Properties

Label 820.2.j.c.747.69
Level $820$
Weight $2$
Character 820.747
Analytic conductor $6.548$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(483,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.483"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(120\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 747.69
Character \(\chi\) \(=\) 820.747
Dual form 820.2.j.c.483.69

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.367958 + 1.36551i) q^{2} +0.984353i q^{3} +(-1.72921 + 1.00490i) q^{4} +(0.127778 - 2.23241i) q^{5} +(-1.34414 + 0.362201i) q^{6} +2.37783 q^{7} +(-2.00847 - 1.99149i) q^{8} +2.03105 q^{9} +(3.09539 - 0.646954i) q^{10} +(-2.42433 + 2.42433i) q^{11} +(-0.989175 - 1.70216i) q^{12} +0.537595 q^{13} +(0.874943 + 3.24694i) q^{14} +(2.19748 + 0.125779i) q^{15} +(1.98036 - 3.47537i) q^{16} +5.98392 q^{17} +(0.747341 + 2.77341i) q^{18} +(-0.382078 + 0.382078i) q^{19} +(2.02239 + 3.98872i) q^{20} +2.34063i q^{21} +(-4.20249 - 2.41839i) q^{22} +(5.12858 + 5.12858i) q^{23} +(1.96033 - 1.97705i) q^{24} +(-4.96735 - 0.570507i) q^{25} +(0.197813 + 0.734089i) q^{26} +4.95233i q^{27} +(-4.11178 + 2.38948i) q^{28} +(-1.46623 + 1.46623i) q^{29} +(0.636831 + 3.04696i) q^{30} +1.66059i q^{31} +(5.47433 + 1.42540i) q^{32} +(-2.38640 - 2.38640i) q^{33} +(2.20183 + 8.17108i) q^{34} +(0.303835 - 5.30831i) q^{35} +(-3.51212 + 2.04100i) q^{36} +(3.19027 + 3.19027i) q^{37} +(-0.662319 - 0.381141i) q^{38} +0.529183i q^{39} +(-4.70247 + 4.22928i) q^{40} +(5.91705 - 2.44714i) q^{41} +(-3.19614 + 0.861253i) q^{42} +(0.287011 - 0.287011i) q^{43} +(1.75598 - 6.62840i) q^{44} +(0.259523 - 4.53414i) q^{45} +(-5.11601 + 8.89022i) q^{46} -3.64014i q^{47} +(3.42099 + 1.94937i) q^{48} -1.34592 q^{49} +(-1.04875 - 6.99286i) q^{50} +5.89029i q^{51} +(-0.929617 + 0.540229i) q^{52} -10.5416 q^{53} +(-6.76243 + 1.82225i) q^{54} +(5.10234 + 5.72189i) q^{55} +(-4.77581 - 4.73543i) q^{56} +(-0.376100 - 0.376100i) q^{57} +(-2.54165 - 1.46263i) q^{58} +1.58121 q^{59} +(-3.92631 + 1.99075i) q^{60} +0.445242i q^{61} +(-2.26755 + 0.611030i) q^{62} +4.82949 q^{63} +(0.0679329 + 7.99971i) q^{64} +(0.0686928 - 1.20013i) q^{65} +(2.38055 - 4.13674i) q^{66} +6.98956i q^{67} +(-10.3475 + 6.01323i) q^{68} +(-5.04834 + 5.04834i) q^{69} +(7.36032 - 1.53835i) q^{70} +(3.62995 - 3.62995i) q^{71} +(-4.07931 - 4.04481i) q^{72} +(-9.73449 - 9.73449i) q^{73} +(-3.18245 + 5.53023i) q^{74} +(0.561580 - 4.88962i) q^{75} +(0.276745 - 1.04464i) q^{76} +(-5.76465 + 5.76465i) q^{77} +(-0.722603 + 0.194717i) q^{78} +(9.18180 + 9.18180i) q^{79} +(-7.50542 - 4.86505i) q^{80} +1.21831 