\(200\) 9.68140 10.3088i 0.684578 0.728939i
\(201\) 1.71835 0.121203
\(202\) −2.08018 12.1337i −0.146361 0.853723i
\(203\) −1.79000 + 1.79000i −0.125633 + 0.125633i
\(204\) −1.24016 3.51063i −0.0868287 0.245793i
\(205\) 1.32043 1.80457i 0.0922226 0.126037i
\(206\) −22.0363 15.5863i −1.53534 1.08595i
\(207\) 10.6738 + 10.6738i 0.741879 + 0.741879i
\(208\) −4.63785 0.494619i −0.321577 0.0342957i
\(209\) 4.59534i 0.317866i
\(210\) −0.437702 0.217899i −0.0302043 0.0150365i
\(211\) 14.5655i 1.00273i −0.865235 0.501367i \(-0.832831\pi\)
0.865235 0.501367i \(-0.167169\pi\)
\(212\) 19.0958 + 9.12615i 1.31151 + 0.626787i
\(213\) 6.52602 + 6.52602i 0.447155 + 0.447155i
\(214\) 13.4393 19.0008i 0.918693 1.29887i
\(215\) −3.11154 20.0841i −0.212205 1.36972i
\(216\) 2.71348 9.57925i 0.184629 0.651785i
\(217\) 1.59377 1.59377i 0.108192 0.108192i
\(218\) 14.0492 2.40857i 0.951530 0.163129i
\(219\) −5.09757 −0.344462
\(220\) 13.7489 + 4.13459i 0.926950 + 0.278754i
\(221\) −3.45690 −0.232536
\(222\) −4.15221 + 0.711848i −0.278678 + 0.0477761i
\(223\) 10.7555 10.7555i 0.720244 0.720244i −0.248411 0.968655i \(-0.579908\pi\)
0.968655 + 0.248411i \(0.0799083\pi\)
\(224\) 0.0884455 + 1.39007i 0.00590951 + 0.0928779i
\(225\) 12.4177 3.94227i 0.827847 0.262818i
\(226\) 6.20907 8.77852i 0.413021 0.583938i
\(227\) −4.19765 4.19765i −0.278608 0.278608i 0.553945 0.832553i \(-0.313122\pi\)
−0.832553 + 0.553945i \(0.813122\pi\)
\(228\) −0.775160 + 1.62197i −0.0513362 + 0.107418i
\(229\) 14.8658i 0.982361i 0.871058 + 0.491180i \(0.163434\pi\)
−0.871058 + 0.491180i \(0.836566\pi\)
\(230\) −17.3692 + 5.82334i −1.14529 + 0.383980i
\(231\) 0.496373i 0.0326590i
\(232\) 25.3873 14.1794i 1.66676 0.930923i
\(233\) −4.90678 4.90678i −0.321454 0.321454i 0.527871 0.849325i \(-0.322990\pi\)
−0.849325 + 0.527871i \(0.822990\pi\)
\(234\) −3.50805 2.48125i −0.229328 0.162204i
\(235\) 6.96248 1.07867i 0.454182 0.0703645i
\(236\) 9.32748 3.29502i 0.607167 0.214488i
\(237\) 3.22113 3.22113i 0.209235 0.209235i
\(238\) 0.174440 + 1.01751i 0.0113072 + 0.0659551i
\(239\) −22.9989 −1.48768 −0.743838 0.668360i \(-0.766997\pi\)
−0.743838 + 0.668360i \(0.766997\pi\)
\(240\) 4.15536 + 3.77856i 0.268228 + 0.243905i
\(241\) 8.19573 0.527934 0.263967 0.964532i \(-0.414969\pi\)
0.263967 + 0.964532i \(0.414969\pi\)
\(242\) −0.165758 0.966863i −0.0106553 0.0621523i
\(243\) 9.95661 9.95661i 0.638717 0.638717i
\(244\) 25.0296 8.84195i 1.60236 0.566048i
\(245\) −12.5226 9.16294i −0.800038 0.585398i
\(246\) 0.725014 + 0.512805i 0.0462252 + 0.0326952i
\(247\) 1.18022 + 1.18022i 0.0750956 + 0.0750956i
\(248\) −22.6042 + 12.6250i −1.43537 + 0.801688i
\(249\) 3.99521i 0.253186i
\(250\) −2.43314 + 15.6231i −0.153885 + 0.988089i
\(251\) 13.0361i 0.822829i 0.911448 + 0.411414i \(0.134965\pi\)
−0.911448 + 0.411414i \(0.865035\pi\)
\(252\) −0.553313 + 1.15777i −0.0348554 + 0.0729326i
\(253\) −13.1507 13.1507i −0.826775 0.826775i
\(254\) 9.05696 12.8049i 0.568284 0.803453i
\(255\) 3.35942 + 2.45813i 0.210375 + 0.153934i
\(256\) 3.37437 15.6401i 0.210898 0.977508i
\(257\) −0.131158 + 0.131158i −0.00818143 + 0.00818143i −0.711186 0.703004i \(-0.751841\pi\)
0.703004 + 0.711186i \(0.251841\pi\)
\(258\) 7.95535 1.36385i 0.495278 0.0849098i
\(259\) 1.16809 0.0725815
\(260\) 4.59301 2.46924i 0.284847 0.153136i
\(261\) 26.7888 1.65818
\(262\) 14.7763 2.53322i 0.912881 0.156503i
\(263\) −20.8537 + 20.8537i −1.28589 + 1.28589i −0.348632 + 0.937260i \(0.613354\pi\)
−0.937260 + 0.348632i \(0.886646\pi\)
\(264\) −1.55399 + 5.48599i −0.0956416 + 0.337639i
\(265\) −23.3837 + 3.62274i −1.43645 + 0.222543i
\(266\) 0.287832 0.406943i 0.0176481 0.0249513i
\(267\) −5.72695 5.72695i −0.350484 0.350484i
\(268\) 4.93803 + 2.35995i 0.301638 + 0.144157i
\(269\) 9.49122i 0.578690i −0.957225 0.289345i \(-0.906563\pi\)
0.957225 0.289345i \(-0.0934375\pi\)
\(270\) 3.53841 + 10.5540i 0.215341 + 0.642293i
\(271\) 9.00575i 0.547060i −0.961863 0.273530i \(-0.911809\pi\)
0.961863 0.273530i \(-0.0881913\pi\)
\(272\) 1.25757 11.7917i 0.0762513 0.714979i
\(273\) −0.127483 0.127483i −0.00771565 0.00771565i
\(274\) −4.26170 3.01431i −0.257459 0.182101i
\(275\) −15.2993 + 4.85708i −0.922580 + 0.292893i
\(276\) −2.42334 6.85996i −0.145868 0.412921i
\(277\) −9.45911 + 9.45911i −0.568343 + 0.568343i −0.931664 0.363321i \(-0.881643\pi\)
0.363321 + 0.931664i \(0.381643\pi\)
\(278\) 2.37573 + 13.8576i 0.142487 + 0.831124i
\(279\) −23.8521 −1.42799
\(280\) −0.958568 1.22731i −0.0572854 0.0733458i
\(281\) 2.20364 0.131458 0.0657290 0.997838i \(-0.479063\pi\)
0.0657290 + 0.997838i \(0.479063\pi\)
\(282\) 0.472802 + 2.75786i 0.0281550 + 0.164228i
\(283\) 5.88960 5.88960i 0.350100 0.350100i −0.510046 0.860147i \(-0.670372\pi\)
0.860147 + 0.510046i \(0.170372\pi\)
\(284\) 9.79115 + 27.7166i 0.580998 + 1.64468i
\(285\) −0.307709 1.98617i −0.0182271 0.117651i
\(286\) 4.32210 + 3.05703i 0.255571 + 0.180766i
\(287\) −0.174110 0.174110i −0.0102774 0.0102774i
\(288\) 9.73991 11.0636i 0.573930 0.651927i
\(289\) 8.21085i 0.482991i
\(290\) −14.4887 + 29.1040i −0.850805 + 1.70904i
\(291\) 3.58986i 0.210441i
\(292\) −14.6489 7.00091i −0.857264 0.409697i
\(293\) 11.2673 + 11.2673i 0.658245 + 0.658245i 0.954965 0.296720i \(-0.0958928\pi\)
−0.296720 + 0.954965i \(0.595893\pi\)
\(294\) 3.55854 5.03114i 0.207538 0.293422i
\(295\) −6.53108 + 8.92574i −0.380254 + 0.519677i
\(296\) −12.9099 3.65693i −0.750371 0.212555i
\(297\) −7.99069 + 7.99069i −0.463667 + 0.463667i
\(298\) −5.76870 + 0.988977i −0.334172 + 0.0572899i
\(299\) −6.75496 −0.390650
