Properties

Label 820.2.k.c.83.14
Level $820$
Weight $2$
Character 820.83
Analytic conductor $6.548$
Analytic rank $0$
Dimension $108$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(83,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.83"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [108] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(54\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 83.14
Character \(\chi\) \(=\) 820.83
Dual form 820.2.k.c.247.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866971 - 1.11730i) q^{2} +(-0.278914 + 0.278914i) q^{3} +(-0.496724 + 1.93733i) q^{4} +(-0.644595 + 2.14114i) q^{5} +(0.553441 + 0.0698207i) q^{6} +(1.69878 + 1.69878i) q^{7} +(2.59523 - 1.12462i) q^{8} +2.84441i q^{9} +(2.95115 - 1.13610i) q^{10} +1.33907i q^{11} +(-0.401806 - 0.678893i) q^{12} +(0.601947 + 0.601947i) q^{13} +(0.425256 - 3.37083i) q^{14} +(-0.417409 - 0.776982i) q^{15} +(-3.50653 - 1.92464i) q^{16} +(-2.82679 + 2.82679i) q^{17} +(3.17807 - 2.46602i) q^{18} -5.71431 q^{19} +(-3.82793 - 2.31235i) q^{20} -0.947624 q^{21} +(1.49615 - 1.16094i) q^{22} +(5.69719 - 5.69719i) q^{23} +(-0.410174 + 1.03752i) q^{24} +(-4.16900 - 2.76034i) q^{25} +(0.150686 - 1.19443i) q^{26} +(-1.63009 - 1.63009i) q^{27} +(-4.13492 + 2.44727i) q^{28} -3.34339i q^{29} +(-0.506242 + 1.13999i) q^{30} -2.05260i q^{31} +(0.889654 + 5.58646i) q^{32} +(-0.373486 - 0.373486i) q^{33} +(5.60912 + 0.707632i) q^{34} +(-4.73234 + 2.54230i) q^{35} +(-5.51058 - 1.41289i) q^{36} +(-4.04070 + 4.04070i) q^{37} +(4.95414 + 6.38460i) q^{38} -0.335783 q^{39} +(0.735104 + 6.28169i) q^{40} +1.00000 q^{41} +(0.821562 + 1.05878i) q^{42} +(-7.33467 + 7.33467i) q^{43} +(-2.59423 - 0.665150i) q^{44} +(-6.09030 - 1.83349i) q^{45} +(-11.3048 - 1.42618i) q^{46} +(-2.12311 - 2.12311i) q^{47} +(1.51483 - 0.441211i) q^{48} -1.22833i q^{49} +(0.530264 + 7.05116i) q^{50} -1.57686i q^{51} +(-1.46517 + 0.867171i) q^{52} +(7.01655 + 7.01655i) q^{53} +(-0.408061 + 3.23454i) q^{54} +(-2.86715 - 0.863159i) q^{55} +(6.31919 + 2.49824i) q^{56} +(1.59380 - 1.59380i) q^{57} +(-3.73557 + 2.89862i) q^{58} -0.647781 q^{59} +(1.71261 - 0.422714i) q^{60} +5.98612 q^{61} +(-2.29337 + 1.77954i) q^{62} +(-4.83202 + 4.83202i) q^{63} +(5.47045 - 5.83731i) q^{64} +(-1.67687 + 0.900843i) q^{65} +(-0.0934950 + 0.741098i) q^{66} +(-1.31706 - 1.31706i) q^{67} +(-4.07230 - 6.88057i) q^{68} +3.17805i q^{69} +(6.94332 + 3.08335i) q^{70} +7.49094i q^{71} +(3.19889 + 7.38191i) q^{72} +(10.5380 + 10.5380i) q^{73} +(8.01784 + 1.01151i) q^{74} +(1.93269 - 0.392893i) q^{75} +(2.83843 - 11.0705i) q^{76} +(-2.27478 + 2.27478i) q^{77} +(0.291114 + 0.375170i) q^{78} -17.4243 q^{79} +(6.38123 - 6.26737i) q^{80} -7.62393 q^{81} +(-0.866971 - 1.11730i) q^{82} +(6.41387 - 6.41387i) q^{83} +(0.470708 - 1.83587i) q^{84} +(-4.23043 - 7.87470i) q^{85} +(14.5540 + 1.83609i) q^{86} +(0.932517 + 0.932517i) q^{87} +(1.50595 + 3.47520i) q^{88} -16.0501i q^{89} +(3.23154 + 8.39429i) q^{90} +2.04514i q^{91} +(8.20742 + 13.8673i) q^{92} +(0.572499 + 0.572499i) q^{93} +(-0.531479 + 4.21282i) q^{94} +(3.68341 - 12.2352i) q^{95} +(-1.80628 - 1.31000i) q^{96} +(-1.96505 + 1.96505i) q^{97} +(-1.37241 + 1.06492i) q^{98} -3.80888 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q + 12 q^{2} - 4 q^{6} - 24 q^{8} + 4 q^{10} - 16 q^{13} + 52 q^{16} - 8 q^{17} + 18 q^{18} + 38 q^{20} + 72 q^{21} + 10 q^{22} - 12 q^{25} + 24 q^{26} - 58 q^{28} - 70 q^{30} - 38 q^{32} + 8 q^{33}+ \cdots + 122 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866971 1.11730i −0.613041 0.790051i
\(3\) −0.278914 + 0.278914i −0.161031 + 0.161031i −0.783023 0.621992i \(-0.786324\pi\)
0.621992 + 0.783023i \(0.286324\pi\)
\(4\) −0.496724 + 1.93733i −0.248362 + 0.968667i
\(5\) −0.644595 + 2.14114i −0.288272 + 0.957549i
\(6\) 0.553441 + 0.0698207i 0.225941 + 0.0285042i
\(7\) 1.69878 + 1.69878i 0.642077 + 0.642077i 0.951066 0.308989i \(-0.0999906\pi\)
−0.308989 + 0.951066i \(0.599991\pi\)
\(8\) 2.59523 1.12462i 0.917553 0.397614i
\(9\) 2.84441i 0.948138i
\(10\) 2.95115 1.13610i 0.933235 0.359267i
\(11\) 1.33907i 0.403746i 0.979412 + 0.201873i \(0.0647028\pi\)
−0.979412 + 0.201873i \(0.935297\pi\)
\(12\) −0.401806 0.678893i −0.115992 0.195980i
\(13\) 0.601947 + 0.601947i 0.166950 + 0.166950i 0.785637 0.618687i \(-0.212335\pi\)
−0.618687 + 0.785637i \(0.712335\pi\)
\(14\) 0.425256 3.37083i 0.113654 0.900893i
\(15\) −0.417409 0.776982i −0.107774 0.200616i
\(16\) −3.50653 1.92464i −0.876633 0.481160i
\(17\) −2.82679 + 2.82679i −0.685597 + 0.685597i −0.961256 0.275658i \(-0.911104\pi\)
0.275658 + 0.961256i \(0.411104\pi\)
\(18\) 3.17807 2.46602i 0.749078 0.581247i
\(19\) −5.71431 −1.31095 −0.655476 0.755216i \(-0.727532\pi\)
−0.655476 + 0.755216i \(0.727532\pi\)
\(20\) −3.82793 2.31235i −0.855950 0.517058i
\(21\) −0.947624 −0.206789
\(22\) 1.49615 1.16094i 0.318980 0.247512i
\(23\) 5.69719 5.69719i 1.18795 1.18795i 0.210311 0.977635i \(-0.432552\pi\)
0.977635 0.210311i \(-0.0674476\pi\)
\(24\) −0.410174 + 1.03752i −0.0837264 + 0.211783i
\(25\) −4.16900 2.76034i −0.833799 0.552068i
\(26\) 0.150686 1.19443i 0.0295519 0.234246i
\(27\) −1.63009 1.63009i −0.313711 0.313711i
\(28\) −4.13492 + 2.44727i −0.781426 + 0.462491i
\(29\) 3.34339i 0.620851i −0.950598 0.310426i \(-0.899528\pi\)
0.950598 0.310426i \(-0.100472\pi\)
\(30\) −0.506242 + 1.13999i −0.0924266 + 0.208133i
\(31\) 2.05260i 0.368658i −0.982865 0.184329i \(-0.940989\pi\)
0.982865 0.184329i \(-0.0590112\pi\)
\(32\) 0.889654 + 5.58646i 0.157270 + 0.987556i
\(33\) −0.373486 0.373486i −0.0650156 0.0650156i
\(34\) 5.60912 + 0.707632i 0.961956 + 0.121358i
\(35\) −4.73234 + 2.54230i −0.799912 + 0.429727i
\(36\) −5.51058 1.41289i −0.918430 0.235482i
\(37\) −4.04070 + 4.04070i −0.664287 + 0.664287i −0.956388 0.292101i \(-0.905646\pi\)
0.292101 + 0.956388i \(0.405646\pi\)
\(38\) 4.95414 + 6.38460i 0.803667 + 1.03572i
\(39\) −0.335783 −0.0537683
\(40\) 0.735104 + 6.28169i 0.116230 + 0.993222i
\(41\) 1.00000 0.156174
\(42\) 0.821562 + 1.05878i 0.126770 + 0.163374i
\(43\) −7.33467 + 7.33467i −1.11853 + 1.11853i −0.126569 + 0.991958i \(0.540397\pi\)
−0.991958 + 0.126569i \(0.959603\pi\)
\(44\) −2.59423 0.665150i −0.391095 0.100275i
\(45\) −6.09030 1.83349i −0.907888 0.273321i
\(46\) −11.3048 1.42618i −1.66680 0.210279i
\(47\) −2.12311 2.12311i −0.309687 0.309687i 0.535101 0.844788i \(-0.320274\pi\)
−0.844788 + 0.535101i \(0.820274\pi\)
\(48\) 1.51483 0.441211i 0.218647 0.0636833i
\(49\) 1.22833i 0.175475i
\(50\) 0.530264 + 7.05116i 0.0749906 + 0.997184i
\(51\) 1.57686i 0.220805i
\(52\) −1.46517 + 0.867171i −0.203183 + 0.120255i
\(53\) 7.01655 + 7.01655i 0.963797 + 0.963797i 0.999367 0.0355705i \(-0.0113248\pi\)
−0.0355705 + 0.999367i \(0.511325\pi\)
\(54\) −0.408061 + 3.23454i −0.0555301 + 0.440165i
\(55\) −2.86715 0.863159i −0.386606 0.116388i
\(56\) 6.31919 + 2.49824i 0.844438 + 0.333841i
\(57\) 1.59380 1.59380i 0.211104 0.211104i
\(58\) −3.73557 + 2.89862i −0.490504 + 0.380607i
\(59\) −0.647781 −0.0843340 −0.0421670 0.999111i \(-0.513426\pi\)
−0.0421670 + 0.999111i \(0.513426\pi\)
\(60\) 1.71261 0.422714i 0.221097 0.0545722i
\(61\) 5.98612 0.766444 0.383222 0.923656i \(-0.374814\pi\)
0.383222 + 0.923656i \(0.374814\pi\)
\(62\) −2.29337 + 1.77954i −0.291259 + 0.226002i
\(63\) −4.83202 + 4.83202i −0.608777 + 0.608777i
\(64\) 5.47045 5.83731i 0.683807 0.729663i
\(65\) −1.67687 + 0.900843i −0.207990 + 0.111736i
\(66\) −0.0934950 + 0.741098i −0.0115084 + 0.0912228i