q^{81} +(5.51881 + 7.17933i) q^{82} +(-10.8658 - 10.8658i) q^{83} +(-2.35209 - 4.04744i) q^{84} +(0.764613 - 13.3586i) q^{85} +(0.497523 + 0.286307i) q^{86} +(-1.44328 - 1.44328i) q^{87} +(9.69724 - 0.0411734i) q^{88} +(10.0408 - 10.0408i) q^{89} +(6.28689 - 1.31399i) q^{90} +1.27831 q^{91} +(-14.0221 - 3.71471i) q^{92} -1.63461 q^{93} +(4.97063 - 1.33942i) q^{94} +(0.804136 + 0.901778i) q^{95} +(-1.40310 + 5.38867i) q^{96} -14.1882 q^{97} +(-0.495241 - 1.83786i) q^{98} +(-4.92394 + 4.92394i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 4 q^{6} + 12 q^{8} - 240 q^{9} - 20 q^{10} - 32 q^{13} - 8 q^{14} + 8 q^{16} + 32 q^{17} - 12 q^{18} + 16 q^{20} - 28 q^{22} + 12 q^{24} - 16 q^{25} - 8 q^{28} - 10 q^{30} + 24 q^{33} - 20 q^{34}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.367958 + 1.36551i 0.260186 + 0.965559i
\(3\) 0.984353i 0.568317i 0.958777 + 0.284158i \(0.0917141\pi\)
−0.958777 + 0.284158i \(0.908286\pi\)
\(4\) −1.72921 + 1.00490i −0.864607 + 0.502449i
\(5\) 0.127778 2.23241i 0.0571441 0.998366i
\(6\) −1.34414 + 0.362201i −0.548743 + 0.147868i
\(7\) 2.37783 0.898736 0.449368 0.893347i \(-0.351649\pi\)
0.449368 + 0.893347i \(0.351649\pi\)
\(8\) −2.00847 1.99149i −0.710103 0.704098i
\(9\) 2.03105 0.677016
\(10\) 3.09539 0.646954i 0.978849 0.204585i
\(11\) −2.42433 + 2.42433i −0.730964 + 0.730964i −0.970811 0.239847i \(-0.922903\pi\)
0.239847 + 0.970811i \(0.422903\pi\)
\(12\) −0.989175 1.70216i −0.285550 0.491370i
\(13\) 0.537595 0.149102 0.0745510 0.997217i \(-0.476248\pi\)
0.0745510 + 0.997217i \(0.476248\pi\)
\(14\) 0.874943 + 3.24694i 0.233838 + 0.867782i
\(15\) 2.19748 + 0.125779i 0.567388 + 0.0324759i
\(16\) 1.98036 3.47537i 0.495089 0.868842i
\(17\) 5.98392 1.45131 0.725657 0.688057i \(-0.241536\pi\)
0.725657 + 0.688057i \(0.241536\pi\)
\(18\) 0.747341 + 2.77341i 0.176150 + 0.653699i
\(19\) −0.382078 + 0.382078i −0.0876548 + 0.0876548i −0.749575 0.661920i \(-0.769742\pi\)
0.661920 + 0.749575i \(0.269742\pi\)
\(20\) 2.02239 + 3.98872i 0.452221 + 0.891906i
\(21\) 2.34063i 0.510766i
\(22\) −4.20249 2.41839i −0.895975 0.515602i
\(23\) 5.12858 + 5.12858i 1.06938 + 1.06938i 0.997406 + 0.0719776i \(0.0229310\pi\)
0.0719776 + 0.997406i \(0.477069\pi\)
\(24\) 1.96033 1.97705i 0.400151 0.403563i
\(25\) −4.96735 0.570507i −0.993469 0.114101i
\(26\) 0.197813 + 0.734089i 0.0387942 + 0.143967i
\(27\) 4.95233i 0.953076i
\(28\) −4.11178 + 2.38948i −0.777053 + 0.451569i
\(29\) −1.46623 + 1.46623i −0.272271 + 0.272271i −0.830014 0.557743i \(-0.811668\pi\)
0.557743 + 0.830014i \(0.311668\pi\)
\(30\) 0.636831 + 3.04696i 0.116269 + 0.556296i