\(300\) −6.21933 0.866388i −0.359073 0.0500210i
\(301\) −2.23798 −0.128995
\(302\) 2.75132 0.471682i 0.158321 0.0271423i
\(303\) −3.86518 + 3.86518i −0.222049 + 0.222049i
\(304\) −4.45517 + 3.59647i −0.255521 + 0.206272i
\(305\) −17.5257 + 23.9516i −1.00352 + 1.37146i
\(306\) 6.30858 8.91920i 0.360637 0.509877i
\(307\) 18.8034 + 18.8034i 1.07316 + 1.07316i 0.997103 + 0.0760615i \(0.0242345\pi\)
0.0760615 + 0.997103i \(0.475765\pi\)
\(308\) 0.681710 1.42643i 0.0388441 0.0812785i
\(309\) 11.9847i 0.681784i
\(310\) 12.9004 25.9134i 0.732692 1.47179i
\(311\) 18.5063i 1.04940i 0.851288 + 0.524698i \(0.175822\pi\)
−0.851288 + 0.524698i \(0.824178\pi\)
\(312\) 1.00985 + 1.80808i 0.0571717 + 0.102362i
\(313\) 4.23759 + 4.23759i 0.239523 + 0.239523i 0.816652 0.577130i \(-0.195827\pi\)
−0.577130 + 0.816652i \(0.695827\pi\)
\(314\) −13.9938 9.89785i −0.789716 0.558568i
\(315\) −0.219644 1.41774i −0.0123756 0.0798806i
\(316\) 13.6804 4.83274i 0.769584 0.271863i
\(317\) 19.5617 19.5617i 1.09869 1.09869i 0.104128 0.994564i \(-0.466795\pi\)
0.994564 0.104128i \(-0.0332052\pi\)
\(318\) −1.58792 9.26234i −0.0890462 0.519406i
\(319\) −33.0052 −1.84794
\(320\) 6.75189 + 16.5654i 0.377442 + 0.926033i
\(321\) −10.3338 −0.576776
\(322\) 0.340865 + 1.98826i 0.0189956 + 0.110802i
\(323\) −3.00071 + 3.00071i −0.166964 + 0.166964i
\(324\) 10.5731 3.73505i 0.587394 0.207503i
\(325\) −2.68186 + 5.17675i −0.148763 + 0.287154i
\(326\) 15.8238 + 11.1922i 0.876397 + 0.619878i
\(327\) −4.47536 4.47536i −0.247488 0.247488i
\(328\) 1.37920 + 2.46937i 0.0761537 + 0.136348i
\(329\) 0.775833i 0.0427730i
\(330\) −2.02643 6.04419i −0.111551 0.332722i
\(331\) 0.940233i 0.0516799i −0.999666 0.0258399i \(-0.991774\pi\)
0.999666 0.0258399i \(-0.00822603\pi\)
\(332\) −5.48695 + 11.4811i −0.301136 + 0.630105i
\(333\) −8.74068 8.74068i −0.478986 0.478986i
\(334\) 18.0764 25.5568i 0.989096 1.39840i
\(335\) −6.04684 + 0.936810i −0.330374 + 0.0511834i
\(336\) 0.481232 0.388479i 0.0262534 0.0211933i
\(337\) −12.1329 + 12.1329i −0.660920 + 0.660920i −0.955597 0.294677i \(-0.904788\pi\)
0.294677 + 0.955597i \(0.404788\pi\)
\(338\) −16.2252 + 2.78163i −0.882536 + 0.151301i
\(339\) −4.77430 −0.259304
\(340\) 6.27804 + 11.6777i 0.340475 + 0.633314i
\(341\) 29.3870 1.59140
\(342\) −5.19892 + 0.891295i −0.281126 + 0.0481957i
\(343\) −2.42698 + 2.42698i −0.131045 + 0.131045i
\(344\) 24.7344 + 7.00643i 1.33359 + 0.377761i
\(345\) 6.56449 + 4.80332i 0.353420 + 0.258602i
\(346\) −5.63962 + 7.97342i −0.303188 + 0.428653i
\(347\) −4.80738 4.80738i −0.258073 0.258073i 0.566197 0.824270i \(-0.308414\pi\)
−0.824270 + 0.566197i \(0.808414\pi\)
\(348\) −11.6495 5.56744i −0.624478 0.298446i
\(349\) 17.0655i 0.913498i −0.889596 0.456749i \(-0.849014\pi\)
0.889596 0.456749i \(-0.150986\pi\)
\(350\) 1.65906 + 0.528157i 0.0886805 + 0.0282312i
\(351\) 4.10449i 0.219082i
\(352\) −12.0001 + 13.6309i −0.639606 + 0.726529i
\(353\) −6.93155 6.93155i −0.368929 0.368929i 0.498157 0.867087i \(-0.334010\pi\)
−0.867087 + 0.498157i \(0.834010\pi\)
\(354\) −3.58606 2.53643i −0.190597 0.134810i
\(355\) −26.5228 19.4071i −1.40768 1.03002i
\(356\) −8.59229 24.3229i −0.455390 1.28911i
\(357\) 0.324126 0.324126i 0.0171546 0.0171546i
\(358\) −4.89192 28.5345i −0.258546 1.50810i
\(359\) −19.9093 −1.05077 −0.525387 0.850863i \(-0.676080\pi\)
−0.525387 + 0.850863i \(0.676080\pi\)
\(360\) −2.01097 + 16.3567i −0.105987 + 0.862073i
\(361\) −16.9511 −0.892161
\(362\) −1.56799 9.14609i −0.0824118 0.480708i
\(363\) −0.307994 + 0.307994i −0.0161655 + 0.0161655i
\(364\) −0.191267 0.541434i −0.0100251 0.0283788i
\(365\) 17.9383 2.77910i 0.938932 0.145465i
\(366\) −9.62292 6.80632i −0.502998 0.355772i
\(367\) −8.96172 8.96172i −0.467798 0.467798i 0.433403 0.901200i \(-0.357313\pi\)
−0.901200 + 0.433403i \(0.857313\pi\)
\(368\) 2.45736 23.0417i 0.128099 1.20113i
\(369\) 2.60569i 0.135647i
\(370\) 14.2235 4.76869i 0.739443 0.247912i
\(371\) 2.60566i 0.135279i
\(372\) 10.3724 + 4.95712i 0.537785 + 0.257015i
\(373\) 3.37027 + 3.37027i 0.174506 + 0.174506i 0.788956 0.614450i \(-0.210622\pi\)
−0.614450 + 0.788956i \(0.710622\pi\)
\(374\) −7.77250 + 10.9889i −0.401906 + 0.568224i
\(375\) 6.28733 3.12376i 0.324676 0.161310i
\(376\) −2.42890 + 8.57461i −0.125261 + 0.442202i
\(377\) −8.47672 + 8.47672i −0.436573 + 0.436573i
\(378\) 1.20812 0.207118i 0.0621390 0.0106530i
\(379\) 8.37072 0.429975 0.214987 0.976617i \(-0.431029\pi\)
0.214987 + 0.976617i \(0.431029\pi\)
\(380\) 1.84351 6.13029i 0.0945701 0.314477i
\(381\) −6.96410 −0.356782
\(382\) 3.22315 0.552572i 0.164911 0.0282720i
\(383\) −3.93254 + 3.93254i −0.200943 + 0.200943i −0.800404 0.599461i \(-0.795382\pi\)
0.599461 + 0.800404i \(0.295382\pi\)
\(384\) −6.53485 + 2.78693i −0.333480 + 0.142220i
\(385\) 0.270613 + 1.74673i 0.0137917 + 0.0890216i
\(386\) 18.2604 25.8169i 0.929428 1.31405i
\(387\) 16.7466 + 16.7466i 0.851275 + 0.851275i
\(388\) −4.93025 + 10.3162i −0.250296 + 0.523726i
\(389\) 18.7369i 0.950000i 0.879986 + 0.475000i \(0.157552\pi\)
−0.879986 + 0.475000i \(0.842448\pi\)
\(390\) −2.07278 1.03188i −0.104959 0.0522513i
\(391\) 17.1745i 0.868551i
\(392\) 17.1359 9.57080i 0.865493 0.483398i
\(393\) −4.70698 4.70698i −0.237436 0.237436i
\(394\) 8.95010 + 6.33043i 0.450899 + 0.318922i
\(395\) −9.57900 + 13.0912i −0.481972 + 0.658690i
\(396\) −15.7750 + 5.57267i −0.792724 + 0.280037i
\(397\) 13.8702 13.8702i 0.696128 0.696128i −0.267445 0.963573i \(-0.586179\pi\)
0.963573 + 0.267445i \(0.0861794\pi\)
\(398\) 2.37632 + 13.8611i 0.119114 + 0.694792i
\(399\) −0.221320 −0.0110799