\(67\) −1.31706 1.31706i −0.160904 0.160904i 0.622063 0.782967i \(-0.286295\pi\)
−0.782967 + 0.622063i \(0.786295\pi\)
\(68\) −4.07230 6.88057i −0.493839 0.834392i
\(69\) 3.17805i 0.382592i
\(70\) 6.94332 + 3.08335i 0.829885 + 0.368531i
\(71\) 7.49094i 0.889011i 0.895776 + 0.444505i \(0.146621\pi\)
−0.895776 + 0.444505i \(0.853379\pi\)
\(72\) 3.19889 + 7.38191i 0.376993 + 0.869967i
\(73\) 10.5380 + 10.5380i 1.23339 + 1.23339i 0.962655 + 0.270730i \(0.0872650\pi\)
0.270730 + 0.962655i \(0.412735\pi\)
\(74\) 8.01784 + 1.01151i 0.932055 + 0.117586i
\(75\) 1.93269 0.392893i 0.223168 0.0453674i
\(76\) 2.83843 11.0705i 0.325591 1.26988i
\(77\) −2.27478 + 2.27478i −0.259236 + 0.259236i
\(78\) 0.291114 + 0.375170i 0.0329621 + 0.0424797i
\(79\) −17.4243 −1.96039 −0.980194 0.198041i \(-0.936542\pi\)
−0.980194 + 0.198041i \(0.936542\pi\)
\(80\) 6.38123 6.26737i 0.713443 0.700714i
\(81\) −7.62393 −0.847104
\(82\) −0.866971 1.11730i −0.0957409 0.123385i
\(83\) 6.41387 6.41387i 0.704013 0.704013i −0.261256 0.965270i \(-0.584137\pi\)
0.965270 + 0.261256i \(0.0841367\pi\)
\(84\) 0.470708 1.83587i 0.0513584 0.200309i
\(85\) −4.23043 7.87470i −0.458855 0.854131i
\(86\) 14.5540 + 1.83609i 1.56940 + 0.197991i
\(87\) 0.932517 + 0.932517i 0.0999763 + 0.0999763i
\(88\) 1.50595 + 3.47520i 0.160535 + 0.370458i
\(89\) 16.0501i 1.70131i −0.525724 0.850655i \(-0.676206\pi\)
0.525724 0.850655i \(-0.323794\pi\)
\(90\) 3.23154 + 8.39429i 0.340635 + 0.884835i
\(91\) 2.04514i 0.214389i
\(92\) 8.20742 + 13.8673i 0.855683 + 1.44576i
\(93\) 0.572499 + 0.572499i 0.0593654 + 0.0593654i
\(94\) −0.531479 + 4.21282i −0.0548179 + 0.434520i
\(95\) 3.68341 12.2352i 0.377910 1.25530i
\(96\) −1.80628 1.31000i −0.184353 0.133702i
\(97\) −1.96505 + 1.96505i −0.199520 + 0.199520i −0.799794 0.600274i \(-0.795058\pi\)
0.600274 + 0.799794i \(0.295058\pi\)
\(98\) −1.37241 + 1.06492i −0.138634 + 0.107573i
\(99\) −3.80888 −0.382806
\(100\) 7.41854 6.70561i 0.741854 0.670561i
\(101\) −7.11355 −0.707824 −0.353912 0.935279i \(-0.615149\pi\)
−0.353912 + 0.935279i \(0.615149\pi\)
\(102\) −1.76183 + 1.36709i −0.174447 + 0.135362i
\(103\) −5.99820 + 5.99820i −0.591020 + 0.591020i −0.937907 0.346887i \(-0.887239\pi\)
0.346887 + 0.937907i \(0.387239\pi\)
\(104\) 2.23915 + 0.885229i 0.219567 + 0.0868038i
\(105\) 0.610834 2.02900i 0.0596113 0.198010i
\(106\) 1.75646 13.9227i 0.170602 1.35230i
\(107\) 5.12998 + 5.12998i 0.495934 + 0.495934i 0.910170 0.414236i \(-0.135951\pi\)
−0.414236 + 0.910170i \(0.635951\pi\)
\(108\) 3.96773 2.34832i 0.381795 0.225968i
\(109\) 13.2450i 1.26864i 0.773070 + 0.634320i \(0.218720\pi\)
−0.773070 + 0.634320i \(0.781280\pi\)
\(110\) 1.52132 + 3.95180i 0.145052 + 0.376789i
\(111\) 2.25401i 0.213942i
\(112\) −2.68727 9.22634i −0.253923 0.871807i
\(113\) 11.6481 + 11.6481i 1.09576 + 1.09576i 0.994900 + 0.100864i \(0.0321607\pi\)
0.100864 + 0.994900i \(0.467839\pi\)
\(114\) −3.16253 0.398977i −0.296198 0.0373676i
\(115\) 8.52612 + 15.8709i 0.795065 + 1.47997i
\(116\) 6.47726 + 1.66074i 0.601398 + 0.154196i
\(117\) −1.71219 + 1.71219i −0.158292 + 0.158292i
\(118\) 0.561607 + 0.723767i 0.0517002 + 0.0666282i
\(119\) −9.60416 −0.880412
\(120\) −1.95708 1.54702i −0.178656 0.141223i
\(121\) 9.20688 0.836990
\(122\) −5.18979 6.68830i −0.469861 0.605530i
\(123\) −0.278914 + 0.278914i −0.0251488 + 0.0251488i
\(124\) 3.97657 + 1.01958i 0.357107 + 0.0915606i
\(125\) 8.59760 7.14712i 0.768993 0.639258i
\(126\) 9.58804 + 1.20960i 0.854171 + 0.107760i
\(127\) −0.0827773 0.0827773i −0.00734530 0.00734530i 0.703425 0.710770i \(-0.251653\pi\)
−0.710770 + 0.703425i \(0.751653\pi\)
\(128\) −11.2648 1.05137i −0.995673 0.0929290i
\(129\) 4.09148i 0.360235i
\(130\) 2.46031 + 1.09256i 0.215783 + 0.0958239i
\(131\) 13.3808i 1.16908i −0.811363 0.584542i \(-0.801274\pi\)
0.811363 0.584542i \(-0.198726\pi\)
\(132\) 0.909087 0.538048i 0.0791259 0.0468311i
\(133\) −9.70732 9.70732i −0.841732 0.841732i
\(134\) −0.329701 + 2.61341i −0.0284818 + 0.225764i
\(135\) 4.54100 2.43951i 0.390827 0.209959i
\(136\) −4.15711 + 10.5152i −0.356469 + 0.901675i
\(137\) 5.74819 5.74819i 0.491101 0.491101i −0.417552 0.908653i \(-0.637112\pi\)
0.908653 + 0.417552i \(0.137112\pi\)
\(138\) 3.55084 2.75528i 0.302267 0.234545i
\(139\) −8.54773 −0.725009 −0.362505 0.931982i \(-0.618078\pi\)
−0.362505 + 0.931982i \(0.618078\pi\)
\(140\) −2.57462 10.4310i −0.217595 0.881577i
\(141\) 1.18433 0.0997385
\(142\) 8.36963 6.49442i 0.702364 0.545000i
\(143\) −0.806050 + 0.806050i −0.0674053 + 0.0674053i
\(144\) 5.47448 9.97402i 0.456206 0.831169i
\(145\) 7.15867 + 2.15513i 0.594495 + 0.178974i
\(146\) 2.63800 20.9103i 0.218322 1.73055i
\(147\) 0.342597 + 0.342597i 0.0282570 + 0.0282570i
\(148\) −5.82107 9.83530i −0.478489 0.808456i
\(149\) 10.7043i 0.876931i 0.898748 + 0.438466i \(0.144478\pi\)
−0.898748 + 0.438466i \(0.855522\pi\)
\(150\) −2.11456 1.81877i −0.172653 0.148502i
\(151\) 9.81279i 0.798554i 0.916830 + 0.399277i \(0.130739\pi\)
−0.916830 + 0.399277i \(0.869261\pi\)
\(152\) −14.8300 + 6.42643i −1.20287 + 0.521253i
\(153\) −8.04056 8.04056i −0.650041 0.650041i
\(154\) 4.51379 + 0.569448i 0.363731 + 0.0458874i
\(155\) 4.39491 + 1.32310i 0.353008 + 0.106274i
\(156\) 0.166791 0.650523i 0.0133540 0.0520836i
\(157\) −5.57771 + 5.57771i −0.445150 + 0.445150i −0.893738 0.448588i \(-0.851927\pi\)
0.448588 + 0.893738i \(0.351927\pi\)
\(158\) 15.1064 + 19.4682i 1.20180 + 1.54881i
\(159\) −3.91403 −0.310402
\(160\) −12.5349 1.69612i −0.990969 0.134090i
\(161\) 19.3565 1.52550
\(162\) 6.60972 + 8.51823i 0.519309 + 0.669255i
\(163\) −11.2263 + 11.2263i −0.879309 + 0.879309i −0.993463 0.114154i \(-0.963584\pi\)
0.114154 + 0.993463i \(0.463584\pi\)
\(164\) −0.496724 + 1.93733i −0.0387876 + 0.151280i
\(165\) 1.04043 0.558940i 0.0809977 0.0435134i
\(166\) −12.7269 1.60559i −0.987796 0.124618i
\(167\) 9.18408 + 9.18408i 0.710686 + 0.710686i 0.966679 0.255993i \(-0.0824024\pi\)
−0.255993 + 0.966679i \(0.582402\pi\)
\(168\) −2.45930 + 1.06572i −0.189739 + 0.0822220i
\(169\) 12.2753i 0.944255i
\(170\) −5.13075 + 11.5538i −0.393511 + 0.886136i
\(171\) 16.2539i 1.24296i
\(172\) −10.5664 17.8530i −0.805681 1.36128i
\(173\) −17.0143 17.0143i −1.29357 1.29357i −0.932563 0.361008i \(-0.882433\pi\)
−0.361008 0.932563i \(-0.617567\pi\)
\(174\) 0.233438 1.85037i 0.0176969 0.140276i
\(175\) −2.39299 11.7714i −0.180893 0.889833i
\(176\) 2.57723 4.69550i 0.194266 0.353936i
\(177\) 0.180675 0.180675i 0.0135804 0.0135804i
\(178\) −17.9328 + 13.9150i −1.34412 + 1.04297i
\(179\) −6.39788 −0.478200 −0.239100 0.970995i \(-0.576852\pi\)
−0.239100 + 0.970995i \(0.576852\pi\)
\(180\) 6.57729 10.8882i 0.490242 0.811559i
\(181\) −9.61218 −0.714468 −0.357234 0.934015i \(-0.616280\pi\)
−0.357234 + 0.934015i \(0.616280\pi\)
\(182\) 2.28504 1.77308i 0.169379 0.131429i
\(183\) −1.66961 + 1.66961i −0.123421 + 0.123421i
\(184\) 8.37834 21.1927i 0.617659 1.56235i
\(185\) −6.04710 11.2563i −0.444592 0.827582i
\(186\) 0.143314 1.13599i 0.0105083 0.0832951i
\(187\) −3.78528 3.78528i −0.276807 0.276807i
\(188\) 5.16777 3.05857i 0.376898 0.223069i
\(189\) 5.53831i 0.402853i
\(190\) −16.8638 + 6.49204i −1.22343 + 0.470982i
\(191\) 3.47790i 0.251652i −0.992052 0.125826i \(-0.959842\pi\)
0.992052 0.125826i \(-0.0401582\pi\)
\(192\) 0.102321 + 3.15389i 0.00738435 + 0.227613i
\(193\) 1.65269 + 1.65269i 0.118963 + 0.118963i 0.764082 0.645119i \(-0.223192\pi\)
−0.645119 + 0.764082i \(0.723192\pi\)