\(31\) 1.66059i 0.298252i 0.988818 + 0.149126i \(0.0476459\pi\)
−0.988818 + 0.149126i \(0.952354\pi\)
\(32\) 5.47433 + 1.42540i 0.967733 + 0.251977i
\(33\) −2.38640 2.38640i −0.415419 0.415419i
\(34\) 2.20183 + 8.17108i 0.377611 + 1.40133i
\(35\) 0.303835 5.30831i 0.0513574 0.897267i
\(36\) −3.51212 + 2.04100i −0.585353 + 0.340166i
\(37\) 3.19027 + 3.19027i 0.524478 + 0.524478i 0.918921 0.394443i \(-0.129062\pi\)
−0.394443 + 0.918921i \(0.629062\pi\)
\(38\) −0.662319 0.381141i −0.107442 0.0618293i
\(39\) 0.529183i 0.0847372i
\(40\) −4.70247 + 4.22928i −0.743526 + 0.668707i
\(41\) 5.91705 2.44714i 0.924089 0.382178i
\(42\) −3.19614 + 0.861253i −0.493175 + 0.132894i
\(43\) 0.287011 0.287011i 0.0437687 0.0437687i −0.684884 0.728652i \(-0.740147\pi\)
0.728652 + 0.684884i \(0.240147\pi\)
\(44\) 1.75598 6.62840i 0.264724 0.999268i
\(45\) 0.259523 4.53414i 0.0386875 0.675910i
\(46\) −5.11601 + 8.89022i −0.754314 + 1.31079i
\(47\) 3.64014i 0.530969i −0.964115 0.265484i \(-0.914468\pi\)
0.964115 0.265484i \(-0.0855319\pi\)
\(48\) 3.42099 + 1.94937i 0.493777 + 0.281367i
\(49\) −1.34592 −0.192274
\(50\) −1.04875 6.99286i −0.148315 0.988940i
\(51\) 5.89029i 0.824806i
\(52\) −0.929617 + 0.540229i −0.128915 + 0.0749162i
\(53\) −10.5416 −1.44800 −0.724000 0.689800i \(-0.757698\pi\)
−0.724000 + 0.689800i \(0.757698\pi\)
\(54\) −6.76243 + 1.82225i −0.920251 + 0.247977i
\(55\) 5.10234 + 5.72189i 0.687999 + 0.771540i
\(56\) −4.77581 4.73543i −0.638195 0.632798i
\(57\) −0.376100 0.376100i −0.0498157 0.0498157i
\(58\) −2.54165 1.46263i −0.333735 0.192053i
\(59\) 1.58121 0.205856 0.102928 0.994689i \(-0.467179\pi\)
0.102928 + 0.994689i \(0.467179\pi\)
\(60\) −3.92631 + 1.99075i −0.506885 + 0.257005i
\(61\) 0.445242i 0.0570074i 0.999594 + 0.0285037i \(0.00907424\pi\)
−0.999594 + 0.0285037i \(0.990926\pi\)
\(62\) −2.26755 + 0.611030i −0.287979 + 0.0776008i
\(63\) 4.82949 0.608459
\(64\) 0.0679329 + 7.99971i 0.00849161 + 0.999964i
\(65\) 0.0686928 1.20013i 0.00852030 0.148858i
\(66\) 2.38055 4.13674i 0.293025 0.509197i
\(67\) 6.98956i 0.853911i 0.904273 + 0.426955i \(0.140414\pi\)
−0.904273 + 0.426955i \(0.859586\pi\)
\(68\) −10.3475 + 6.01323i −1.25482 + 0.729212i
\(69\) −5.04834 + 5.04834i −0.607749 + 0.607749i
\(70\) 7.36032 1.53835i 0.879727 0.183868i
\(71\) 3.62995 3.62995i 0.430796 0.430796i −0.458103 0.888899i \(-0.651471\pi\)
0.888899 + 0.458103i \(0.151471\pi\)
\(72\) −4.07931 4.04481i −0.480751 0.476686i
\(73\) −9.73449 9.73449i −1.13934 1.13934i −0.988569 0.150767i \(-0.951826\pi\)
−0.150767 0.988569i \(-0.548174\pi\)
\(74\) −3.18245 + 5.53023i −0.369952 + 0.642876i