\(400\) −16.6827 11.0313i −0.834133 0.551563i
\(401\) −6.71519 −0.335341 −0.167670 0.985843i \(-0.553624\pi\)
−0.167670 + 0.985843i \(0.553624\pi\)
\(402\) −0.410623 2.39517i −0.0204800 0.119460i
\(403\) 7.54746 7.54746i 0.375966 0.375966i
\(404\) −16.4158 + 5.79903i −0.816716 + 0.288513i
\(405\) −7.40326 + 10.1177i −0.367871 + 0.502753i
\(406\) 2.92279 + 2.06730i 0.145056 + 0.102598i
\(407\) 10.7690 + 10.7690i 0.533798 + 0.533798i
\(408\) −4.59703 + 2.56755i −0.227587 + 0.127113i
\(409\) 11.4935i 0.568315i 0.958778 + 0.284158i \(0.0917139\pi\)
−0.958778 + 0.284158i \(0.908286\pi\)
\(410\) −2.83089 1.40929i −0.139807 0.0695997i
\(411\) 2.31777i 0.114327i
\(412\) −16.4595 + 34.4405i −0.810903 + 1.69676i
\(413\) 0.861181 + 0.861181i 0.0423759 + 0.0423759i
\(414\) 12.3273 17.4286i 0.605854 0.856569i
\(415\) −2.17811 14.0591i −0.106919 0.690133i
\(416\) 0.418842 + 6.58280i 0.0205354 + 0.322748i
\(417\) 4.41434 4.41434i 0.216171 0.216171i
\(418\) 6.40535 1.09812i 0.313296 0.0537109i
\(419\) −28.7599 −1.40501 −0.702506 0.711678i \(-0.747935\pi\)
−0.702506 + 0.711678i \(0.747935\pi\)
\(420\) −0.199130 + 0.662173i −0.00971653 + 0.0323107i
\(421\) 13.1093 0.638908 0.319454 0.947602i \(-0.396501\pi\)
0.319454 + 0.947602i \(0.396501\pi\)
\(422\) −20.3026 + 3.48064i −0.988315 + 0.169435i
\(423\) −5.80547 + 5.80547i −0.282272 + 0.282272i
\(424\) 8.15752 28.7981i 0.396164 1.39856i
\(425\) −13.1619 6.81864i −0.638445 0.330752i
\(426\) 7.53699 10.6560i 0.365168 0.516283i
\(427\) 2.31091 + 2.31091i 0.111833 + 0.111833i
\(428\) −29.6963 14.1923i −1.43543 0.686008i
\(429\) 2.35062i 0.113489i
\(430\) −27.2512 + 9.13648i −1.31417 + 0.440600i
\(431\) 23.4303i 1.12860i 0.825570 + 0.564299i \(0.190854\pi\)
−0.825570 + 0.564299i \(0.809146\pi\)
\(432\) −14.0007 1.49316i −0.673610 0.0718395i
\(433\) 0.585428 + 0.585428i 0.0281339 + 0.0281339i 0.721034 0.692900i \(-0.243667\pi\)
−0.692900 + 0.721034i \(0.743667\pi\)
\(434\) −2.60238 1.84067i −0.124918 0.0883550i
\(435\) 14.2653 2.21007i 0.683970 0.105965i
\(436\) −6.71450 19.0073i −0.321566 0.910283i
\(437\) −5.86355 + 5.86355i −0.280492 + 0.280492i
\(438\) 1.21814 + 7.10539i 0.0582048 + 0.339509i
\(439\) 15.7422 0.751333 0.375666 0.926755i \(-0.377414\pi\)
0.375666 + 0.926755i \(0.377414\pi\)
\(440\) 2.47762 20.1523i 0.118116 0.960723i
\(441\) 18.0819 0.861041
\(442\) 0.826075 + 4.81849i 0.0392924 + 0.229192i
\(443\) −18.2559 + 18.2559i −0.867365 + 0.867365i −0.992180 0.124815i \(-0.960166\pi\)
0.124815 + 0.992180i \(0.460166\pi\)
\(444\) 1.98446 + 5.61757i 0.0941782 + 0.266598i
\(445\) 23.2753 + 17.0308i 1.10335 + 0.807339i
\(446\) −17.5621 12.4217i −0.831589 0.588185i
\(447\) 1.83762 + 1.83762i 0.0869164 + 0.0869164i
\(448\) 1.91645 0.455459i 0.0905438 0.0215184i
\(449\) 35.3802i 1.66969i 0.550483 + 0.834846i \(0.314444\pi\)
−0.550483 + 0.834846i \(0.685556\pi\)
\(450\) −8.46243 16.3667i −0.398923 0.771534i
\(451\) 3.21035i 0.151169i
\(452\) −13.7199 6.55694i −0.645331 0.308412i
\(453\) −0.876433 0.876433i −0.0411784 0.0411784i
\(454\) −4.84793 + 6.85411i −0.227525 + 0.321679i
\(455\) 0.518114 + 0.379111i 0.0242895 + 0.0177730i
\(456\) 2.44606 + 0.692886i 0.114547 + 0.0324474i
\(457\) −25.4449 + 25.4449i −1.19026 + 1.19026i −0.213269 + 0.976993i \(0.568411\pi\)
−0.976993 + 0.213269i \(0.931589\pi\)
\(458\) 20.7211 3.55240i 0.968235 0.165993i
\(459\) −10.4357 −0.487095
\(460\) 12.2676 + 22.8189i 0.571981 + 1.06394i
\(461\) 12.3168 0.573651 0.286826 0.957983i \(-0.407400\pi\)
0.286826 + 0.957983i \(0.407400\pi\)
\(462\) −0.691884 + 0.118615i −0.0321893 + 0.00551849i
\(463\) 17.2051 17.2051i 0.799588 0.799588i −0.183442 0.983031i \(-0.558724\pi\)
0.983031 + 0.183442i \(0.0587240\pi\)
\(464\) −25.8310 31.9984i −1.19917 1.48549i
\(465\) −12.7015 + 1.96779i −0.589018 + 0.0912540i
\(466\) −5.66690 + 8.01199i −0.262514 + 0.371148i
\(467\) −14.3518 14.3518i −0.664121 0.664121i 0.292228 0.956349i \(-0.405603\pi\)
−0.956349 + 0.292228i \(0.905603\pi\)
\(468\) −2.62026 + 5.48272i −0.121122 + 0.253439i
\(469\) 0.673802i 0.0311133i
\(470\) −3.16732 9.44709i −0.146097 0.435762i
\(471\) 7.61068i 0.350682i
\(472\) −6.82180 12.2140i −0.313999 0.562194i
\(473\) −20.6326 20.6326i −0.948690 0.948690i
\(474\) −5.25959 3.72013i −0.241581 0.170871i
\(475\) 2.16565 + 6.82156i 0.0993668 + 0.312995i
\(476\) 1.37659 0.486295i 0.0630961 0.0222893i
\(477\) 19.4979 19.4979i 0.892746 0.892746i
\(478\) 5.49592 + 32.0577i 0.251377 + 1.46628i
\(479\) −9.98039 −0.456016 −0.228008 0.973659i \(-0.573221\pi\)
−0.228008 + 0.973659i \(0.573221\pi\)
\(480\) 4.27387 6.69501i 0.195075 0.305584i
\(481\) 5.53159 0.252219
\(482\) −1.95849 11.4239i −0.0892067 0.520342i
\(483\) 0.633361 0.633361i 0.0288189 0.0288189i
\(484\) −1.30808 + 0.462092i −0.0594582 + 0.0210042i
\(485\) −1.95712 12.6327i −0.0888684 0.573620i
\(486\) −16.2576 11.4990i −0.737458 0.521606i
\(487\) −22.3208 22.3208i −1.01145 1.01145i −0.999934 0.0115187i \(-0.996333\pi\)
−0.0115187 0.999934i \(-0.503667\pi\)
\(488\) −18.3058 32.7753i −0.828664 1.48367i
\(489\) 8.60593i 0.389174i
\(490\) −9.77957 + 19.6446i −0.441796 + 0.887451i
\(491\) 1.76687i 0.0797376i 0.999205 + 0.0398688i \(0.0126940\pi\)
−0.999205 + 0.0398688i \(0.987306\pi\)
\(492\) 0.541534 1.13312i 0.0244143 0.0510851i
\(493\) −21.5520 21.5520i −0.970655 0.970655i
\(494\) 1.36305 1.92711i 0.0613267 0.0867050i
\(495\) 11.0456 15.0956i 0.496464 0.678495i
\(496\) 22.9993 + 28.4906i 1.03270 + 1.27927i
\(497\) −2.55900 + 2.55900i −0.114787 + 0.114787i
\(498\) 5.56883 0.954712i 0.249545 0.0427817i