\(194\) 3.89919 + 0.491912i 0.279945 + 0.0353172i
\(195\) 0.216444 0.718959i 0.0154999 0.0514857i
\(196\) 2.37968 + 0.610139i 0.169977 + 0.0435814i
\(197\) −6.62232 + 6.62232i −0.471821 + 0.471821i −0.902503 0.430683i \(-0.858273\pi\)
0.430683 + 0.902503i \(0.358273\pi\)
\(198\) 3.30218 + 4.25566i 0.234676 + 0.302437i
\(199\) 23.5160 1.66700 0.833502 0.552516i \(-0.186332\pi\)
0.833502 + 0.552516i \(0.186332\pi\)
\(200\) −13.9238 2.47518i −0.984565 0.175022i
\(201\) 0.734693 0.0518213
\(202\) 6.16724 + 7.94798i 0.433925 + 0.559218i
\(203\) 5.67966 5.67966i 0.398634 0.398634i
\(204\) 3.05491 + 0.783266i 0.213887 + 0.0548396i
\(205\) −0.644595 + 2.14114i −0.0450205 + 0.149544i
\(206\) 11.9021 + 1.50153i 0.829256 + 0.104617i
\(207\) 16.2052 + 16.2052i 1.12634 + 1.12634i
\(208\) −0.952213 3.26928i −0.0660241 0.226683i
\(209\) 7.65187i 0.529291i
\(210\) −2.79658 + 1.07660i −0.192982 + 0.0742923i
\(211\) 3.44479i 0.237149i 0.992945 + 0.118575i \(0.0378325\pi\)
−0.992945 + 0.118575i \(0.962167\pi\)
\(212\) −17.0787 + 10.1081i −1.17297 + 0.694228i
\(213\) −2.08933 2.08933i −0.143158 0.143158i
\(214\) 1.28419 10.1793i 0.0877855 0.695841i
\(215\) −10.9767 20.4325i −0.748604 1.39348i
\(216\) −6.06369 2.39723i −0.412582 0.163111i
\(217\) 3.48691 3.48691i 0.236707 0.236707i
\(218\) 14.7987 11.4830i 1.00229 0.777728i
\(219\) −5.87842 −0.397227
\(220\) 3.09641 5.12587i 0.208760 0.345586i
\(221\) −3.40315 −0.228921
\(222\) −2.51841 + 1.95416i −0.169025 + 0.131155i
\(223\) 4.72118 4.72118i 0.316154 0.316154i −0.531134 0.847288i \(-0.678234\pi\)
0.847288 + 0.531134i \(0.178234\pi\)
\(224\) −7.97881 + 11.0015i −0.533107 + 0.735066i
\(225\) 7.85155 11.8583i 0.523437 0.790557i
\(226\) 2.91589 23.1131i 0.193962 1.53746i
\(227\) 6.34763 + 6.34763i 0.421307 + 0.421307i 0.885654 0.464347i \(-0.153711\pi\)
−0.464347 + 0.885654i \(0.653711\pi\)
\(228\) 2.29605 + 3.87940i 0.152059 + 0.256920i
\(229\) 4.31740i 0.285302i −0.989773 0.142651i \(-0.954437\pi\)
0.989773 0.142651i \(-0.0455626\pi\)
\(230\) 10.3407 23.2858i 0.681842 1.53542i
\(231\) 1.26894i 0.0834900i
\(232\) −3.76004 8.67686i −0.246859 0.569664i
\(233\) 13.8122 + 13.8122i 0.904866 + 0.904866i 0.995852 0.0909864i \(-0.0290020\pi\)
−0.0909864 + 0.995852i \(0.529002\pi\)
\(234\) 3.39744 + 0.428613i 0.222098 + 0.0280193i
\(235\) 5.91442 3.17734i 0.385815 0.207267i
\(236\) 0.321769 1.25497i 0.0209454 0.0816916i
\(237\) 4.85988 4.85988i 0.315683 0.315683i
\(238\) 8.32653 + 10.7307i 0.539729 + 0.695571i
\(239\) −26.1364 −1.69062 −0.845311 0.534274i \(-0.820585\pi\)
−0.845311 + 0.534274i \(0.820585\pi\)
\(240\) −0.0317555 + 3.52787i −0.00204981 + 0.227723i
\(241\) 17.9549 1.15658 0.578288 0.815833i \(-0.303721\pi\)
0.578288 + 0.815833i \(0.303721\pi\)
\(242\) −7.98210 10.2869i −0.513109 0.661265i
\(243\) 7.01669 7.01669i 0.450121 0.450121i
\(244\) −2.97345 + 11.5971i −0.190356 + 0.742429i
\(245\) 2.63002 + 0.791773i 0.168026 + 0.0505845i
\(246\) 0.553441 + 0.0698207i 0.0352861 + 0.00445161i
\(247\) −3.43971 3.43971i −0.218863 0.218863i
\(248\) −2.30840 5.32697i −0.146583 0.338263i
\(249\) 3.57783i 0.226736i
\(250\) −15.4393 3.40977i −0.976470 0.215653i
\(251\) 7.05309i 0.445187i 0.974911 + 0.222594i \(0.0714523\pi\)
−0.974911 + 0.222594i \(0.928548\pi\)
\(252\) −6.96106 11.7614i −0.438505 0.740900i
\(253\) 7.62894 + 7.62894i 0.479628 + 0.479628i
\(254\) −0.0207217 + 0.164253i −0.00130020 + 0.0103061i
\(255\) 3.37629 + 1.01644i 0.211432 + 0.0636518i
\(256\) 8.59151 + 13.4976i 0.536969 + 0.843602i
\(257\) 5.88315 5.88315i 0.366981 0.366981i −0.499394 0.866375i \(-0.666444\pi\)
0.866375 + 0.499394i \(0.166444\pi\)
\(258\) −4.57142 + 3.54720i −0.284604 + 0.220839i
\(259\) −13.7285 −0.853046
\(260\) −0.912294 3.69612i −0.0565781 0.229224i
\(261\) 9.50997 0.588652
\(262\) −14.9504 + 11.6008i −0.923637 + 0.716697i
\(263\) 18.0270 18.0270i 1.11159 1.11159i 0.118660 0.992935i \(-0.462140\pi\)
0.992935 0.118660i \(-0.0378598\pi\)
\(264\) −1.38931 0.549252i −0.0855063 0.0338041i
\(265\) −19.5463 + 10.5006i −1.20072 + 0.645047i
\(266\) −2.43004 + 19.2620i −0.148995 + 1.18103i
\(267\) 4.47660 + 4.47660i 0.273964 + 0.273964i
\(268\) 3.20580 1.89737i 0.195825 0.115900i
\(269\) 16.9722i 1.03481i 0.855740 + 0.517405i \(0.173102\pi\)
−0.855740 + 0.517405i \(0.826898\pi\)
\(270\) −6.66258 2.95869i −0.405472 0.180060i
\(271\) 2.31981i 0.140918i −0.997515 0.0704592i \(-0.977554\pi\)
0.997515 0.0704592i \(-0.0224465\pi\)
\(272\) 15.3528 4.47167i 0.930899 0.271135i
\(273\) −0.570419 0.570419i −0.0345233 0.0345233i
\(274\) −11.4060 1.43895i −0.689060 0.0869300i
\(275\) 3.69630 5.58259i 0.222895 0.336643i
\(276\) −6.15695 1.57861i −0.370605 0.0950214i
\(277\) 6.84246 6.84246i 0.411124 0.411124i −0.471006 0.882130i \(-0.656109\pi\)
0.882130 + 0.471006i \(0.156109\pi\)
\(278\) 7.41063 + 9.55039i 0.444460 + 0.572794i
\(279\) 5.83844 0.349539
\(280\) −9.42240 + 11.9200i −0.563096 + 0.712354i
\(281\) 18.2191 1.08686 0.543430 0.839454i \(-0.317125\pi\)
0.543430 + 0.839454i \(0.317125\pi\)
\(282\) −1.02678 1.32325i −0.0611438 0.0787985i
\(283\) 8.74527 8.74527i 0.519852 0.519852i −0.397674 0.917527i \(-0.630183\pi\)
0.917527 + 0.397674i \(0.130183\pi\)
\(284\) −14.5125 3.72093i −0.861156 0.220797i
\(285\) 2.38520 + 4.43991i 0.141287 + 0.262998i
\(286\) 1.59942 + 0.201779i 0.0945758 + 0.0119314i
\(287\) 1.69878 + 1.69878i 0.100276 + 0.100276i
\(288\) −15.8902 + 2.53054i −0.936339 + 0.149114i
\(289\) 1.01851i 0.0599122i
\(290\) −3.79843 9.86682i −0.223051 0.579400i
\(291\) 1.09616i 0.0642579i
\(292\) −25.6502 + 15.1812i −1.50107 + 0.888414i
\(293\) 13.0781 + 13.0781i 0.764028 + 0.764028i 0.977048 0.213020i \(-0.0683298\pi\)
−0.213020 + 0.977048i \(0.568330\pi\)
\(294\) 0.0857626 0.679806i 0.00500178 0.0396471i
\(295\) 0.417557 1.38699i 0.0243111 0.0807539i
\(296\) −5.94229 + 15.0308i −0.345389 + 0.873648i
\(297\) 2.18281 2.18281i 0.126659 0.126659i
\(298\) 11.9599 9.28032i 0.692821 0.537595i
\(299\) 6.85880 0.396655
\(300\) −0.198847 + 3.93942i −0.0114804 + 0.227443i
\(301\) −24.9199 −1.43636
\(302\) 10.9638 8.50740i 0.630898 0.489546i
\(303\) 1.98407 1.98407i 0.113982 0.113982i
\(304\) 20.0374 + 10.9980i 1.14922 + 0.630778i
\(305\) −3.85862 + 12.8171i −0.220944 + 0.733907i
\(306\) −2.01280 + 15.9547i −0.115064 + 0.912067i
\(307\) 14.0504 + 14.0504i 0.801898 + 0.801898i 0.983392 0.181494i \(-0.0580933\pi\)
−0.181494 + 0.983392i \(0.558093\pi\)
\(308\) −3.27708 5.53696i −0.186729 0.315497i
\(309\) 3.34596i 0.190345i
\(310\) −2.33196 6.05753i −0.132447 0.344044i
\(311\) 24.4529i 1.38660i 0.720651 + 0.693298i \(0.243843\pi\)
−0.720651 + 0.693298i \(0.756157\pi\)
\(312\) −0.871434 + 0.377628i −0.0493352 + 0.0213790i
\(313\) −15.4799 15.4799i −0.874978 0.874978i 0.118032 0.993010i \(-0.462342\pi\)
−0.993010 + 0.118032i \(0.962342\pi\)
\(314\) 11.0677 + 1.39627i 0.624586 + 0.0787962i
\(315\) −7.23136 13.4607i −0.407441 0.758427i
\(316\) 8.65507 33.7567i 0.486886 1.89896i
\(317\) −5.53854 + 5.53854i −0.311075 + 0.311075i −0.845326 0.534251i \(-0.820594\pi\)
0.534251 + 0.845326i \(0.320594\pi\)
\(318\) 3.39335 + 4.37315i 0.190289 + 0.245234i
\(319\) 4.47704 0.250666
\(320\) 8.97229 + 15.4757i 0.501566 + 0.865119i
\(321\) −2.86165 −0.159722
\(322\) −16.7815 21.6270i −0.935196 1.20523i
\(323\) 16.1532 16.1532i 0.898785 0.898785i
\(324\) 3.78699 14.7701i 0.210388 0.820562i
\(325\) −0.847935 4.17109i −0.0470350 0.231370i
\(326\) 22.2760 + 2.81028i 1.23375 + 0.155647i
\(327\) −3.69422 3.69422i −0.204291 0.204291i