\(75\) 0.561580 4.88962i 0.0648457 0.564605i
\(76\) 0.276745 1.04464i 0.0317448 0.119829i
\(77\) −5.76465 + 5.76465i −0.656943 + 0.656943i
\(78\) −0.722603 + 0.194717i −0.0818187 + 0.0220474i
\(79\) 9.18180 + 9.18180i 1.03303 + 1.03303i 0.999435 + 0.0335972i \(0.0106963\pi\)
0.0335972 + 0.999435i \(0.489304\pi\)
\(80\) −7.50542 4.86505i −0.839131 0.543929i
\(81\) 1.21831 0.135367
\(82\) 5.51881 + 7.17933i 0.609450 + 0.792824i
\(83\) −10.8658 10.8658i −1.19268 1.19268i −0.976312 0.216366i \(-0.930579\pi\)
−0.216366 0.976312i \(-0.569421\pi\)
\(84\) −2.35209 4.04744i −0.256634 0.441612i
\(85\) 0.764613 13.3586i 0.0829340 1.44894i
\(86\) 0.497523 + 0.286307i 0.0536493 + 0.0308733i
\(87\) −1.44328 1.44328i −0.154736 0.154736i
\(88\) 9.69724 0.0411734i 1.03373 0.00438909i
\(89\) 10.0408 10.0408i 1.06433 1.06433i 0.0665422 0.997784i \(-0.478803\pi\)
0.997784 0.0665422i \(-0.0211967\pi\)
\(90\) 6.28689 1.31399i 0.662697 0.138507i
\(91\) 1.27831 0.134003
\(92\) −14.0221 3.71471i −1.46191 0.387285i
\(93\) −1.63461 −0.169501
\(94\) 4.97063 1.33942i 0.512681 0.138151i
\(95\) 0.804136 + 0.901778i 0.0825026 + 0.0925205i
\(96\) −1.40310 + 5.38867i −0.143203 + 0.549979i
\(97\) −14.1882 −1.44059 −0.720296 0.693666i \(-0.755994\pi\)
−0.720296 + 0.693666i \(0.755994\pi\)
\(98\) −0.495241 1.83786i −0.0500269 0.185652i
\(99\) −4.92394 + 4.92394i −0.494874 + 0.494874i
\(100\) 9.16290 4.00515i 0.916290 0.400515i
\(101\) −1.29400 + 1.29400i −0.128758 + 0.128758i −0.768549 0.639791i \(-0.779021\pi\)
0.639791 + 0.768549i \(0.279021\pi\)
\(102\) −8.04323 + 2.16738i −0.796398 + 0.214603i
\(103\) 10.2881 10.2881i 1.01371 1.01371i 0.0138097 0.999905i \(-0.495604\pi\)
0.999905 0.0138097i \(-0.00439591\pi\)
\(104\) −1.07975 1.07062i −0.105878 0.104982i
\(105\) 5.22525 + 0.299081i 0.509932 + 0.0291873i
\(106\) −3.87887 14.3946i −0.376749 1.39813i
\(107\) 1.98848 1.98848i 0.192234 0.192234i −0.604427 0.796661i \(-0.706598\pi\)
0.796661 + 0.604427i \(0.206598\pi\)
\(108\) −4.97659 8.56363i −0.478872 0.824036i
\(109\) 5.17177 + 5.17177i 0.495366 + 0.495366i 0.909992 0.414626i \(-0.136088\pi\)
−0.414626 + 0.909992i \(0.636088\pi\)
\(110\) −5.93583 + 9.07269i −0.565959 + 0.865047i
\(111\) −3.14036 + 3.14036i −0.298069 + 0.298069i
\(112\) 4.70896 8.26384i 0.444955 0.780860i
\(113\) 13.4782 13.4782i 1.26792 1.26792i 0.320761 0.947160i \(-0.396061\pi\)
0.947160 0.320761i \(-0.103939\pi\)
\(114\) 0.375178 0.651956i 0.0351386 0.0610613i
\(115\) 12.1044 10.7938i 1.12875 1.00653i
\(116\) 1.06201 4.00882i 0.0986050 0.372210i
\(117\) 1.09188 0.100945