\(499\) −20.2452 −0.906301 −0.453151 0.891434i \(-0.649700\pi\)
−0.453151 + 0.891434i \(0.649700\pi\)
\(500\) 22.3581 0.341855i 0.999883 0.0152882i
\(501\) −13.8993 −0.620977
\(502\) 18.1707 3.11515i 0.810997 0.139036i
\(503\) 19.0974 19.0974i 0.851512 0.851512i −0.138807 0.990319i \(-0.544327\pi\)
0.990319 + 0.138807i \(0.0443268\pi\)
\(504\) 1.74601 + 0.494585i 0.0777735 + 0.0220306i
\(505\) 11.4943 15.7087i 0.511490 0.699030i
\(506\) −15.1879 + 21.4730i −0.675184 + 0.954590i
\(507\) 5.16855 + 5.16855i 0.229543 + 0.229543i
\(508\) −20.0128 9.56438i −0.887924 0.424351i
\(509\) 15.5738i 0.690296i −0.938548 0.345148i \(-0.887829\pi\)
0.938548 0.345148i \(-0.112171\pi\)
\(510\) 2.62356 5.27003i 0.116173 0.233361i
\(511\) 1.99887i 0.0884248i
\(512\) −22.6068 0.966026i −0.999088 0.0426927i
\(513\) 3.56285 + 3.56285i 0.157303 + 0.157303i
\(514\) 0.214161 + 0.151477i 0.00944623 + 0.00668135i
\(515\) −6.53382 42.1739i −0.287914 1.85840i
\(516\) −3.80209 10.7629i −0.167378 0.473809i
\(517\) 7.15265 7.15265i 0.314573 0.314573i
\(518\) −0.279131 1.62817i −0.0122643 0.0715378i
\(519\) 4.33643 0.190348
\(520\) −4.53939 5.81204i −0.199065 0.254875i
\(521\) 31.9484 1.39969 0.699843 0.714297i \(-0.253253\pi\)
0.699843 + 0.714297i \(0.253253\pi\)
\(522\) −6.40156 37.3403i −0.280189 1.63434i
\(523\) 0.555159 0.555159i 0.0242754 0.0242754i −0.694865 0.719140i \(-0.744536\pi\)
0.719140 + 0.694865i \(0.244536\pi\)
\(524\) −7.06200 19.9910i −0.308505 0.873309i
\(525\) −0.233926 0.736841i −0.0102094 0.0321584i
\(526\) 34.0507 + 24.0842i 1.48468 + 1.05012i
\(527\) 19.1894 + 19.1894i 0.835904 + 0.835904i
\(528\) 8.01814 + 0.855122i 0.348945 + 0.0372144i
\(529\) 10.5599i 0.459125i
\(530\) 10.6375 + 31.7283i 0.462065 + 1.37819i
\(531\) 12.8882i 0.559302i
\(532\) −0.636010 0.303958i −0.0275745 0.0131782i
\(533\) −0.824514 0.824514i −0.0357136 0.0357136i
\(534\) −6.61413 + 9.35121i −0.286222 + 0.404666i
\(535\) 36.3645 5.63379i 1.57217 0.243570i
\(536\) 2.10947 7.44695i 0.0911151 0.321659i
\(537\) −9.08967 + 9.08967i −0.392248 + 0.392248i
\(538\) −13.2296 + 2.26806i −0.570369 + 0.0977831i
\(539\) −22.2778 −0.959573
\(540\) 13.8654 7.45413i 0.596670 0.320775i
\(541\) 27.4655 1.18084 0.590418 0.807098i \(-0.298963\pi\)
0.590418 + 0.807098i \(0.298963\pi\)
\(542\) −12.5529 + 2.15205i −0.539194 + 0.0924386i
\(543\) −2.91349 + 2.91349i −0.125030 + 0.125030i
\(544\) −16.7368 + 1.06490i −0.717582 + 0.0456574i
\(545\) 18.1886 + 13.3088i 0.779114 + 0.570088i
\(546\) −0.147232 + 0.208160i −0.00630096 + 0.00890844i
\(547\) −13.9231 13.9231i −0.595308 0.595308i 0.343752 0.939060i \(-0.388302\pi\)
−0.939060 + 0.343752i \(0.888302\pi\)
\(548\) −3.18319 + 6.66060i −0.135979 + 0.284527i
\(549\) 34.5847i 1.47604i
\(550\) 10.4262 + 20.1646i 0.444573 + 0.859823i
\(551\) 14.7162i 0.626930i
\(552\) −8.98285 + 5.01713i −0.382335 + 0.213543i
\(553\) 1.26308 + 1.26308i 0.0537114 + 0.0537114i
\(554\) 15.4452 + 10.9245i 0.656205 + 0.464136i
\(555\) −5.37561 3.93341i −0.228182 0.166964i
\(556\) 18.7481 6.62295i 0.795097 0.280876i
\(557\) 19.1303 19.1303i 0.810577 0.810577i −0.174143 0.984720i \(-0.555716\pi\)
0.984720 + 0.174143i \(0.0557155\pi\)
\(558\) 5.69979 + 33.2469i 0.241292 + 1.40745i
\(559\) −10.5982 −0.448254
\(560\) −1.48166 + 1.62941i −0.0626114 + 0.0688551i
\(561\) 5.97645 0.252326
\(562\) −0.526591 3.07160i −0.0222129 0.129568i
\(563\) −7.52473 + 7.52473i −0.317129 + 0.317129i −0.847664 0.530534i \(-0.821991\pi\)
0.530534 + 0.847664i \(0.321991\pi\)
\(564\) 3.73113 1.31806i 0.157109 0.0555003i
\(565\) 16.8007 2.60286i 0.706810 0.109503i
\(566\) −9.61679 6.80198i −0.404224 0.285909i
\(567\) 0.976185 + 0.976185i 0.0409959 + 0.0409959i
\(568\) 36.2938 20.2709i 1.52285 0.850550i
\(569\) 28.7509i 1.20530i 0.798005 + 0.602651i \(0.205889\pi\)
−0.798005 + 0.602651i \(0.794111\pi\)
\(570\) −2.69495 + 0.903534i −0.112879 + 0.0378449i
\(571\) 31.6671i 1.32523i 0.748961 + 0.662614i \(0.230553\pi\)
−0.748961 + 0.662614i \(0.769447\pi\)
\(572\) 3.22830 6.75500i 0.134982 0.282441i
\(573\) −1.02673 1.02673i −0.0428924 0.0428924i
\(574\) −0.201082 + 0.284294i −0.00839300 + 0.0118662i
\(575\) −25.7190 13.3240i −1.07256 0.555649i
\(576\) −17.7488 10.9324i −0.739531 0.455519i
\(577\) −33.3028 + 33.3028i −1.38641 + 1.38641i −0.553689 + 0.832723i \(0.686780\pi\)
−0.832723 + 0.553689i \(0.813220\pi\)
\(578\) 11.4449 1.96210i 0.476046 0.0816125i
\(579\) −14.0408 −0.583516
\(580\) 44.0296 + 13.2407i 1.82823 + 0.549789i
\(581\) −1.56661 −0.0649939
\(582\) 5.00383 0.857848i 0.207415 0.0355590i
\(583\) −24.0224 + 24.0224i −0.994906 + 0.994906i
\(584\) −6.25785 + 22.0918i −0.258952 + 0.914165i
\(585\) −1.04015 6.71383i −0.0430047 0.277583i
\(586\) 13.0128 18.3978i 0.537554 0.760005i
\(587\) 28.5386 + 28.5386i 1.17791 + 1.17791i 0.980275 + 0.197639i \(0.0633274\pi\)
0.197639 + 0.980275i \(0.436673\pi\)
\(588\) −7.86316 3.75791i −0.324271 0.154974i
\(589\) 13.1029i 0.539897i
\(590\) 14.0021 + 6.97060i 0.576457 + 0.286975i
\(591\) 4.86761i 0.200227i
\(592\) −2.01231 + 18.8687i −0.0827055 + 0.775497i
\(593\) −17.1764 17.1764i −0.705351 0.705351i 0.260203 0.965554i \(-0.416211\pi\)
−0.965554 + 0.260203i \(0.916211\pi\)
\(594\) 13.0475 + 9.22855i 0.535347 + 0.378652i
\(595\) −0.963888 + 1.31730i −0.0395156 + 0.0540042i
\(596\) 2.75703 + 7.80454i 0.112932 + 0.319686i
\(597\) 4.41544 4.41544i 0.180712 0.180712i
\(598\) 1.61419 + 9.41560i 0.0660093 + 0.385032i
\(599\) 35.1439 1.43594 0.717971 0.696073i \(-0.245071\pi\)
0.717971 + 0.696073i \(0.245071\pi\)
\(600\) 0.278558 + 8.87602i 0.0113721 + 0.362362i