\(328\) 2.59523 1.12462i 0.143298 0.0620968i
\(329\) 7.21337i 0.397686i
\(330\) −1.52653 0.677894i −0.0840328 0.0373168i
\(331\) 16.7395i 0.920085i 0.887897 + 0.460043i \(0.152166\pi\)
−0.887897 + 0.460043i \(0.847834\pi\)
\(332\) 9.23988 + 15.6117i 0.507104 + 0.856805i
\(333\) −11.4934 11.4934i −0.629835 0.629835i
\(334\) 2.29906 18.2237i 0.125799 0.997157i
\(335\) 3.66899 1.97105i 0.200458 0.107690i
\(336\) 3.32287 + 1.82384i 0.181278 + 0.0994985i
\(337\) −21.0413 + 21.0413i −1.14619 + 1.14619i −0.158897 + 0.987295i \(0.550794\pi\)
−0.987295 + 0.158897i \(0.949206\pi\)
\(338\) −13.7152 + 10.6423i −0.746010 + 0.578867i
\(339\) −6.49766 −0.352904
\(340\) 17.3573 4.28421i 0.941331 0.232344i
\(341\) 2.74858 0.148844
\(342\) −18.1605 + 14.0916i −0.982005 + 0.761987i
\(343\) 13.9781 13.9781i 0.754745 0.754745i
\(344\) −10.7864 + 27.2839i −0.581566 + 1.47105i
\(345\) −6.80466 2.04855i −0.366351 0.110290i
\(346\) −4.25919 + 33.7609i −0.228976 + 1.81500i
\(347\) 18.7929 + 18.7929i 1.00886 + 1.00886i 0.999960 + 0.00889698i \(0.00283203\pi\)
0.00889698 + 0.999960i \(0.497168\pi\)
\(348\) −2.26980 + 1.34339i −0.121674 + 0.0720135i
\(349\) 1.67014i 0.0894007i −0.999000 0.0447004i \(-0.985767\pi\)
0.999000 0.0447004i \(-0.0142333\pi\)
\(350\) −11.0775 + 12.8791i −0.592119 + 0.688418i
\(351\) 1.96245i 0.104748i
\(352\) −7.48067 + 1.19131i −0.398721 + 0.0634971i
\(353\) 1.38513 + 1.38513i 0.0737232 + 0.0737232i 0.743007 0.669284i \(-0.233399\pi\)
−0.669284 + 0.743007i \(0.733399\pi\)
\(354\) −0.358509 0.0452286i −0.0190545 0.00240387i
\(355\) −16.0392 4.82862i −0.851271 0.256276i
\(356\) 31.0945 + 7.97248i 1.64800 + 0.422541i
\(357\) 2.67874 2.67874i 0.141774 0.141774i
\(358\) 5.54678 + 7.14836i 0.293156 + 0.377803i
\(359\) 25.0952 1.32447 0.662237 0.749294i \(-0.269607\pi\)
0.662237 + 0.749294i \(0.269607\pi\)
\(360\) −17.8677 + 2.09094i −0.941712 + 0.110202i
\(361\) 13.6533 0.718595
\(362\) 8.33348 + 10.7397i 0.437998 + 0.564466i
\(363\) −2.56793 + 2.56793i −0.134781 + 0.134781i
\(364\) −3.96213 1.01587i −0.207672 0.0532462i
\(365\) −29.3562 + 15.7707i −1.53658 + 0.825476i
\(366\) 3.31296 + 0.417955i 0.173171 + 0.0218469i
\(367\) 10.2323 + 10.2323i 0.534124 + 0.534124i 0.921797 0.387673i \(-0.126721\pi\)
−0.387673 + 0.921797i \(0.626721\pi\)
\(368\) −30.9424 + 9.01231i −1.61298 + 0.469799i
\(369\) 2.84441i 0.148074i
\(370\) −7.33405 + 16.5153i −0.381279 + 0.858592i
\(371\) 23.8391i 1.23766i
\(372\) −1.39350 + 0.824748i −0.0722494 + 0.0427612i
\(373\) 2.67563 + 2.67563i 0.138539 + 0.138539i 0.772975 0.634436i \(-0.218768\pi\)
−0.634436 + 0.772975i \(0.718768\pi\)
\(374\) −0.947571 + 7.51102i −0.0489977 + 0.388386i
\(375\) −0.404560 + 4.39142i −0.0208914 + 0.226772i
\(376\) −7.89765 3.12226i −0.407290 0.161018i
\(377\) 2.01254 2.01254i 0.103651 0.103651i
\(378\) −6.18796 + 4.80155i −0.318274 + 0.246965i
\(379\) −14.8771 −0.764184 −0.382092 0.924124i \(-0.624796\pi\)
−0.382092 + 0.924124i \(0.624796\pi\)
\(380\) 21.8739 + 13.2135i 1.12211 + 0.677838i
\(381\) 0.0461755 0.00236564
\(382\) −3.88587 + 3.01524i −0.198818 + 0.154273i
\(383\) −1.00827 + 1.00827i −0.0515203 + 0.0515203i −0.732398 0.680877i \(-0.761599\pi\)
0.680877 + 0.732398i \(0.261599\pi\)
\(384\) 3.43514 2.84865i 0.175299 0.145370i
\(385\) −3.40432 6.33695i −0.173500 0.322961i
\(386\) 0.413720 3.27939i 0.0210578 0.166917i
\(387\) −20.8628 20.8628i −1.06052 1.06052i
\(388\) −2.83087 4.78304i −0.143716 0.242822i
\(389\) 18.3980i 0.932817i 0.884569 + 0.466408i \(0.154452\pi\)
−0.884569 + 0.466408i \(0.845548\pi\)
\(390\) −0.990944 + 0.381483i −0.0501784 + 0.0193172i
\(391\) 32.2095i 1.62890i
\(392\) −1.38140 3.18779i −0.0697713 0.161008i
\(393\) 3.73209 + 3.73209i 0.188259 + 0.188259i
\(394\) 13.1405 + 1.65777i 0.662008 + 0.0835172i
\(395\) 11.2316 37.3079i 0.565124 1.87717i
\(396\) 1.89196 7.37907i 0.0950746 0.370812i
\(397\) 4.31475 4.31475i 0.216551 0.216551i −0.590492 0.807043i \(-0.701066\pi\)
0.807043 + 0.590492i \(0.201066\pi\)
\(398\) −20.3877 26.2744i −1.02194 1.31702i
\(399\) 5.41502 0.271090
\(400\) 9.30604 + 17.7030i 0.465302 + 0.885152i
\(401\) −16.1354 −0.805764 −0.402882 0.915252i \(-0.631992\pi\)
−0.402882 + 0.915252i \(0.631992\pi\)
\(402\) −0.636957 0.820873i −0.0317685 0.0409414i
\(403\) 1.23556 1.23556i 0.0615474 0.0615474i
\(404\) 3.53347 13.7813i 0.175797 0.685646i
\(405\) 4.91435 16.3239i 0.244196 0.811143i
\(406\) −11.2700 1.42179i −0.559320 0.0705624i
\(407\) −5.41079 5.41079i −0.268203 0.268203i
\(408\) −1.77337 4.09232i −0.0877951 0.202600i
\(409\) 4.15049i 0.205229i 0.994721 + 0.102614i \(0.0327208\pi\)
−0.994721 + 0.102614i \(0.967279\pi\)
\(410\) 2.95115 1.13610i 0.145747 0.0561081i
\(411\) 3.20650i 0.158165i
\(412\) −8.64107 14.6000i −0.425715 0.719289i
\(413\) −1.10044 1.10044i −0.0541489 0.0541489i
\(414\) 4.05665 32.1554i 0.199373 1.58035i
\(415\) 9.59867 + 17.8674i 0.471180 + 0.877074i
\(416\) −2.82723 + 3.89827i −0.138616 + 0.191129i
\(417\) 2.38408 2.38408i 0.116749 0.116749i
\(418\) −8.54945 + 6.63395i −0.418167 + 0.324477i
\(419\) 19.1256 0.934349 0.467174 0.884165i \(-0.345272\pi\)
0.467174 + 0.884165i \(0.345272\pi\)
\(420\) 3.62744 + 2.19124i 0.177001 + 0.106922i
\(421\) −30.7471 −1.49852 −0.749262 0.662274i \(-0.769591\pi\)
−0.749262 + 0.662274i \(0.769591\pi\)
\(422\) 3.84887 2.98653i 0.187360 0.145382i
\(423\) 6.03900 6.03900i 0.293626 0.293626i
\(424\) 26.1005 + 10.3186i 1.26755 + 0.501116i
\(425\) 19.5878 3.98197i 0.950147 0.193154i
\(426\) −0.523023 + 4.14579i −0.0253405 + 0.200864i
\(427\) 10.1691 + 10.1691i 0.492116 + 0.492116i
\(428\) −12.4867 + 7.39030i −0.603566 + 0.357224i
\(429\) 0.449637i 0.0217087i
\(430\) −13.3128 + 29.9786i −0.641998 + 1.44570i
\(431\) 3.83959i 0.184947i 0.995715 + 0.0924733i \(0.0294773\pi\)
−0.995715 + 0.0924733i \(0.970523\pi\)
\(432\) 2.57862 + 8.85329i 0.124064 + 0.425954i
\(433\) −5.27443 5.27443i −0.253473 0.253473i 0.568920 0.822393i \(-0.307361\pi\)
−0.822393 + 0.568920i \(0.807361\pi\)
\(434\) −6.91897 0.872880i −0.332121 0.0418996i
\(435\) −2.59775 + 1.39556i −0.124553 + 0.0669119i
\(436\) −25.6600 6.57911i −1.22889 0.315082i
\(437\) −32.5555 + 32.5555i −1.55734 + 1.55734i
\(438\) 5.09642 + 6.56796i 0.243516 + 0.313829i
\(439\) 23.9111 1.14121 0.570607 0.821223i \(-0.306708\pi\)
0.570607 + 0.821223i \(0.306708\pi\)
\(440\) −8.41164 + 0.984357i −0.401009 + 0.0469274i
\(441\) 3.49387 0.166375
\(442\) 2.95043 + 3.80235i 0.140338 + 0.180859i
\(443\) −4.26544 + 4.26544i −0.202657 + 0.202657i −0.801137 0.598480i \(-0.795771\pi\)
0.598480 + 0.801137i \(0.295771\pi\)
\(444\) 4.36678 + 1.11962i 0.207238 + 0.0531350i
\(445\) 34.3656 + 10.3458i 1.62909 + 0.490439i
\(446\) −9.36811 1.18186i −0.443593 0.0559625i
\(447\) −2.98558 2.98558i −0.141213 0.141213i
\(448\) 19.2093 0.623201i 0.907556 0.0294435i
\(449\) 14.1752i 0.668969i 0.942401 + 0.334485i \(0.108562\pi\)
−0.942401 + 0.334485i \(0.891438\pi\)
\(450\) −20.0564 + 1.50829i −0.945468 + 0.0711015i
\(451\) 1.33907i 0.0630545i
\(452\) −28.3522 + 16.7804i −1.33358 + 0.789285i
\(453\) −2.73692 2.73692i −0.128592 0.128592i
\(454\) 1.58901 12.5954i 0.0745758 0.591132i
\(455\) −4.37895 1.31829i −0.205288 0.0618024i
\(456\) 2.34386 5.92870i 0.109761 0.277637i
\(457\) 25.0911 25.0911i 1.17371 1.17371i 0.192397 0.981317i \(-0.438374\pi\)
0.981317 0.192397i \(-0.0616262\pi\)
\(458\) −4.82384 + 3.74306i −0.225403 + 0.174902i
\(459\) 9.21584 0.430159
\(460\) −34.9823 + 8.63450i −1.63106 + 0.402586i
\(461\) 30.6852 1.42915 0.714577 0.699557i \(-0.246619\pi\)