\(118\) 0.581820 + 2.15915i 0.0535609 + 0.198766i
\(119\) 14.2288 1.30435
\(120\) −4.16310 4.62889i −0.380037 0.422558i
\(121\) 0.754776i 0.0686160i
\(122\) −0.607981 + 0.163830i −0.0550440 + 0.0148325i
\(123\) 2.40885 + 5.82447i 0.217198 + 0.525175i
\(124\) −1.66873 2.87152i −0.149856 0.257870i
\(125\) −1.90832 + 11.0163i −0.170686 + 0.985326i
\(126\) 1.77705 + 6.59470i 0.158312 + 0.587503i
\(127\) −14.0292 + 14.0292i −1.24489 + 1.24489i −0.286938 + 0.957949i \(0.592637\pi\)
−0.957949 + 0.286938i \(0.907363\pi\)
\(128\) −10.8987 + 3.03632i −0.963314 + 0.268376i
\(129\) 0.282520 + 0.282520i 0.0248745 + 0.0248745i
\(130\) 1.66407 0.347799i 0.145948 0.0305040i
\(131\) 10.8871 0.951209 0.475604 0.879659i \(-0.342229\pi\)
0.475604 + 0.879659i \(0.342229\pi\)
\(132\) 6.52468 + 1.72850i 0.567901 + 0.150447i
\(133\) −0.908518 + 0.908518i −0.0787785 + 0.0787785i
\(134\) −9.54429 + 2.57187i −0.824501 + 0.222175i
\(135\) 11.0556 + 0.632799i 0.951519 + 0.0544626i
\(136\) −12.0185 11.9169i −1.03058 1.02187i
\(137\) −2.32979 −0.199047 −0.0995236 0.995035i \(-0.531732\pi\)
−0.0995236 + 0.995035i \(0.531732\pi\)
\(138\) −8.75111 5.03596i −0.744944 0.428689i
\(139\) 6.92723 0.587560 0.293780 0.955873i \(-0.405087\pi\)
0.293780 + 0.955873i \(0.405087\pi\)
\(140\) 4.80891 + 9.48451i 0.406427 + 0.801588i
\(141\) 3.58318 0.301758
\(142\) 6.29239 + 3.62105i 0.528046 + 0.303872i
\(143\) −1.30331 + 1.30331i −0.108988 + 0.108988i
\(144\) 4.02220 7.05864i 0.335184 0.588220i
\(145\) 3.08587 + 3.46057i 0.256268 + 0.287385i
\(146\) 9.71062 16.8744i 0.803657 1.39654i
\(147\) 1.32486i 0.109272i
\(148\) −8.72257 2.31076i −0.716991 0.189944i
\(149\) 4.89996 + 4.89996i 0.401420 + 0.401420i 0.878733 0.477313i \(-0.158389\pi\)
−0.477313 + 0.878733i \(0.658389\pi\)
\(150\) 6.88345 1.03234i 0.562031 0.0842899i
\(151\) −10.7169 + 10.7169i −0.872129 + 0.872129i −0.992704 0.120575i \(-0.961526\pi\)
0.120575 + 0.992704i \(0.461526\pi\)
\(152\) 1.52830 0.00648898i 0.123961 0.000526326i
\(153\) 12.1536 0.982563
\(154\) −9.99282 5.75052i −0.805245 0.463390i
\(155\) 3.70713 + 0.212187i 0.297764 + 0.0170433i
\(156\) −0.531776 0.915071i −0.0425761 0.0732643i
\(157\) 5.53219i 0.441517i 0.975329 + 0.220758i \(0.0708532\pi\)
−0.975329 + 0.220758i \(0.929147\pi\)
\(158\) −9.15928 + 15.9163i −0.728673 + 1.26623i
\(159\) 10.3767i 0.822922i
\(160\) 3.88158 12.0388i 0.306866 0.951753i
\(161\) 12.1949 + 12.1949i 0.961094 + 0.961094i
\(162\) 0.448286 + 1.66360i 0.0352207 + 0.130705i
\(163\) −17.2200 17.2200i −1.34877 1.34877i −0.886994 0.461780i \(-0.847211\pi\)
−0.461780 0.886994i \(-0.652789\pi\)