\(601\) 15.9042 0.648744 0.324372 0.945930i \(-0.394847\pi\)
0.324372 + 0.945930i \(0.394847\pi\)
\(602\) 0.534797 + 3.11947i 0.0217967 + 0.127140i
\(603\) 5.04199 5.04199i 0.205326 0.205326i
\(604\) −1.31493 3.72229i −0.0535039 0.151458i
\(605\) 0.915914 1.25174i 0.0372372 0.0508904i
\(606\) 6.31124 + 4.46395i 0.256376 + 0.181336i
\(607\) −14.0222 14.0222i −0.569145 0.569145i 0.362744 0.931889i \(-0.381840\pi\)
−0.931889 + 0.362744i \(0.881840\pi\)
\(608\) 6.07767 + 5.35053i 0.246482 + 0.216993i
\(609\) 1.58959i 0.0644135i
\(610\) 37.5736 + 18.7051i 1.52131 + 0.757347i
\(611\) 3.67403i 0.148635i
\(612\) −13.9398 6.66202i −0.563483 0.269296i
\(613\) 9.95592 + 9.95592i 0.402116 + 0.402116i 0.878978 0.476862i \(-0.158226\pi\)
−0.476862 + 0.878978i \(0.658226\pi\)
\(614\) 21.7163 30.7029i 0.876397 1.23907i
\(615\) 0.214969 + 1.38756i 0.00866838 + 0.0559518i
\(616\) −2.15118 0.609355i −0.0866734 0.0245516i
\(617\) 13.6549 13.6549i 0.549727 0.549727i −0.376635 0.926362i \(-0.622919\pi\)
0.926362 + 0.376635i \(0.122919\pi\)
\(618\) 16.7052 2.86391i 0.671981 0.115203i
\(619\) 29.4712 1.18455 0.592274 0.805737i \(-0.298230\pi\)
0.592274 + 0.805737i \(0.298230\pi\)
\(620\) −39.2029 11.7892i −1.57443 0.473464i
\(621\) −20.3919 −0.818297
\(622\) 25.7955 4.42234i 1.03431 0.177320i
\(623\) 2.24566 2.24566i 0.0899706 0.0899706i
\(624\) 2.27892 1.83968i 0.0912298 0.0736460i
\(625\) −20.4220 + 14.4202i −0.816880 + 0.576807i
\(626\) 4.89405 6.91931i 0.195606 0.276551i
\(627\) −2.04042 2.04042i −0.0814866 0.0814866i
\(628\) −10.4524 + 21.8709i −0.417095 + 0.872743i
\(629\) 14.0641i 0.560771i
\(630\) −1.92367 + 0.644947i −0.0766408 + 0.0256953i
\(631\) 0.607461i 0.0241826i −0.999927 0.0120913i \(-0.996151\pi\)
0.999927 0.0120913i \(-0.00384888\pi\)
\(632\) −10.0054 17.9140i −0.397993 0.712580i
\(633\) 6.46739 + 6.46739i 0.257056 + 0.257056i
\(634\) −31.9411 22.5920i −1.26854 0.897244i
\(635\) 24.5066 3.79670i 0.972513 0.150667i
\(636\) −12.5311 + 4.42674i −0.496891 + 0.175532i
\(637\) −5.72161 + 5.72161i −0.226698 + 0.226698i
\(638\) 7.88706 + 46.0052i 0.312252 + 1.82136i
\(639\) 38.2974 1.51502
\(640\) 21.4767 13.3698i 0.848940 0.528490i
\(641\) 32.1254 1.26888 0.634439 0.772973i \(-0.281231\pi\)
0.634439 + 0.772973i \(0.281231\pi\)
\(642\) 2.46941 + 14.4040i 0.0974597 + 0.568482i
\(643\) 12.3190 12.3190i 0.485812 0.485812i −0.421169 0.906982i \(-0.638380\pi\)
0.906982 + 0.421169i \(0.138380\pi\)
\(644\) 2.68994 0.950247i 0.105999 0.0374450i
\(645\) 10.2993 + 7.53614i 0.405535 + 0.296735i
\(646\) 4.89969 + 3.46556i 0.192776 + 0.136351i
\(647\) 6.50328 + 6.50328i 0.255670 + 0.255670i 0.823291 0.567620i \(-0.192136\pi\)
−0.567620 + 0.823291i \(0.692136\pi\)
\(648\) −7.73279 13.8451i −0.303773 0.543886i
\(649\) 15.8790i 0.623305i
\(650\) 7.85663 + 2.50113i 0.308162 + 0.0981025i
\(651\) 1.41533i 0.0554713i
\(652\) 11.8192 24.7309i 0.462877 0.968538i
\(653\) −30.4496 30.4496i −1.19159 1.19159i −0.976622 0.214965i \(-0.931036\pi\)
−0.214965 0.976622i \(-0.568964\pi\)
\(654\) −5.16866 + 7.30756i −0.202110 + 0.285748i
\(655\) 19.1299 + 13.9976i 0.747469 + 0.546933i
\(656\) 3.11242 2.51253i 0.121520 0.0980979i
\(657\) −14.9573 + 14.9573i −0.583541 + 0.583541i
\(658\) −1.08142 + 0.185396i −0.0421580 + 0.00722750i
\(659\) 8.84426 0.344524 0.172262 0.985051i \(-0.444893\pi\)
0.172262 + 0.985051i \(0.444893\pi\)
\(660\) −7.94062 + 4.26894i −0.309088 + 0.166168i
\(661\) −10.5395 −0.409938 −0.204969 0.978768i \(-0.565709\pi\)
−0.204969 + 0.978768i \(0.565709\pi\)
\(662\) −1.31057 + 0.224682i −0.0509368 + 0.00873252i
\(663\) 1.53493 1.53493i 0.0596117 0.0596117i
\(664\) 17.3144 + 4.90458i 0.671929 + 0.190335i
\(665\) 0.778823 0.120660i 0.0302015 0.00467898i
\(666\) −10.0947 + 14.2722i −0.391163 + 0.553035i
\(667\) −42.1139 42.1139i −1.63066 1.63066i
\(668\) −39.9426 19.0891i −1.54543 0.738580i
\(669\) 9.55134i 0.369276i
\(670\) 2.75078 + 8.20469i 0.106272 + 0.316975i
\(671\) 42.6101i 1.64495i
\(672\) −0.656490 0.577946i −0.0253246 0.0222948i
\(673\) −5.01033 5.01033i −0.193134 0.193134i 0.603915 0.797049i \(-0.293607\pi\)
−0.797049 + 0.603915i \(0.793607\pi\)
\(674\) 19.8111 + 14.0124i 0.763094 + 0.539739i
\(675\) −8.09600 + 15.6276i −0.311615 + 0.601505i
\(676\) 7.75450 + 21.9513i 0.298250 + 0.844280i
\(677\) 29.7725 29.7725i 1.14425 1.14425i 0.156584 0.987665i \(-0.449952\pi\)
0.987665 0.156584i \(-0.0500481\pi\)
\(678\) 1.14089 + 6.65479i 0.0438155 + 0.255576i
\(679\) −1.40766 −0.0540212
\(680\) 14.7771 11.5414i 0.566676 0.442592i
\(681\) 3.72768 0.142845
\(682\) −7.02245 40.9619i −0.268903 1.56851i
\(683\) 7.93343 7.93343i 0.303564 0.303564i −0.538842 0.842407i \(-0.681138\pi\)
0.842407 + 0.538842i \(0.181138\pi\)
\(684\) 2.48471 + 7.03368i 0.0950054 + 0.268939i
\(685\) −1.26361 8.15621i −0.0482799 0.311633i
\(686\) 3.96288 + 2.80296i 0.151304 + 0.107017i
\(687\) −6.60072 6.60072i −0.251833 0.251833i
\(688\) 3.85546 36.1511i 0.146988 1.37825i
\(689\) 12.3393i 0.470091i
\(690\) 5.12657 10.2979i 0.195165 0.392035i
\(691\) 36.1365i 1.37470i 0.726327 + 0.687349i \(0.241226\pi\)
−0.726327 + 0.687349i \(0.758774\pi\)
\(692\) 12.4616 + 5.95558i 0.473720 + 0.226397i
\(693\) −1.45646 1.45646i −0.0553264 0.0553264i
\(694\) −5.55210 + 7.84969i −0.210755 + 0.297970i
\(695\) −13.1274 + 17.9406i −0.497950 + 0.680526i
\(696\) −4.97653 + 17.5684i −0.188635 + 0.665928i
\(697\) 2.09632 2.09632i 0.0794040 0.0794040i
\(698\) −23.7873 + 4.07806i −0.900362 + 0.154357i
\(699\) 4.35741 0.164812
\(700\) 0.339730 2.43874i 0.0128406 0.0921756i