0.714577 + 0.699557i \(0.246619\pi\)
\(462\) −1.41779 + 1.10013i −0.0659614 + 0.0511828i
\(463\) −10.4137 + 10.4137i −0.483964 + 0.483964i −0.906395 0.422431i \(-0.861177\pi\)
0.422431 + 0.906395i \(0.361177\pi\)
\(464\) −6.43482 + 11.7237i −0.298729 + 0.544258i
\(465\) −1.59483 + 0.856773i −0.0739586 + 0.0397319i
\(466\) 3.45761 27.4071i 0.160171 1.26961i
\(467\) 13.9017 + 13.9017i 0.643296 + 0.643296i 0.951364 0.308069i \(-0.0996826\pi\)
−0.308069 + 0.951364i \(0.599683\pi\)
\(468\) −2.46659 4.16756i −0.114018 0.192646i
\(469\) 4.47478i 0.206626i
\(470\) −8.67767 3.85354i −0.400271 0.177750i
\(471\) 3.11141i 0.143366i
\(472\) −1.68114 + 0.728509i −0.0773809 + 0.0335323i
\(473\) −9.82166 9.82166i −0.451600 0.451600i
\(474\) −9.64333 1.21658i −0.442933 0.0558793i
\(475\) 23.8229 + 15.7734i 1.09307 + 0.723735i
\(476\) 4.77062 18.6065i 0.218661 0.852827i
\(477\) −19.9580 + 19.9580i −0.913812 + 0.913812i
\(478\) 22.6595 + 29.2022i 1.03642 + 1.33568i
\(479\) 3.51098 0.160421 0.0802104 0.996778i \(-0.474441\pi\)
0.0802104 + 0.996778i \(0.474441\pi\)
\(480\) 3.96923 3.02308i 0.181170 0.137984i
\(481\) −4.86457 −0.221805
\(482\) −15.5664 20.0610i −0.709028 0.913755i
\(483\) −5.39879 + 5.39879i −0.245654 + 0.245654i
\(484\) −4.57328 + 17.8368i −0.207876 + 0.810764i
\(485\) −2.94079 5.47411i −0.133534 0.248566i
\(486\) −13.9230 1.75649i −0.631561 0.0796761i
\(487\) −5.10830 5.10830i −0.231479 0.231479i 0.581831 0.813310i \(-0.302337\pi\)
−0.813310 + 0.581831i \(0.802337\pi\)
\(488\) 15.5354 6.73212i 0.703253 0.304749i
\(489\) 6.26233i 0.283192i
\(490\) −1.39550 3.62497i −0.0630424 0.163760i
\(491\) 25.0265i 1.12943i −0.825286 0.564715i \(-0.808986\pi\)
0.825286 0.564715i \(-0.191014\pi\)
\(492\) −0.401806 0.678893i −0.0181148 0.0306069i
\(493\) 9.45105 + 9.45105i 0.425654 + 0.425654i
\(494\) −0.861064 + 6.82532i −0.0387411 + 0.307085i
\(495\) 2.45518 8.15535i 0.110352 0.366556i
\(496\) −3.95052 + 7.19750i −0.177384 + 0.323177i
\(497\) −12.7254 + 12.7254i −0.570813 + 0.570813i
\(498\) 3.99752 3.10188i 0.179133 0.138998i
\(499\) −19.4164 −0.869197 −0.434599 0.900624i \(-0.643110\pi\)
−0.434599 + 0.900624i \(0.643110\pi\)
\(500\) 9.57572 + 20.2066i 0.428239 + 0.903665i
\(501\) −5.12314 −0.228885
\(502\) 7.88043 6.11482i 0.351721 0.272918i
\(503\) 7.04618 7.04618i 0.314174 0.314174i −0.532350 0.846524i \(-0.678691\pi\)
0.846524 + 0.532350i \(0.178691\pi\)
\(504\) −7.10602 + 17.9744i −0.316527 + 0.800644i
\(505\) 4.58536 15.2311i 0.204046 0.677776i
\(506\) 1.90976 15.1379i 0.0848991 0.672962i
\(507\) 3.42376 + 3.42376i 0.152054 + 0.152054i
\(508\) 0.201485 0.119250i 0.00893945 0.00529086i
\(509\) 26.3683i 1.16875i 0.811483 + 0.584376i \(0.198661\pi\)
−0.811483 + 0.584376i \(0.801339\pi\)
\(510\) −1.79148 4.65356i −0.0793280 0.206063i
\(511\) 35.8035i 1.58386i
\(512\) 7.63233 21.3014i 0.337305 0.941396i
\(513\) 9.31483 + 9.31483i 0.411260 + 0.411260i
\(514\) −11.6738 1.47273i −0.514908 0.0649595i
\(515\) −8.97660 16.7094i −0.395556 0.736305i
\(516\) 7.92657 + 2.03234i 0.348948 + 0.0894687i
\(517\) 2.84300 2.84300i 0.125035 0.125035i
\(518\) 11.9022 + 15.3388i 0.522952 + 0.673950i
\(519\) 9.49104 0.416610
\(520\) −3.33875 + 4.22374i −0.146414 + 0.185223i
\(521\) 4.91983 0.215541 0.107771 0.994176i \(-0.465629\pi\)
0.107771 + 0.994176i \(0.465629\pi\)
\(522\) −8.24487 10.6255i −0.360868 0.465066i
\(523\) 3.60109 3.60109i 0.157465 0.157465i −0.623977 0.781442i \(-0.714484\pi\)
0.781442 + 0.623977i \(0.214484\pi\)
\(524\) 25.9231 + 6.64656i 1.13245 + 0.290356i
\(525\) 3.95064 + 2.61577i 0.172420 + 0.114161i
\(526\) −35.7705 4.51272i −1.55967 0.196764i
\(527\) 5.80227 + 5.80227i 0.252751 + 0.252751i
\(528\) 0.590813 + 2.02847i 0.0257119 + 0.0882777i
\(529\) 41.9158i 1.82243i
\(530\) 28.6784 + 12.7353i 1.24571 + 0.553188i
\(531\) 1.84256i 0.0799602i
\(532\) 23.6282 13.9845i 1.02441 0.606304i
\(533\) 0.601947 + 0.601947i 0.0260732 + 0.0260732i
\(534\) 1.12063 8.88280i 0.0484945 0.384396i
\(535\) −14.2908 + 7.67727i −0.617845 + 0.331917i
\(536\) −4.89927 1.93688i −0.211616 0.0836605i
\(537\) 1.78446 1.78446i 0.0770051 0.0770051i
\(538\) 18.9630 14.7144i 0.817554 0.634381i
\(539\) 1.64482 0.0708473
\(540\) 2.47052 + 10.0092i 0.106314 + 0.430728i
\(541\) −7.89806 −0.339564 −0.169782 0.985482i \(-0.554306\pi\)
−0.169782 + 0.985482i \(0.554306\pi\)
\(542\) −2.59193 + 2.01121i −0.111333 + 0.0863887i
\(543\) 2.68097 2.68097i 0.115052 0.115052i
\(544\) −18.3066 13.2769i −0.784890 0.569242i
\(545\) −28.3594 8.53766i −1.21479 0.365713i
\(546\) −0.142793 + 1.13187i −0.00611100 + 0.0484394i
\(547\) 14.0572 + 14.0572i 0.601043 + 0.601043i 0.940589 0.339546i \(-0.110273\pi\)
−0.339546 + 0.940589i \(0.610273\pi\)
\(548\) 8.28090 + 13.9914i 0.353742 + 0.597684i
\(549\) 17.0270i 0.726694i
\(550\) −9.44201 + 0.710062i −0.402609 + 0.0302771i
\(551\) 19.1051i 0.813906i
\(552\) 3.57410 + 8.24777i 0.152124 + 0.351049i
\(553\) −29.6000 29.6000i −1.25872 1.25872i
\(554\) −13.5773 1.71288i −0.576844 0.0727732i
\(555\) 4.82617 + 1.45293i 0.204859 + 0.0616733i
\(556\) 4.24586 16.5598i 0.180065 0.702293i
\(557\) 23.4325 23.4325i 0.992868 0.992868i −0.00710642 0.999975i \(-0.502262\pi\)
0.999975 + 0.00710642i \(0.00226206\pi\)
\(558\) −5.06176 6.52330i −0.214281 0.276153i
\(559\) −8.83016 −0.373476
\(560\) 21.4871 + 0.193412i 0.907997 + 0.00817316i
\(561\) 2.11153 0.0891490
\(562\) −15.7954 20.3562i −0.666289 0.858675i
\(563\) 16.4403 16.4403i 0.692876 0.692876i −0.269988 0.962864i \(-0.587020\pi\)
0.962864 + 0.269988i \(0.0870196\pi\)
\(564\) −0.588285 + 2.29444i −0.0247713 + 0.0966134i
\(565\) −32.4487 + 17.4320i −1.36513 + 0.733370i
\(566\) −17.3530 2.18921i −0.729401 0.0920193i
\(567\) −12.9513 12.9513i −0.543905 0.543905i
\(568\) 8.42447 + 19.4407i 0.353483 + 0.815714i
\(569\) 24.5089i 1.02747i −0.857950 0.513733i \(-0.828262\pi\)
0.857950 0.513733i \(-0.171738\pi\)
\(570\) 2.89282 6.51426i 0.121167 0.272852i
\(571\) 23.9122i 1.00069i 0.865825 + 0.500346i \(0.166794\pi\)
−0.865825 + 0.500346i \(0.833206\pi\)
\(572\) −1.16120 1.96197i −0.0485524 0.0820342i
\(573\) 0.970036 + 0.970036i 0.0405238 + 0.0405238i
\(574\) 0.425256 3.37083i 0.0177498 0.140696i
\(575\) −39.4777 + 8.02537i −1.64633 + 0.334681i
\(576\) 16.6037 + 15.5602i 0.691821 + 0.648343i
\(577\) 19.1002 19.1002i 0.795153 0.795153i −0.187174 0.982327i \(-0.559933\pi\)
0.982327 + 0.187174i \(0.0599329\pi\)
\(578\) 1.13798 0.883016i 0.0473337 0.0367286i
\(579\) −0.921918 −0.0383136
\(580\) −7.73109 + 12.7982i −0.321016 + 0.531418i
\(581\) 21.7914 0.904061
\(582\) −1.22474 + 0.950337i −0.0507671 + 0.0393927i
\(583\) −9.39566 + 9.39566i −0.389129 + 0.389129i
\(584\) 39.2000 + 15.4974i 1.62211 + 0.641285i
\(585\) −2.56237 4.76970i −0.105941 0.197203i
\(586\) 3.27384 25.9504i 0.135241 1.07200i
\(587\) −30.3071 30.3071i −1.25091 1.25091i −0.955313 0.295596i \(-0.904482\pi\)
−0.295596 0.955313i \(-0.595518\pi\)
\(588\) −0.833902 + 0.493549i −0.0343895 + 0.0203536i
\(589\) 11.7292i 0.483293i
\(590\) −1.91170 + 0.735946i −0.0787034 + 0.0302984i
\(591\) 3.69411i 0.151956i
\(592\) 21.9457 6.39193i 0.901964 0.262707i
\(593\) 20.6682 + 20.6682i 0.848739 + 0.848739i 0.989976 0.141237i \(-0.0451078\pi\)
−0.141237 + 0.989976i \(0.545108\pi\)
\(594\) −4.33128 0.546424i −0.177715 0.0224200i
\(595\) 6.19079 20.5639i 0.253798 0.843038i
\(596\) −20.7378 5.31709i −0.849455 0.217797i
\(597\) −6.55894 + 6.55894i −0.268440 + 0.268440i
\(598\) −5.94638 7.66335i −0.243166 0.313378i