\(164\) −7.77272 + 10.1777i −0.606948 + 0.794742i
\(165\) −5.63236 + 5.02250i −0.438479 + 0.391001i
\(166\) 10.8392 18.8355i 0.841283 1.46192i
\(167\) −12.4152 −0.960716 −0.480358 0.877072i \(-0.659493\pi\)
−0.480358 + 0.877072i \(0.659493\pi\)
\(168\) 4.66133 4.70109i 0.359630 0.362697i
\(169\) −12.7110 −0.977769
\(170\) 18.5226 3.87132i 1.42062 0.296917i
\(171\) −0.776020 + 0.776020i −0.0593437 + 0.0593437i
\(172\) −0.207886 + 0.784720i −0.0158512 + 0.0598343i
\(173\) 9.63849 + 9.63849i 0.732801 + 0.732801i 0.971174 0.238373i \(-0.0766140\pi\)
−0.238373 + 0.971174i \(0.576614\pi\)
\(174\) 1.43974 2.50188i 0.109147 0.189667i
\(175\) −11.8115 1.35657i −0.892866 0.102547i
\(176\) 3.62440 + 13.2265i 0.273200 + 0.996984i
\(177\) 1.55647i 0.116991i
\(178\) 17.4054 + 10.0162i 1.30459 + 0.750746i
\(179\) 7.05919 7.05919i 0.527629 0.527629i −0.392236 0.919865i \(-0.628298\pi\)
0.919865 + 0.392236i \(0.128298\pi\)
\(180\) 4.10758 + 8.10129i 0.306161 + 0.603835i
\(181\) 8.11635 8.11635i 0.603284 0.603284i −0.337899 0.941182i \(-0.609716\pi\)
0.941182 + 0.337899i \(0.109716\pi\)
\(182\) 0.470365 + 1.74554i 0.0348658 + 0.129388i
\(183\) −0.438275 −0.0323982
\(184\) −0.0871007 20.5142i −0.00642115 1.51232i
\(185\) 7.52966 6.71437i 0.553592 0.493650i
\(186\) −0.601469 2.23207i −0.0441018 0.163663i
\(187\) −14.5070 + 14.5070i −1.06086 + 1.06086i
\(188\) 3.65797 + 6.29458i 0.266785 + 0.459079i
\(189\) 11.7758i 0.856564i
\(190\) −0.935495 + 1.42987i −0.0678679 + 0.103734i
\(191\) −7.89114 7.89114i −0.570983 0.570983i 0.361420 0.932403i \(-0.382292\pi\)
−0.932403 + 0.361420i \(0.882292\pi\)
\(192\) −7.87454 + 0.0668700i −0.568296 + 0.00482592i
\(193\) 12.4925 0.899229 0.449614 0.893223i \(-0.351561\pi\)
0.449614 + 0.893223i \(0.351561\pi\)
\(194\) −5.22066 19.3741i −0.374822 1.39098i
\(195\) 1.18136 + 0.0676180i 0.0845987 + 0.00484223i
\(196\) 2.32738 1.35251i 0.166241 0.0966078i
\(197\) 16.9550 16.9550i 1.20799 1.20799i 0.236317 0.971676i \(-0.424060\pi\)
0.971676 0.236317i \(-0.0759404\pi\)
\(198\) −8.53547 4.91186i −0.606589 0.349071i
\(199\) −1.48001 + 1.48001i −0.104915 + 0.104915i −0.757616 0.652701i \(-0.773636\pi\)
0.652701 + 0.757616i \(0.273636\pi\)
\(200\) 8.84062 + 11.0383i 0.625127 + 0.780523i
\(201\) −6.88020 −0.485292
\(202\) −2.24310 1.29083i −0.157824 0.0908222i
\(203\) −3.48644 + 3.48644i −0.244700 + 0.244700i
\(204\) −5.91915 10.1856i −0.414423 0.713132i
\(205\) −4.70695 13.5220i −0.328748 0.944418i
\(206\) 17.8340 + 10.2628i 1.24255 + 0.715046i
\(207\) 10.4164 + 10.4164i 0.723990 + 0.723990i
\(208\) 1.06463 1.86834i 0.0738188 0.129546i
\(209\) 1.85257i 0.128145i