\(701\) −23.1372 −0.873881 −0.436940 0.899490i \(-0.643938\pi\)
−0.436940 + 0.899490i \(0.643938\pi\)
\(702\) 5.72116 0.980827i 0.215931 0.0370189i
\(703\) 4.80162 4.80162i 0.181096 0.181096i
\(704\) 21.8674 + 13.4694i 0.824158 + 0.507645i
\(705\) −2.61253 + 3.57043i −0.0983936 + 0.134470i
\(706\) −8.00534 + 11.3181i −0.301285 + 0.425963i
\(707\) −1.51562 1.51562i −0.0570009 0.0570009i
\(708\) −2.67853 + 5.60464i −0.100665 + 0.210635i
\(709\) 12.7867i 0.480214i −0.970746 0.240107i \(-0.922817\pi\)
0.970746 0.240107i \(-0.0771825\pi\)
\(710\) −20.7131 + 41.6072i −0.777349 + 1.56149i
\(711\) 18.9029i 0.708915i
\(712\) −31.8499 + 17.7889i −1.19362 + 0.666667i
\(713\) 37.4971 + 37.4971i 1.40428 + 1.40428i
\(714\) −0.529247 0.374338i −0.0198066 0.0140093i
\(715\) 1.28151 + 8.27180i 0.0479259 + 0.309348i
\(716\) −38.6047 + 13.6375i −1.44272 + 0.509656i
\(717\) 10.2120 10.2120i 0.381373 0.381373i
\(718\) 4.75762 + 27.7512i 0.177553 + 1.03567i
\(719\) 51.7741 1.93085 0.965424 0.260683i \(-0.0839478\pi\)
0.965424 + 0.260683i \(0.0839478\pi\)
\(720\) 23.2798 1.10562i 0.867586 0.0412040i
\(721\) −4.69946 −0.175017
\(722\) 4.05070 + 23.6277i 0.150751 + 0.879332i
\(723\) −3.63907 + 3.63907i −0.135338 + 0.135338i
\(724\) −12.3738 + 4.37118i −0.459870 + 0.162453i
\(725\) −48.9946 + 15.5544i −1.81961 + 0.577675i
\(726\) 0.502906 + 0.355707i 0.0186646 + 0.0132015i
\(727\) −10.3059 10.3059i −0.382226 0.382226i 0.489677 0.871904i \(-0.337115\pi\)
−0.871904 + 0.489677i \(0.837115\pi\)
\(728\) −0.708987 + 0.395986i −0.0262768 + 0.0146762i
\(729\) 7.97829i 0.295492i
\(730\) −8.16033 24.3397i −0.302027 0.900851i
\(731\) 26.9458i 0.996626i
\(732\) −7.18764 + 15.0396i −0.265663 + 0.555881i
\(733\) −2.85214 2.85214i −0.105346 0.105346i 0.652469 0.757815i \(-0.273733\pi\)
−0.757815 + 0.652469i \(0.773733\pi\)
\(734\) −10.3500 + 14.6331i −0.382026 + 0.540117i
\(735\) 9.62880 1.49175i 0.355163 0.0550240i
\(736\) −32.7045 + 2.08088i −1.20550 + 0.0767023i
\(737\) −6.21199 + 6.21199i −0.228822 + 0.228822i
\(738\) 3.63202 0.622667i 0.133696 0.0229207i
\(739\) −10.8253 −0.398216 −0.199108 0.979978i \(-0.563804\pi\)
−0.199108 + 0.979978i \(0.563804\pi\)
\(740\) −10.0459 18.6862i −0.369294 0.686920i
\(741\) −1.04808 −0.0385023
\(742\) 3.63197 0.622659i 0.133334 0.0228585i
\(743\) −2.81233 + 2.81233i −0.103175 + 0.103175i −0.756810 0.653635i \(-0.773243\pi\)
0.653635 + 0.756810i \(0.273243\pi\)
\(744\) 4.43098 15.6425i 0.162448 0.573481i
\(745\) −7.46839 5.46472i −0.273621 0.200212i
\(746\) 3.89237 5.50312i 0.142510 0.201484i
\(747\) 11.7228 + 11.7228i 0.428914 + 0.428914i
\(748\) 17.1746 + 8.20795i 0.627965 + 0.300112i
\(749\) 4.05211i 0.148061i
\(750\) −5.85658 8.01731i −0.213852 0.292751i
\(751\) 43.4783i 1.58654i −0.608867 0.793272i \(-0.708376\pi\)
0.608867 0.793272i \(-0.291624\pi\)
\(752\) 12.5324 + 1.33656i 0.457009 + 0.0487393i
\(753\) −5.78827 5.78827i −0.210936 0.210936i
\(754\) 13.8411 + 9.78988i 0.504065 + 0.356526i
\(755\) 3.56197 + 2.60634i 0.129633 + 0.0948544i
\(756\) −0.577395 1.63448i −0.0209996 0.0594454i
\(757\) 21.7051 21.7051i 0.788887 0.788887i −0.192425 0.981312i \(-0.561635\pi\)
0.981312 + 0.192425i \(0.0616351\pi\)
\(758\) −2.00030 11.6678i −0.0726543 0.423792i
\(759\) 11.6783 0.423896
\(760\) −8.98541 1.10471i −0.325935 0.0400720i
\(761\) 20.7761 0.753132 0.376566 0.926390i \(-0.377105\pi\)
0.376566 + 0.926390i \(0.377105\pi\)
\(762\) 1.66417 + 9.70711i 0.0602866 + 0.351651i
\(763\) 1.75489 1.75489i 0.0635312 0.0635312i
\(764\) −1.54044 4.36063i −0.0557310 0.157762i
\(765\) 17.0699 2.64457i 0.617164 0.0956146i
\(766\) 6.42122 + 4.54174i 0.232008 + 0.164100i
\(767\) 4.07820 + 4.07820i 0.147255 + 0.147255i
\(768\) 5.44624 + 8.44281i 0.196524 + 0.304654i
\(769\) 11.0693i 0.399169i 0.979881 + 0.199584i \(0.0639592\pi\)
−0.979881 + 0.199584i \(0.936041\pi\)
\(770\) 2.37006 0.794608i 0.0854111 0.0286357i
\(771\) 0.116474i 0.00419470i
\(772\) −40.3492 19.2834i −1.45220 0.694025i
\(773\) −11.9761 11.9761i −0.430750 0.430750i 0.458134 0.888883i \(-0.348518\pi\)
−0.888883 + 0.458134i \(0.848518\pi\)
\(774\) 19.3408 27.3445i 0.695192 0.982877i
\(775\) 43.6236 13.8492i 1.56700 0.497479i
\(776\) 15.5577 + 4.40696i 0.558489 + 0.158201i
\(777\) −0.518654 + 0.518654i −0.0186066 + 0.0186066i
\(778\) 26.1170 4.47745i 0.936339 0.160525i
\(779\) −1.43141 −0.0512857
\(780\) −0.942997 + 3.13578i −0.0337647 + 0.112279i
\(781\) −47.1844 −1.68839
\(782\) −23.9391 + 4.10409i −0.856062 + 0.146762i
\(783\) −25.5895 + 25.5895i −0.914493 + 0.914493i
\(784\) −17.4354 21.5983i −0.622693 0.771367i
\(785\) −4.14920 26.7819i −0.148091 0.955886i
\(786\) −5.43615 + 7.68575i −0.193901 + 0.274142i
\(787\) 5.47919 + 5.47919i 0.195312 + 0.195312i 0.797987 0.602675i \(-0.205898\pi\)
−0.602675 + 0.797987i \(0.705898\pi\)
\(788\) 6.68509 13.9881i 0.238147 0.498305i
\(789\) 18.5189i 0.659289i
\(790\) 20.5366 + 10.2236i 0.730658 + 0.363740i
\(791\) 1.87211i 0.0665645i
\(792\) 11.5373 + 20.6568i 0.409960 + 0.734006i
\(793\) 10.9435 + 10.9435i 0.388617 + 0.388617i
\(794\) −22.6479 16.0189i −0.803745 0.568491i
\(795\) 8.77426 11.9914i 0.311191 0.425291i
\(796\) 18.7528 6.62460i 0.664674 0.234803i
\(797\) −24.4902 + 24.4902i −0.867488 + 0.867488i −0.992194 0.124706i \(-0.960201\pi\)
0.124706 + 0.992194i \(0.460201\pi\)
\(798\) 0.0528876 + 0.308494i 0.00187220 + 0.0109206i
\(799\) 9.34121 0.330468
\(800\) −11.3897 + 25.8897i −0.402686 + 0.915338i
\(801\) −33.6081 −1.18749
\(802\) 1.60469 + 9.36016i 0.0566636 + 0.330519i
\(803\) 18.4282 18.4282i 0.650318 0.650318i