\(599\) −42.7073 −1.74497 −0.872487 0.488637i \(-0.837494\pi\)
−0.872487 + 0.488637i \(0.837494\pi\)
\(600\) 4.57392 3.19319i 0.186729 0.130362i
\(601\) −3.37026 −0.137476 −0.0687378 0.997635i \(-0.521897\pi\)
−0.0687378 + 0.997635i \(0.521897\pi\)
\(602\) 21.6048 + 27.8430i 0.880547 + 1.13480i
\(603\) 3.74626 3.74626i 0.152560 0.152560i
\(604\) −19.0107 4.87425i −0.773533 0.198330i
\(605\) −5.93471 + 19.7133i −0.241280 + 0.801458i
\(606\) −3.93693 0.496673i −0.159927 0.0201760i
\(607\) 17.5463 + 17.5463i 0.712184 + 0.712184i 0.966992 0.254807i \(-0.0820121\pi\)
−0.254807 + 0.966992i \(0.582012\pi\)
\(608\) −5.08376 31.9227i −0.206174 1.29464i
\(609\) 3.16827i 0.128385i
\(610\) 17.6659 6.80084i 0.715272 0.275358i
\(611\) 2.55600i 0.103405i
\(612\) 19.5712 11.5833i 0.791119 0.468228i
\(613\) −3.47274 3.47274i −0.140263 0.140263i 0.633489 0.773752i \(-0.281622\pi\)
−0.773752 + 0.633489i \(0.781622\pi\)
\(614\) 3.51724 27.8798i 0.141944 1.12514i
\(615\) −0.417409 0.776982i −0.0168315 0.0313309i
\(616\) −3.34532 + 8.46186i −0.134787 + 0.340938i
\(617\) 7.10530 7.10530i 0.286049 0.286049i −0.549467 0.835516i \(-0.685169\pi\)
0.835516 + 0.549467i \(0.185169\pi\)
\(618\) −3.73845 + 2.90085i −0.150383 + 0.116689i
\(619\) 9.30534 0.374013 0.187007 0.982359i \(-0.440121\pi\)
0.187007 + 0.982359i \(0.440121\pi\)
\(620\) −4.74634 + 7.85720i −0.190618 + 0.315553i
\(621\) −18.5738 −0.745342
\(622\) 27.3212 21.1999i 1.09548 0.850040i
\(623\) 27.2656 27.2656i 1.09237 1.09237i
\(624\) 1.17743 + 0.646261i 0.0471350 + 0.0258712i
\(625\) 9.76104 + 23.0157i 0.390442 + 0.920628i
\(626\) −3.87511 + 30.7164i −0.154880 + 1.22768i
\(627\) 2.13421 + 2.13421i 0.0852323 + 0.0852323i
\(628\) −8.03531 13.5765i −0.320644 0.541761i
\(629\) 22.8444i 0.910866i
\(630\) −8.77034 + 19.7497i −0.349419 + 0.786846i
\(631\) 34.1175i 1.35820i −0.734047 0.679099i \(-0.762371\pi\)
0.734047 0.679099i \(-0.237629\pi\)
\(632\) −45.2201 + 19.5957i −1.79876 + 0.779477i
\(633\) −0.960801 0.960801i −0.0381884 0.0381884i
\(634\) 10.9900 + 1.38647i 0.436467 + 0.0550636i
\(635\) 0.230596 0.123880i 0.00915092 0.00491604i
\(636\) 1.94419 7.58278i 0.0770922 0.300677i
\(637\) 0.739387 0.739387i 0.0292956 0.0292956i
\(638\) −3.88146 5.00220i −0.153668 0.198039i
\(639\) −21.3073 −0.842905
\(640\) 9.51234 23.4417i 0.376008 0.926616i
\(641\) −5.37579 −0.212331 −0.106166 0.994348i \(-0.533857\pi\)
−0.106166 + 0.994348i \(0.533857\pi\)
\(642\) 2.48096 + 3.19732i 0.0979158 + 0.126188i
\(643\) 5.72371 5.72371i 0.225721 0.225721i −0.585181 0.810902i \(-0.698977\pi\)
0.810902 + 0.585181i \(0.198977\pi\)
\(644\) −9.61483 + 37.5000i −0.378877 + 1.47771i
\(645\) 8.76046 + 2.63735i 0.344943 + 0.103846i
\(646\) −32.0522 4.04363i −1.26108 0.159094i
\(647\) −7.41644 7.41644i −0.291570 0.291570i 0.546130 0.837700i \(-0.316100\pi\)
−0.837700 + 0.546130i \(0.816100\pi\)
\(648\) −19.7859 + 8.57404i −0.777262 + 0.336820i
\(649\) 0.867426i 0.0340495i
\(650\) −3.92523 + 4.56361i −0.153960 + 0.179000i
\(651\) 1.94509i 0.0762342i
\(652\) −16.1727 27.3254i −0.633371 1.07015i
\(653\) 5.39989 + 5.39989i 0.211314 + 0.211314i 0.804826 0.593511i \(-0.202259\pi\)
−0.593511 + 0.804826i \(0.702259\pi\)
\(654\) −0.924776 + 7.33033i −0.0361616 + 0.286639i
\(655\) 28.6502 + 8.62519i 1.11946 + 0.337014i
\(656\) −3.50653 1.92464i −0.136907 0.0751446i
\(657\) −29.9746 + 29.9746i −1.16942 + 1.16942i
\(658\) −8.05950 + 6.25378i −0.314192 + 0.243798i
\(659\) −35.7745 −1.39357 −0.696787 0.717278i \(-0.745388\pi\)
−0.696787 + 0.717278i \(0.745388\pi\)
\(660\) 0.566045 + 2.29331i 0.0220333 + 0.0892669i
\(661\) 4.33953 0.168788 0.0843940 0.996432i \(-0.473105\pi\)
0.0843940 + 0.996432i \(0.473105\pi\)
\(662\) 18.7030 14.5126i 0.726915 0.564050i
\(663\) 0.949187 0.949187i 0.0368634 0.0368634i
\(664\) 9.43230 23.8586i 0.366044 0.925895i
\(665\) 27.0421 14.5275i 1.04865 0.563352i
\(666\) −2.87715 + 22.8061i −0.111487 + 0.883717i
\(667\) −19.0479 19.0479i −0.737537 0.737537i
\(668\) −22.3546 + 13.2307i −0.864925 + 0.511911i
\(669\) 2.63361i 0.101821i
\(670\) −5.38315 2.39052i −0.207969 0.0923540i
\(671\) 8.01584i 0.309448i
\(672\) −0.843058 5.29386i −0.0325217 0.204215i
\(673\) 28.5538 + 28.5538i 1.10067 + 1.10067i 0.994330 + 0.106338i \(0.0339127\pi\)
0.106338 + 0.994330i \(0.466087\pi\)
\(674\) 41.7516 + 5.26728i 1.60821 + 0.202888i
\(675\) 2.29623 + 11.2954i 0.0883820 + 0.434761i
\(676\) 23.7814 + 6.09745i 0.914669 + 0.234517i
\(677\) 11.0735 11.0735i 0.425590 0.425590i −0.461533 0.887123i \(-0.652701\pi\)
0.887123 + 0.461533i \(0.152701\pi\)
\(678\) 5.63328 + 7.25984i 0.216345 + 0.278812i
\(679\) −6.67635 −0.256215
\(680\) −19.8350 15.6790i −0.760638 0.601264i
\(681\) −3.54089 −0.135687
\(682\) −2.38294 3.07099i −0.0912474 0.117594i
\(683\) −4.27997 + 4.27997i −0.163768 + 0.163768i −0.784234 0.620465i \(-0.786944\pi\)
0.620465 + 0.784234i \(0.286944\pi\)
\(684\) 31.4892 + 8.07368i 1.20402 + 0.308705i
\(685\) 8.60245 + 16.0129i 0.328683 + 0.611823i
\(686\) −27.7363 3.49914i −1.05898 0.133598i
\(687\) 1.20418 + 1.20418i 0.0459425 + 0.0459425i
\(688\) 39.8359 11.6026i 1.51873 0.442346i
\(689\) 8.44717i 0.321812i
\(690\) 3.61059 + 9.37889i 0.137453 + 0.357048i
\(691\) 0.290852i 0.0110645i −0.999985 0.00553227i \(-0.998239\pi\)
0.999985 0.00553227i \(-0.00176099\pi\)
\(692\) 41.4137 24.5109i 1.57431 0.931766i
\(693\) −6.47042 6.47042i −0.245791 0.245791i
\(694\) 4.70445 37.2903i 0.178578 1.41552i
\(695\) 5.50982 18.3019i 0.209000 0.694232i
\(696\) 3.46883 + 1.37137i 0.131486 + 0.0519816i
\(697\) −2.82679 + 2.82679i −0.107072 + 0.107072i
\(698\) −1.86605 + 1.44797i −0.0706312 + 0.0548063i
\(699\) −7.70482 −0.291423
\(700\) 23.9938 + 1.21111i 0.906879 + 0.0457758i
\(701\) 33.3518 1.25968 0.629840 0.776725i \(-0.283121\pi\)
0.629840 + 0.776725i \(0.283121\pi\)
\(702\) −2.19265 + 1.70139i −0.0827563 + 0.0642148i
\(703\) 23.0898 23.0898i 0.870848 0.870848i
\(704\) 7.81658 + 7.32533i 0.294598 + 0.276084i
\(705\) −0.763413 + 2.53582i −0.0287518 + 0.0955045i
\(706\) 0.346741 2.74848i 0.0130498 0.103440i
\(707\) −12.0843 12.0843i −0.454478 0.454478i
\(708\) 0.260283 + 0.439774i 0.00978203 + 0.0165277i
\(709\) 12.0477i 0.452461i −0.974074 0.226231i \(-0.927360\pi\)
0.974074 0.226231i \(-0.0726403\pi\)
\(710\) 8.51047 + 22.1069i 0.319392 + 0.829656i
\(711\) 49.5619i 1.85872i
\(712\) −18.0503 41.6538i −0.676464 1.56104i
\(713\) −11.6940 11.6940i −0.437945 0.437945i
\(714\) −5.31534 0.670570i −0.198922 0.0250954i
\(715\) −1.20629 2.24545i −0.0451128 0.0839749i
\(716\) 3.17798 12.3948i 0.118767 0.463217i
\(717\) 7.28981 7.28981i 0.272243 0.272243i
\(718\) −21.7568 28.0389i −0.811957 1.04640i
\(719\) −51.6720 −1.92704 −0.963520 0.267636i \(-0.913758\pi\)
−0.963520 + 0.267636i \(0.913758\pi\)
\(720\) 17.8270 + 18.1508i 0.664373 + 0.676442i
\(721\) −20.3792 −0.758961
\(722\) −11.8370 15.2549i −0.440528 0.567727i
\(723\) −5.00787 + 5.00787i −0.186245 + 0.186245i
\(724\) 4.77460 18.6220i 0.177447 0.692081i
\(725\) −9.22888 + 13.9386i −0.342752 + 0.517665i
\(726\) 5.09547 + 0.642832i 0.189111 + 0.0238577i
\(727\) −19.3037 19.3037i −0.715934 0.715934i 0.251836 0.967770i \(-0.418966\pi\)
−0.967770 + 0.251836i \(0.918966\pi\)
\(728\) 2.30001 + 5.30762i 0.0852441 + 0.196714i
\(729\) 18.9577i 0.702137i
\(730\) 43.0716 + 19.1270i 1.59415 + 0.707923i
\(731\) 41.4672i 1.53372i
\(732\) −2.40526 4.06393i −0.0889010 0.150207i
\(733\) −25.8911 25.8911i −0.956308 0.956308i 0.0427763 0.999085i \(-0.486380\pi\)