\(210\) 1.51428 + 7.24516i 0.104495 + 0.499963i
\(211\) −8.66840 8.66840i −0.596758 0.596758i 0.342691 0.939448i \(-0.388662\pi\)
−0.939448 + 0.342691i \(0.888662\pi\)
\(212\) 18.2287 10.5932i 1.25195 0.727546i
\(213\) 3.57315 + 3.57315i 0.244828 + 0.244828i
\(214\) 3.44696 + 1.98361i 0.235630 + 0.135597i
\(215\) −0.604053 0.677401i −0.0411961 0.0461983i
\(216\) 9.86251 9.94662i 0.671059 0.676782i
\(217\) 3.94861i 0.268049i
\(218\) −5.15909 + 8.96508i −0.349418 + 0.607192i
\(219\) 9.58218 9.58218i 0.647504 0.647504i
\(220\) −14.5730 4.76704i −0.982508 0.321394i
\(221\) 3.21693 0.216394
\(222\) −5.44370 3.13266i −0.365357 0.210250i
\(223\) −18.6741 18.6741i −1.25051 1.25051i −0.955491 0.295019i \(-0.904674\pi\)
−0.295019 0.955491i \(-0.595326\pi\)
\(224\) 13.0170 + 3.38936i 0.869737 + 0.226461i
\(225\) −10.0889 1.15873i −0.672595 0.0772485i
\(226\) 23.3640 + 13.4451i 1.55415 + 0.894357i
\(227\) 3.55042i 0.235650i −0.993034 0.117825i \(-0.962408\pi\)
0.993034 0.117825i \(-0.0375921\pi\)
\(228\) 1.02830 + 0.272415i 0.0681008 + 0.0180411i
\(229\) −0.695616 0.695616i −0.0459676 0.0459676i 0.683749 0.729717i \(-0.260348\pi\)
−0.729717 + 0.683749i \(0.760348\pi\)
\(230\) 19.1929 + 12.5570i 1.26554 + 0.827986i
\(231\) −5.67446 5.67446i −0.373352 0.373352i
\(232\) 5.86485 0.0249015i 0.385046 0.00163486i
\(233\) −17.2606 −1.13078 −0.565391 0.824823i \(-0.691275\pi\)
−0.565391 + 0.824823i \(0.691275\pi\)
\(234\) 0.401767 + 1.49097i 0.0262643 + 0.0974678i
\(235\) −8.12630 0.465130i −0.530101 0.0303417i
\(236\) −2.73425 + 1.58896i −0.177985 + 0.103432i
\(237\) −9.03813 + 9.03813i −0.587090 + 0.587090i
\(238\) 5.23559 + 19.4295i 0.339373 + 1.25942i
\(239\) −2.76688 2.76688i −0.178975 0.178975i 0.611934 0.790909i \(-0.290392\pi\)
−0.790909 + 0.611934i \(0.790392\pi\)
\(240\) 4.78893 7.38798i 0.309124 0.476892i
\(241\) 2.06854i 0.133246i −0.997778 0.0666232i \(-0.978777\pi\)
0.997778 0.0666232i \(-0.0212225\pi\)
\(242\) 1.03065 0.277726i 0.0662527 0.0178529i
\(243\) 16.0562i 1.03001i
\(244\) −0.447423 0.769918i −0.0286433 0.0492890i
\(245\) −0.171978 + 3.00464i −0.0109873 + 0.191960i
\(246\) −7.06699 + 5.43246i −0.450575 + 0.346361i
\(247\) −0.205403 + 0.205403i −0.0130695 + 0.0130695i
\(248\) 3.30706 3.33526i 0.209998 0.211789i
\(249\) 10.6958 10.6958i 0.677819 0.677819i
\(250\) −15.7450 + 1.44770i −0.995800 + 0.0915606i
\(251\) −19.4900 −1.23020 −0.615099 0.788450i \(-0.710884\pi\)
−0.615099 + 0.788450i \(0.710884\pi\)
\(252\) −8.35122 + 4.85315i −0.526078 + 0.305720i
\(253\) −24.8668 −1.56336
\(254\) −24.3191 13.9948i −1.52591 0.878109i