\(804\) −3.24044 + 1.14472i −0.114282 + 0.0403711i
\(805\) −1.88349 + 2.57408i −0.0663843 + 0.0907245i
\(806\) −12.3238 8.71667i −0.434088 0.307031i
\(807\) 4.21429 + 4.21429i 0.148350 + 0.148350i
\(808\) 12.0059 + 21.4958i 0.422367 + 0.756221i
\(809\) 12.9934i 0.456822i −0.973565 0.228411i \(-0.926647\pi\)
0.973565 0.228411i \(-0.0733531\pi\)
\(810\) 15.8720 + 7.90147i 0.557684 + 0.277629i
\(811\) 31.6512i 1.11142i −0.831375 0.555711i \(-0.812446\pi\)
0.831375 0.555711i \(-0.187554\pi\)
\(812\) 2.18312 4.56802i 0.0766124 0.160306i
\(813\) 3.99873 + 3.99873i 0.140242 + 0.140242i
\(814\) 12.4372 17.5840i 0.435925 0.616320i
\(815\) 4.69179 + 30.2841i 0.164346 + 1.06081i
\(816\) 4.67738 + 5.79415i 0.163741 + 0.202836i
\(817\) −9.19957 + 9.19957i −0.321852 + 0.321852i
\(818\) 16.0205 2.74653i 0.560143 0.0960301i
\(819\) −0.748126 −0.0261416
\(820\) −1.28789 + 4.28268i −0.0449752 + 0.149558i
\(821\) 22.9741 0.801802 0.400901 0.916121i \(-0.368697\pi\)
0.400901 + 0.916121i \(0.368697\pi\)
\(822\) 3.23069 0.553865i 0.112683 0.0193183i
\(823\) 13.4369 13.4369i 0.468381 0.468381i −0.433009 0.901390i \(-0.642548\pi\)
0.901390 + 0.433009i \(0.142548\pi\)
\(824\) 51.9390 + 14.7126i 1.80938 + 0.512536i
\(825\) 4.63654 8.94981i 0.161423 0.311593i
\(826\) 0.994590 1.40617i 0.0346062 0.0489270i
\(827\) 2.77222 + 2.77222i 0.0963996 + 0.0963996i 0.753662 0.657262i \(-0.228286\pi\)
−0.657262 + 0.753662i \(0.728286\pi\)
\(828\) −27.2391 13.0179i −0.946626 0.452405i
\(829\) 42.0604i 1.46082i 0.683010 + 0.730409i \(0.260671\pi\)
−0.683010 + 0.730409i \(0.739329\pi\)
\(830\) −19.0762 + 6.39564i −0.662143 + 0.221996i
\(831\) 8.40006i 0.291395i
\(832\) 9.07553 2.15687i 0.314637 0.0747759i
\(833\) −14.5472 14.5472i −0.504030 0.504030i
\(834\) −7.20792 5.09818i −0.249590 0.176536i
\(835\) 48.9116 7.57766i 1.69265 0.262236i
\(836\) −3.06130 8.66586i −0.105877 0.299715i
\(837\) 22.7842 22.7842i 0.787539 0.787539i
\(838\) 6.87258 + 40.0877i 0.237409 + 1.38481i
\(839\) 9.55496 0.329874 0.164937 0.986304i \(-0.447258\pi\)
0.164937 + 0.986304i \(0.447258\pi\)
\(840\) 0.970573 + 0.119327i 0.0334879 + 0.00411717i
\(841\) −76.6962 −2.64470
\(842\) −3.13265 18.2728i −0.107958 0.629721i
\(843\) −0.978458 + 0.978458i −0.0336999 + 0.0336999i
\(844\) 9.70319 + 27.4676i 0.333997 + 0.945473i
\(845\) −21.0058 15.3702i −0.722623 0.528752i
\(846\) 9.47943 + 6.70482i 0.325909 + 0.230517i
\(847\) −0.120771 0.120771i −0.00414975 0.00414975i
\(848\) −42.0904 4.48887i −1.44539 0.154148i
\(849\) 5.23020i 0.179500i
\(850\) −6.35913 + 19.9755i −0.218116 + 0.685153i
\(851\) 27.4819i 0.942069i
\(852\) −16.6542 7.95925i −0.570563 0.272679i
\(853\) 17.7565 + 17.7565i 0.607969 + 0.607969i 0.942415 0.334446i \(-0.108549\pi\)
−0.334446 + 0.942415i \(0.608549\pi\)
\(854\) 2.66891 3.77336i 0.0913281 0.129122i
\(855\) −6.73073 4.92496i −0.230186 0.168430i
\(856\) −12.6859 + 44.7845i −0.433596 + 1.53070i
\(857\) 12.6998 12.6998i 0.433819 0.433819i −0.456107 0.889925i \(-0.650756\pi\)
0.889925 + 0.456107i \(0.150756\pi\)
\(858\) −3.27648 + 0.561714i −0.111857 + 0.0191766i
\(859\) 1.28821 0.0439532 0.0219766 0.999758i \(-0.493004\pi\)
0.0219766 + 0.999758i \(0.493004\pi\)
\(860\) 19.2472 + 35.8016i 0.656324 + 1.22082i
\(861\) 0.154617 0.00526932
\(862\) 32.6590 5.59901i 1.11237 0.190703i
\(863\) −2.72289 + 2.72289i −0.0926882 + 0.0926882i −0.751931 0.659242i \(-0.770877\pi\)
0.659242 + 0.751931i \(0.270877\pi\)
\(864\) 1.26440 + 19.8721i 0.0430157 + 0.676063i
\(865\) −15.2598 + 2.36414i −0.518850 + 0.0803832i
\(866\) 0.676119 0.955912i 0.0229755 0.0324832i
\(867\) −3.64578 3.64578i −0.123817 0.123817i
\(868\) −1.94380 + 4.06726i −0.0659767 + 0.138052i
\(869\) 23.2894i 0.790039i
\(870\) −6.48946 19.3560i −0.220013 0.656230i
\(871\) 3.19085i 0.108118i
\(872\) −24.8893 + 13.9012i −0.842857 + 0.470756i
\(873\) 10.5334 + 10.5334i 0.356501 + 0.356501i
\(874\) 9.57425 + 6.77189i 0.323854 + 0.229063i
\(875\) 1.22489 + 2.46540i 0.0414090 + 0.0833458i
\(876\) 9.61296 3.39587i 0.324792 0.114736i
\(877\) −14.8823 + 14.8823i −0.502539 + 0.502539i −0.912226 0.409687i \(-0.865638\pi\)
0.409687 + 0.912226i \(0.365638\pi\)
\(878\) −3.76181 21.9427i −0.126955 0.740529i
\(879\) −10.0058 −0.337488
\(880\) −28.6819 + 1.36218i −0.966867 + 0.0459191i
\(881\) 14.2219 0.479146 0.239573 0.970878i \(-0.422993\pi\)
0.239573 + 0.970878i \(0.422993\pi\)
\(882\) −4.32092 25.2039i −0.145493 0.848660i
\(883\) −10.7554 + 10.7554i −0.361948 + 0.361948i −0.864530 0.502582i \(-0.832384\pi\)
0.502582 + 0.864530i \(0.332384\pi\)
\(884\) 6.51899 2.30289i 0.219257 0.0774547i
\(885\) −1.06328 6.86313i −0.0357416 0.230702i
\(886\) 29.8090 + 21.0840i 1.00145 + 0.708331i
\(887\) −28.8889 28.8889i −0.969993 0.969993i 0.0295696 0.999563i \(-0.490586\pi\)
−0.999563 + 0.0295696i \(0.990586\pi\)
\(888\) 7.35599 4.10849i 0.246851 0.137872i
\(889\) 2.73078i 0.0915874i
\(890\) 18.1769 36.5127i 0.609292 1.22391i
\(891\) 17.9995i 0.603007i
\(892\) −13.1176 + 27.4478i −0.439211 + 0.919019i
\(893\) −3.18919 3.18919i −0.106722 0.106722i
\(894\) 2.12229 3.00054i 0.0709801 0.100353i
\(895\) 27.0309 36.9419i 0.903543 1.23483i
\(896\) −1.09282 2.56246i −0.0365085 0.0856058i
\(897\) 2.99934 2.99934i 0.100145 0.100145i
\(898\) 49.3156 8.45459i 1.64568 0.282133i
\(899\) 94.1094 3.13872
\(900\) −20.7910 + 15.7066i −0.693033 + 0.523555i
\(901\) −31.3727 −1.04518
\(902\) −4.47484 + 0.767159i −0.148996 + 0.0255436i
\(903\) 0.993707 0.993707i 0.0330685 0.0330685i
\(904\) −5.86099 + 20.6908i −0.194934 + 0.688165i
\(905\) 8.66413 11.8409i 0.288005 0.393604i