−0.999085 + 0.0427763i \(0.986380\pi\)
\(734\) 2.56147 20.3037i 0.0945456 0.749425i
\(735\) −0.954387 + 0.512714i −0.0352031 + 0.0189117i
\(736\) 36.8956 + 26.7586i 1.35999 + 0.986334i
\(737\) 1.76364 1.76364i 0.0649645 0.0649645i
\(738\) 3.17807 2.46602i 0.116986 0.0907756i
\(739\) 49.9136 1.83610 0.918050 0.396464i \(-0.129763\pi\)
0.918050 + 0.396464i \(0.129763\pi\)
\(740\) 24.8110 6.12397i 0.912071 0.225122i
\(741\) 1.91877 0.0704876
\(742\) 26.6354 20.6678i 0.977817 0.758738i
\(743\) −26.7229 + 26.7229i −0.980368 + 0.980368i −0.999811 0.0194432i \(-0.993811\pi\)
0.0194432 + 0.999811i \(0.493811\pi\)
\(744\) 2.12961 + 0.841923i 0.0780754 + 0.0308664i
\(745\) −22.9195 6.89994i −0.839705 0.252794i
\(746\) 0.669791 5.30917i 0.0245228 0.194383i
\(747\) 18.2437 + 18.2437i 0.667502 + 0.667502i
\(748\) 9.21359 5.45311i 0.336882 0.199385i
\(749\) 17.4294i 0.636855i
\(750\) 5.25728 3.35522i 0.191969 0.122515i
\(751\) 5.83894i 0.213066i 0.994309 + 0.106533i \(0.0339750\pi\)
−0.994309 + 0.106533i \(0.966025\pi\)
\(752\) 3.35852 + 11.5310i 0.122473 + 0.420491i
\(753\) −1.96721 1.96721i −0.0716890 0.0716890i
\(754\) −3.99343 0.503800i −0.145432 0.0183473i
\(755\) −21.0106 6.32527i −0.764654 0.230200i
\(756\) 10.7296 + 2.75101i 0.390230 + 0.100053i
\(757\) −19.0468 + 19.0468i −0.692269 + 0.692269i −0.962731 0.270462i \(-0.912824\pi\)
0.270462 + 0.962731i \(0.412824\pi\)
\(758\) 12.8980 + 16.6222i 0.468476 + 0.603744i
\(759\) −4.25564 −0.154470
\(760\) −4.20061 35.8955i −0.152372 1.30207i
\(761\) −34.8494 −1.26329 −0.631644 0.775258i \(-0.717620\pi\)
−0.631644 + 0.775258i \(0.717620\pi\)
\(762\) −0.0400328 0.0515920i −0.00145024 0.00186898i
\(763\) −22.5003 + 22.5003i −0.814565 + 0.814565i
\(764\) 6.73786 + 1.72756i 0.243767 + 0.0625009i
\(765\) 22.3989 12.0331i 0.809834 0.435058i
\(766\) 2.00069 + 0.252401i 0.0722877 + 0.00911963i
\(767\) −0.389930 0.389930i −0.0140796 0.0140796i
\(768\) −6.16097 1.36839i −0.222315 0.0493774i
\(769\) 38.2707i 1.38008i −0.723774 0.690038i \(-0.757594\pi\)
0.723774 0.690038i \(-0.242406\pi\)
\(770\) −4.12883 + 9.29761i −0.148793 + 0.335062i
\(771\) 3.28179i 0.118191i
\(772\) −4.02275 + 2.38089i −0.144782 + 0.0856900i
\(773\) −24.1856 24.1856i −0.869894 0.869894i 0.122566 0.992460i \(-0.460888\pi\)
−0.992460 + 0.122566i \(0.960888\pi\)
\(774\) −5.22261 + 41.3975i −0.187723 + 1.48800i
\(775\) −5.66588 + 8.55728i −0.203524 + 0.307387i
\(776\) −2.88982 + 7.30969i −0.103738 + 0.262402i
\(777\) 3.82906 3.82906i 0.137367 0.137367i
\(778\) 20.5561 15.9505i 0.736973 0.571855i
\(779\) −5.71431 −0.204736
\(780\) 1.28535 + 0.776448i 0.0460230 + 0.0278013i
\(781\) −10.0309 −0.358934
\(782\) 35.9877 27.9247i 1.28692 0.998585i
\(783\) −5.45002 + 5.45002i −0.194768 + 0.194768i
\(784\) −2.36409 + 4.30716i −0.0844317 + 0.153827i
\(785\) −8.34732 15.5381i −0.297929 0.554577i
\(786\) 0.934257 7.40548i 0.0333238 0.264145i
\(787\) −6.91387 6.91387i −0.246453 0.246453i 0.573060 0.819513i \(-0.305756\pi\)
−0.819513 + 0.573060i \(0.805756\pi\)
\(788\) −9.54018 16.1191i −0.339855 0.574220i
\(789\) 10.0560i 0.358003i
\(790\) −51.4217 + 19.7958i −1.82950 + 0.704303i
\(791\) 39.5751i 1.40713i
\(792\) −9.88492 + 4.28354i −0.351245 + 0.152209i
\(793\) 3.60332 + 3.60332i 0.127958 + 0.127958i
\(794\) −8.56164 1.08012i −0.303841 0.0383318i
\(795\) 2.52296 8.38049i 0.0894802 0.297225i
\(796\) −11.6810 + 45.5583i −0.414021 + 1.61477i
\(797\) 27.5057 27.5057i 0.974302 0.974302i −0.0253757 0.999678i \(-0.508078\pi\)
0.999678 + 0.0253757i \(0.00807819\pi\)
\(798\) −4.69466 6.05021i −0.166189 0.214175i
\(799\) 12.0032 0.424641
\(800\) 11.7116 25.7457i 0.414066 0.910247i
\(801\) 45.6532 1.61308
\(802\) 13.9889 + 18.0281i 0.493966 + 0.636595i
\(803\) −14.1112 + 14.1112i −0.497974 + 0.497974i
\(804\) −0.364940 + 1.42335i −0.0128704 + 0.0501976i
\(805\) −12.4771 + 41.4450i −0.439759 + 1.46074i
\(806\) −2.45168 0.309298i −0.0863567 0.0108945i
\(807\) −4.73377 4.73377i −0.166637 0.166637i
\(808\) −18.4613 + 8.00005i −0.649466 + 0.281441i
\(809\) 17.2778i 0.607454i 0.952759 + 0.303727i \(0.0982310\pi\)
−0.952759 + 0.303727i \(0.901769\pi\)
\(810\) −22.4993 + 8.66157i −0.790547 + 0.304336i
\(811\) 25.5883i 0.898526i −0.893399 0.449263i \(-0.851687\pi\)
0.893399 0.449263i \(-0.148313\pi\)
\(812\) 8.18218 + 13.8246i 0.287138 + 0.485149i
\(813\) 0.647027 + 0.647027i 0.0226922 + 0.0226922i
\(814\) −1.35449 + 10.7365i −0.0474747 + 0.376313i
\(815\) −16.8007 31.2734i −0.588502 1.09546i
\(816\) −3.03490 + 5.52932i −0.106243 + 0.193565i
\(817\) 41.9126 41.9126i 1.46633 1.46633i
\(818\) 4.63735 3.59836i 0.162141 0.125814i
\(819\) −5.81724 −0.203271
\(820\) −3.82793 2.31235i −0.133677 0.0807509i
\(821\) 0.601737 0.0210008 0.0105004 0.999945i \(-0.496658\pi\)
0.0105004 + 0.999945i \(0.496658\pi\)
\(822\) 3.58263 2.77994i 0.124958 0.0969616i
\(823\) −25.3957 + 25.3957i −0.885238 + 0.885238i −0.994061 0.108823i \(-0.965292\pi\)
0.108823 + 0.994061i \(0.465292\pi\)
\(824\) −8.82101 + 22.3124i −0.307295 + 0.777290i
\(825\) 0.526113 + 2.58801i 0.0183169 + 0.0901030i
\(826\) −0.275473 + 2.18356i −0.00958492 + 0.0759759i
\(827\) 3.80865 + 3.80865i 0.132440 + 0.132440i 0.770219 0.637779i \(-0.220147\pi\)
−0.637779 + 0.770219i \(0.720147\pi\)
\(828\) −39.4443 + 23.3453i −1.37078 + 0.811306i
\(829\) 50.1911i 1.74321i 0.490211 + 0.871604i \(0.336920\pi\)
−0.490211 + 0.871604i \(0.663080\pi\)
\(830\) 11.6415 26.2151i 0.404081 0.909939i
\(831\) 3.81692i 0.132407i
\(832\) 6.80667 0.220826i 0.235979 0.00765577i
\(833\) 3.47222 + 3.47222i 0.120305 + 0.120305i
\(834\) −4.73067 0.596809i −0.163810 0.0206658i
\(835\) −25.5845 + 13.7444i −0.885387 + 0.475646i
\(836\) 14.8242 + 3.80087i 0.512707 + 0.131456i
\(837\) −3.34592 + 3.34592i −0.115652 + 0.115652i
\(838\) −16.5814 21.3691i −0.572794 0.738183i
\(839\) 0.240697 0.00830979 0.00415490 0.999991i \(-0.498677\pi\)
0.00415490 + 0.999991i \(0.498677\pi\)
\(840\) −0.696602 5.95268i −0.0240351 0.205387i
\(841\) 17.8218 0.614544
\(842\) 26.6569 + 34.3538i 0.918656 + 1.18391i
\(843\) −5.08156 + 5.08156i −0.175018 + 0.175018i
\(844\) −6.67372 1.71111i −0.229719 0.0588989i
\(845\) 26.2832 + 7.91261i 0.904171 + 0.272202i
\(846\) −11.9830 1.51175i −0.411985 0.0519749i
\(847\) 15.6404 + 15.6404i 0.537411 + 0.537411i
\(848\) −11.0994 38.1081i −0.381155 1.30864i
\(849\) 4.87836i 0.167425i
\(850\) −21.4311 18.4332i −0.735080 0.632254i
\(851\) 46.0412i 1.57827i
\(852\) 5.08555 3.00991i 0.174228 0.103118i
\(853\) 31.8507 + 31.8507i 1.09055 + 1.09055i 0.995470 + 0.0950786i \(0.0303102\pi\)
0.0950786 + 0.995470i \(0.469690\pi\)
\(854\) 2.54563 20.1782i 0.0871097 0.690484i
\(855\) 34.8018 + 10.4772i 1.19020 + 0.358311i
\(856\) 19.0828 + 7.54420i 0.652236 + 0.257855i
\(857\) 10.8177 10.8177i 0.369525 0.369525i −0.497779 0.867304i \(-0.665851\pi\)
0.867304 + 0.497779i \(0.165851\pi\)
\(858\) −0.502380 + 0.389822i −0.0171510 + 0.0133083i
\(859\) −50.2884 −1.71582 −0.857909 0.513801i \(-0.828237\pi\)
−0.857909 + 0.513801i \(0.828237\pi\)
\(860\) 45.0369 11.1162i 1.53575 0.379060i
\(861\) −0.947624 −0.0322950
\(862\) 4.28998 3.32881i 0.146117 0.113380i
\(863\) −26.1104 + 26.1104i −0.888808 + 0.888808i −0.994409 0.105601i \(-0.966324\pi\)
0.105601 + 0.994409i \(0.466324\pi\)
\(864\) 7.65621 10.5566i 0.260470 0.359144i
\(865\) 47.3973 25.4627i 1.61156 0.865757i
\(866\) −1.32035 + 10.4659i −0.0448674 + 0.355646i
\(867\) −0.284076 0.284076i −0.00964773 0.00964773i
\(868\) 5.02327 + 8.48733i 0.170501 + 0.288079i