\(906\) −1.01220 + 1.43108i −0.0336282 + 0.0475443i
\(907\) 3.58310 + 3.58310i 0.118975 + 0.118975i 0.764087 0.645113i \(-0.223190\pi\)
−0.645113 + 0.764087i \(0.723190\pi\)
\(908\) 10.7123 + 5.11954i 0.355499 + 0.169898i
\(909\) 22.6825i 0.752331i
\(910\) 0.404623 0.812781i 0.0134131 0.0269434i
\(911\) 27.5406i 0.912462i −0.889861 0.456231i \(-0.849199\pi\)
0.889861 0.456231i \(-0.150801\pi\)
\(912\) 0.381277 3.57509i 0.0126254 0.118383i
\(913\) −14.4431 14.4431i −0.477996 0.477996i
\(914\) 41.5475 + 29.3867i 1.37427 + 0.972025i
\(915\) −2.85322 18.4167i −0.0943246 0.608838i
\(916\) −9.90322 28.0338i −0.327212 0.926264i
\(917\) 1.84571 1.84571i 0.0609507 0.0609507i
\(918\) 2.49375 + 14.5460i 0.0823060 + 0.480091i
\(919\) −53.7650 −1.77354 −0.886772 0.462207i \(-0.847058\pi\)
−0.886772 + 0.462207i \(0.847058\pi\)
\(920\) 28.8753 22.5525i 0.951989 0.743533i
\(921\) −16.6981 −0.550222
\(922\) −2.94328 17.1681i −0.0969317 0.565402i
\(923\) −12.1184 + 12.1184i −0.398881 + 0.398881i
\(924\) 0.330671 + 0.936057i 0.0108783 + 0.0307940i
\(925\) 21.0611 + 10.9109i 0.692485 + 0.358749i
\(926\) −28.0932 19.8704i −0.923200 0.652982i
\(927\) 35.1655 + 35.1655i 1.15499 + 1.15499i
\(928\) −38.4292 + 43.6518i −1.26150 + 1.43294i
\(929\) 32.4323i 1.06407i −0.846723 0.532034i \(-0.821428\pi\)
0.846723 0.532034i \(-0.178572\pi\)
\(930\) 5.77806 + 17.2341i 0.189470 + 0.565129i
\(931\) 9.93312i 0.325545i
\(932\) 12.5219 + 5.98439i 0.410169 + 0.196025i
\(933\) −8.21716 8.21716i −0.269018 0.269018i
\(934\) −16.5751 + 23.4342i −0.542353 + 0.766790i
\(935\) −21.0310 + 3.25825i −0.687788 + 0.106556i
\(936\) 8.26839 + 2.34215i 0.270261 + 0.0765557i
\(937\) −6.15885 + 6.15885i −0.201201 + 0.201201i −0.800514 0.599314i \(-0.795440\pi\)
0.599314 + 0.800514i \(0.295440\pi\)
\(938\) 0.939198 0.161015i 0.0306659 0.00525731i
\(939\) −3.76314 −0.122806
\(940\) −12.4112 + 6.67237i −0.404809 + 0.217629i
\(941\) −16.5330 −0.538960 −0.269480 0.963006i \(-0.586852\pi\)
−0.269480 + 0.963006i \(0.586852\pi\)
\(942\) 10.6084 1.81868i 0.345639 0.0592558i
\(943\) 4.09633 4.09633i 0.133395 0.133395i
\(944\) −15.3946 + 12.4275i −0.501053 + 0.404479i
\(945\) 1.56408 + 1.14446i 0.0508795 + 0.0372292i
\(946\) −23.8289 + 33.6898i −0.774745 + 1.09535i
\(947\) 15.8010 + 15.8010i 0.513463 + 0.513463i 0.915586 0.402123i \(-0.131728\pi\)
−0.402123 + 0.915586i \(0.631728\pi\)
\(948\) −3.92855 + 8.22021i −0.127593 + 0.266980i
\(949\) 9.46583i 0.307274i
\(950\) 8.99091 4.64876i 0.291704 0.150826i
\(951\) 17.3715i 0.563310i
\(952\) −1.00679 1.80260i −0.0326303 0.0584225i
\(953\) −15.2139 15.2139i −0.492827 0.492827i 0.416369 0.909196i \(-0.363303\pi\)
−0.909196 + 0.416369i \(0.863303\pi\)
\(954\) −31.8369 22.5184i −1.03076 0.729059i
\(955\) 4.17282 + 3.05331i 0.135029 + 0.0988027i
\(956\) 43.3712 15.3213i 1.40272 0.495526i
\(957\) 14.6550 14.6550i 0.473727 0.473727i
\(958\) 2.38496 + 13.9114i 0.0770544 + 0.449458i
\(959\) −0.908850 −0.0293483
\(960\) −10.3533 4.35738i −0.334152 0.140634i
\(961\) −52.7927 −1.70299
\(962\) −1.32185 7.71036i −0.0426182 0.248592i
\(963\) −30.3215 + 30.3215i −0.977097 + 0.977097i
\(964\) −15.4555 + 5.45979i −0.497787 + 0.175848i
\(965\) 49.4094 7.65479i 1.59054 0.246416i
\(966\) −1.03418 0.731477i −0.0332741 0.0235349i
\(967\) −7.70992 7.70992i −0.247934 0.247934i 0.572188 0.820122i \(-0.306095\pi\)
−0.820122 + 0.572188i \(0.806095\pi\)
\(968\) 0.956683 + 1.71288i 0.0307490 + 0.0550540i
\(969\) 2.66475i 0.0856041i
\(970\) −17.1407 + 5.74675i −0.550355 + 0.184517i
\(971\) 19.4308i 0.623563i 0.950154 + 0.311781i \(0.100926\pi\)
−0.950154 + 0.311781i \(0.899074\pi\)
\(972\) −12.1433 + 25.4089i −0.389495 + 0.814992i
\(973\) 1.73096 + 1.73096i 0.0554920 + 0.0554920i
\(974\) −25.7786 + 36.4464i −0.826000 + 1.16782i
\(975\) −1.10778 3.48938i −0.0354773 0.111750i
\(976\) −41.3104 + 33.3482i −1.32231 + 1.06745i
\(977\) 18.4063 18.4063i 0.588869 0.588869i −0.348456 0.937325i \(-0.613294\pi\)
0.937325 + 0.348456i \(0.113294\pi\)
\(978\) −11.9956 + 2.05651i −0.383578 + 0.0657599i
\(979\) 41.4070 1.32337
\(980\) 29.7191 + 8.93717i 0.949342 + 0.285488i
\(981\) −26.2633 −0.838522
\(982\) 2.46280 0.422218i 0.0785910 0.0134735i
\(983\) 7.65464 7.65464i 0.244145 0.244145i −0.574417 0.818563i \(-0.694771\pi\)
0.818563 + 0.574417i \(0.194771\pi\)
\(984\) −1.70884 0.484057i −0.0544759 0.0154312i
\(985\) 2.65373 + 17.1290i 0.0845549 + 0.545777i
\(986\) −24.8907 + 35.1911i −0.792683 + 1.12071i
\(987\) 0.344485 + 0.344485i 0.0109651 + 0.0109651i
\(988\) −3.01188 1.43942i −0.0958208 0.0457940i
\(989\) 52.6535i 1.67428i
\(990\) −23.6809 11.7890i −0.752628 0.374677i
\(991\) 6.71556i 0.213327i 0.994295 + 0.106663i \(0.0340167\pi\)
−0.994295 + 0.106663i \(0.965983\pi\)
\(992\) 34.2164 38.8665i 1.08637 1.23401i
\(993\) 0.417482 + 0.417482i 0.0132484 + 0.0132484i
\(994\) 4.17844 + 2.95542i 0.132532 + 0.0937402i
\(995\) −13.1306 + 17.9451i −0.416270 + 0.568897i
\(996\) −2.66150 7.53413i −0.0843330 0.238728i
\(997\) 38.3857 38.3857i 1.21569 1.21569i 0.246562 0.969127i \(-0.420699\pi\)
0.969127 0.246562i \(-0.0793008\pi\)
\(998\) 4.83789 + 28.2194i 0.153141 + 0.893269i
\(999\) 16.6987 0.528325
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.k.c.83.20 108
4.3 odd 2 inner 820.2.k.c.83.51 yes 108
5.2 odd 4 inner 820.2.k.c.247.51 yes 108
20.7 even 4 inner 820.2.k.c.247.20 yes 108
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.k.c.83.20 108 1.1 even 1 trivial
820.2.k.c.83.51 yes 108 4.3 odd 2 inner
820.2.k.c.247.20 yes 108 20.7 even 4 inner
820.2.k.c.247.51 yes 108 5.2 odd 4 inner