\(869\) 23.3324i 0.791498i
\(870\) 3.81143 + 1.69256i 0.129220 + 0.0573832i
\(871\) 1.58560i 0.0537260i
\(872\) 14.8956 + 34.3738i 0.504429 + 1.16404i
\(873\) −5.58941 5.58941i −0.189173 0.189173i
\(874\) 64.5989 + 8.14963i 2.18509 + 0.275665i
\(875\) 26.7467 + 2.46404i 0.904205 + 0.0832998i
\(876\) 2.91995 11.3885i 0.0986560 0.384780i
\(877\) 27.7273 27.7273i 0.936283 0.936283i −0.0618053 0.998088i \(-0.519686\pi\)
0.998088 + 0.0618053i \(0.0196858\pi\)
\(878\) −20.7302 26.7159i −0.699611 0.901618i
\(879\) −7.29531 −0.246065
\(880\) 8.39247 + 8.54492i 0.282910 + 0.288049i
\(881\) −3.72304 −0.125432 −0.0627162 0.998031i \(-0.519976\pi\)
−0.0627162 + 0.998031i \(0.519976\pi\)
\(882\) −3.02908 3.90370i −0.101994 0.131444i
\(883\) −33.6940 + 33.6940i −1.13389 + 1.13389i −0.144369 + 0.989524i \(0.546115\pi\)
−0.989524 + 0.144369i \(0.953885\pi\)
\(884\) 1.69043 6.59305i 0.0568553 0.221748i
\(885\) 0.270390 + 0.503314i 0.00908904 + 0.0169187i
\(886\) 8.46379 + 1.06777i 0.284346 + 0.0358724i
\(887\) −7.51751 7.51751i −0.252413 0.252413i 0.569546 0.821959i \(-0.307119\pi\)
−0.821959 + 0.569546i \(0.807119\pi\)
\(888\) −2.53491 5.84969i −0.0850661 0.196303i
\(889\) 0.281240i 0.00943249i
\(890\) −18.2346 47.3663i −0.611225 1.58772i
\(891\) 10.2090i 0.342014i
\(892\) 6.80138 + 11.4916i 0.227727 + 0.384768i
\(893\) 12.1321 + 12.1321i 0.405985 + 0.405985i
\(894\) −0.747383 + 5.92421i −0.0249962 + 0.198135i
\(895\) 4.12404 13.6988i 0.137852 0.457900i
\(896\) −17.3502 20.9223i −0.579631 0.698966i
\(897\) −1.91302 + 1.91302i −0.0638738 + 0.0638738i
\(898\) 15.8380 12.2895i 0.528520 0.410106i
\(899\) −6.86263 −0.228882
\(900\) 19.0735 + 21.1014i 0.635784 + 0.703380i
\(901\) −39.6686 −1.32155
\(902\) 1.49615 1.16094i 0.0498163 0.0386550i
\(903\) 6.95051 6.95051i 0.231299 0.231299i
\(904\) 43.3293 + 17.1299i 1.44111 + 0.569731i
\(905\) 6.19596 20.5811i 0.205961 0.684138i
\(906\) −0.685136 + 5.43080i −0.0227621 + 0.180426i
\(907\) 30.6517 + 30.6517i 1.01777 + 1.01777i 0.999839 + 0.0179325i \(0.00570840\pi\)
0.0179325 + 0.999839i \(0.494292\pi\)
\(908\) −15.4505 + 9.14446i −0.512743 + 0.303470i
\(909\) 20.2339i 0.671115i
\(910\) 2.32349 + 6.03552i 0.0770230 + 0.200076i
\(911\) 1.45573i 0.0482306i 0.999709 + 0.0241153i \(0.00767688\pi\)
−0.999709 + 0.0241153i \(0.992323\pi\)
\(912\) −8.65620 + 2.52121i −0.286636 + 0.0834858i
\(913\) 8.58863 + 8.58863i 0.284242 + 0.284242i
\(914\) −49.7877 6.28108i −1.64683 0.207760i
\(915\) −2.49866 4.65110i −0.0826030 0.153761i
\(916\) 8.36425 + 2.14456i 0.276363 + 0.0708582i
\(917\) 22.7310 22.7310i 0.750642 0.750642i
\(918\) −7.98986 10.2969i −0.263705 0.339847i
\(919\) −12.8338 −0.423349 −0.211675 0.977340i \(-0.567892\pi\)
−0.211675 + 0.977340i \(0.567892\pi\)
\(920\) 39.9760 + 31.5999i 1.31797 + 1.04182i
\(921\) −7.83770 −0.258261
\(922\) −26.6032 34.2846i −0.876129 1.12910i
\(923\) −4.50914 + 4.50914i −0.148420 + 0.148420i
\(924\) 2.45836 + 0.630312i 0.0808740 + 0.0207357i
\(925\) 27.9994 5.69195i 0.920613 0.187150i
\(926\) 20.6635 + 2.60686i 0.679046 + 0.0856667i
\(927\) −17.0614 17.0614i −0.560369 0.560369i
\(928\) 18.6777 2.97446i 0.613125 0.0976413i
\(929\) 34.9707i 1.14735i 0.819083 + 0.573675i \(0.194483\pi\)
−0.819083 + 0.573675i \(0.805517\pi\)
\(930\) 2.33995 + 1.03911i 0.0767299 + 0.0340738i
\(931\) 7.01903i 0.230039i
\(932\) −33.6196 + 19.8980i −1.10125 + 0.651780i
\(933\) −6.82025 6.82025i −0.223285 0.223285i
\(934\) 3.48003 27.5848i 0.113870 0.902603i
\(935\) 10.5448 5.66485i 0.344852 0.185261i
\(936\) −2.51796 + 6.36908i −0.0823020 + 0.208180i
\(937\) 40.4607 40.4607i 1.32179 1.32179i 0.409468 0.912324i \(-0.365714\pi\)
0.912324 0.409468i \(-0.134286\pi\)
\(938\) −4.99967 + 3.87950i −0.163245 + 0.126670i
\(939\) 8.63515 0.281797
\(940\) 3.21772 + 13.0365i 0.104951 + 0.425203i
\(941\) −27.3919 −0.892952 −0.446476 0.894796i \(-0.647321\pi\)
−0.446476 + 0.894796i \(0.647321\pi\)
\(942\) −3.47638 + 2.69750i −0.113266 + 0.0878892i
\(943\) 5.69719 5.69719i 0.185526 0.185526i
\(944\) 2.27147 + 1.24675i 0.0739299 + 0.0405782i
\(945\) 11.8583 + 3.56997i 0.385751 + 0.116131i
\(946\) −2.45866 + 19.4888i −0.0799380 + 0.633637i
\(947\) −8.68729 8.68729i −0.282299 0.282299i 0.551726 0.834025i \(-0.313969\pi\)
−0.834025 + 0.551726i \(0.813969\pi\)
\(948\) 7.00120 + 11.8292i 0.227388 + 0.384196i
\(949\) 12.6867i 0.411827i
\(950\) −3.03009 40.2925i −0.0983091 1.30726i
\(951\) 3.08955i 0.100186i
\(952\) −24.9250 + 10.8010i −0.807825 + 0.350064i
\(953\) −34.0544 34.0544i −1.10313 1.10313i −0.994031 0.109099i \(-0.965204\pi\)
−0.109099 0.994031i \(-0.534796\pi\)
\(954\) 39.6020 + 4.99609i 1.28216 + 0.161754i
\(955\) 7.44669 + 2.24184i 0.240969 + 0.0725442i
\(956\) 12.9826 50.6349i 0.419887 1.63765i
\(957\) −1.24871 + 1.24871i −0.0403650 + 0.0403650i
\(958\) −3.04392 3.92282i −0.0983445 0.126741i
\(959\) 19.5298 0.630649
\(960\) −6.81889 1.81390i −0.220079 0.0585434i
\(961\) 26.7868 0.864091
\(962\) 4.21744 + 5.43519i 0.135976 + 0.175238i
\(963\) −14.5918 + 14.5918i −0.470214 + 0.470214i
\(964\) −8.91863 + 34.7846i −0.287250 + 1.12034i
\(965\) −4.60397 + 2.47334i −0.148207 + 0.0796195i
\(966\) 10.7127 + 1.35148i 0.344675 + 0.0434833i
\(967\) 36.5936 + 36.5936i 1.17677 + 1.17677i 0.980562 + 0.196208i \(0.0628628\pi\)
0.196208 + 0.980562i \(0.437137\pi\)
\(968\) 23.8940 10.3543i 0.767982 0.332799i
\(969\) 9.01068i 0.289465i
\(970\) −3.56665 + 8.03164i −0.114518 + 0.257880i
\(971\) 48.2109i 1.54716i 0.633697 + 0.773581i \(0.281537\pi\)
−0.633697 + 0.773581i \(0.718463\pi\)
\(972\) 10.1083 + 17.0790i 0.324224 + 0.547810i
\(973\) −14.5207 14.5207i −0.465511 0.465511i
\(974\) −1.27876 + 10.1363i −0.0409743 + 0.324787i
\(975\) 1.39988 + 0.926875i 0.0448319 + 0.0296837i
\(976\) −20.9905 11.5211i −0.671890 0.368782i
\(977\) −6.01851 + 6.01851i −0.192549 + 0.192549i −0.796797 0.604248i \(-0.793474\pi\)
0.604248 + 0.796797i \(0.293474\pi\)
\(978\) −6.99691 + 5.42925i −0.223736 + 0.173608i
\(979\) 21.4923 0.686896
\(980\) −2.84032 + 4.70194i −0.0907308 + 0.150198i
\(981\) −37.6743 −1.20285
\(982\) −27.9621 + 21.6972i −0.892307 + 0.692386i
\(983\) 14.8336 14.8336i 0.473119 0.473119i −0.429804 0.902922i \(-0.641417\pi\)
0.902922 + 0.429804i \(0.141417\pi\)
\(984\) −0.410174 + 1.03752i −0.0130759 + 0.0330749i
\(985\) −9.91062 18.4480i −0.315779 0.587804i
\(986\) 2.36589 18.7535i 0.0753452 0.597232i
\(987\) 2.01191 + 2.01191i 0.0640398 + 0.0640398i
\(988\) 8.37245 4.95528i 0.266363 0.157648i
\(989\) 83.5740i 2.65750i
\(990\) −11.2406 + 4.32727i −0.357248 + 0.137530i
\(991\) 35.7158i 1.13455i −0.823529 0.567274i \(-0.807998\pi\)
0.823529 0.567274i \(-0.192002\pi\)
\(992\) 11.4668 1.82610i 0.364070 0.0579789i
\(993\) −4.66888 4.66888i −0.148162 0.148162i
\(994\) 25.2507 + 3.18556i 0.800903 + 0.101040i
\(995\) −15.1583 + 50.3511i −0.480550 + 1.59624i
\(996\) −6.93146 1.77720i −0.219632 0.0563126i
\(997\) −23.5661 + 23.5661i −0.746346 + 0.746346i −0.973791 0.227445i \(-0.926963\pi\)
0.227445 + 0.973791i \(0.426963\pi\)
\(998\) 16.8334 + 21.6940i 0.532853 + 0.686710i
\(999\) 13.1734 0.416788
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.k.c.83.14 108
4.3 odd 2 inner 820.2.k.c.83.41 yes 108
5.2 odd 4 inner 820.2.k.c.247.41 yes 108
20.7 even 4 inner 820.2.k.c.247.14 yes 108
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.k.c.83.14 108 1.1 even 1 trivial
820.2.k.c.83.41 yes 108 4.3 odd 2 inner
820.2.k.c.247.14 yes 108 20.7 even 4 inner
820.2.k.c.247.41 yes 108 5.2 odd 4 inner