\(255\) 13.1496 + 0.752650i 0.823458 + 0.0471327i
\(256\) −8.15637 13.7649i −0.509773 0.860309i
\(257\) 1.25600i 0.0783474i −0.999232 0.0391737i \(-0.987527\pi\)
0.999232 0.0391737i \(-0.0124726\pi\)
\(258\) −0.281827 + 0.489738i −0.0175458 + 0.0304898i
\(259\) 7.58594 + 7.58594i 0.471367 + 0.471367i
\(260\) 1.08723 + 2.14432i 0.0674271 + 0.132985i
\(261\) −2.97798 + 2.97798i −0.184332 + 0.184332i
\(262\) 4.00599 + 14.8664i 0.247491 + 0.918448i
\(263\) −20.7013 −1.27649 −0.638247 0.769831i \(-0.720340\pi\)
−0.638247 + 0.769831i \(0.720340\pi\)
\(264\) 0.0405291 + 9.54551i 0.00249440 + 0.587486i
\(265\) −1.34698 + 23.5332i −0.0827446 + 1.44563i
\(266\) −1.57488 0.906290i −0.0965623 0.0555682i
\(267\) 9.88372 + 9.88372i 0.604874 + 0.604874i
\(268\) −7.02380 12.0864i −0.429047 0.738297i
\(269\) 15.4544i 0.942270i −0.882061 0.471135i \(-0.843845\pi\)
0.882061 0.471135i \(-0.156155\pi\)
\(270\) 3.20393 + 15.3294i 0.194985 + 0.932917i
\(271\) 0.807361i 0.0490437i 0.999699 + 0.0245218i \(0.00780633\pi\)
−0.999699 + 0.0245218i \(0.992194\pi\)
\(272\) 11.8503 20.7963i 0.718530 1.26096i
\(273\) 1.25831i 0.0761563i
\(274\) −0.857265 3.18134i −0.0517893 0.192192i
\(275\) 13.4256 10.6594i 0.809594 0.642786i
\(276\) 3.65659 13.8027i 0.220101 0.830826i
\(277\) −8.00492 8.00492i −0.480969 0.480969i 0.424472 0.905441i \(-0.360460\pi\)
−0.905441 + 0.424472i \(0.860460\pi\)
\(278\) 2.54893 + 9.45917i 0.152875 + 0.567323i
\(279\) 3.37275i 0.201921i
\(280\) −11.1817 + 10.0565i −0.668233 + 0.600991i
\(281\) −0.765437 + 0.765437i −0.0456621 + 0.0456621i −0.729569 0.683907i \(-0.760279\pi\)
0.683907 + 0.729569i \(0.260279\pi\)
\(282\) 1.31846 + 4.89286i 0.0785132 + 0.291365i
\(283\) 2.54743 + 2.54743i 0.151429 + 0.151429i 0.778756 0.627327i \(-0.215851\pi\)
−0.627327 + 0.778756i \(0.715851\pi\)
\(284\) −2.62923 + 9.92469i −0.156016 + 0.588922i
\(285\) −0.887668 + 0.791554i −0.0525809 + 0.0468876i
\(286\) −2.25924 1.30011i −0.133592 0.0768773i
\(287\) 14.0698 5.81888i 0.830512 0.343477i
\(288\) 11.1186 + 2.89505i 0.655171 + 0.170593i
\(289\) 18.8073 1.10631
\(290\) −3.58996 + 5.48712i −0.210810 + 0.322215i
\(291\) 13.9662i 0.818713i
\(292\) 26.6152 + 7.05084i 1.55754 + 0.412619i
\(293\) 13.7106i 0.800981i −0.916301 0.400490i \(-0.868840\pi\)
0.916301 0.400490i \(-0.131160\pi\)
\(294\) 1.80910 0.487492i 0.105509 0.0284311i
\(295\) 0.202044 3.52992i 0.0117635 0.205520i
\(296\) −0.0541816 12.7610i −0.00314924 0.741717i
\(297\) −12.0061 12.0061i −0.696664 0.696664i
\(298\) −4.88794 + 8.49390i −0.283151 + 0.492038i
\(299\) 2.75710 + 2.75710i 0.159447 + 0.159447i
\(300\) 3.94248 + 9.01953i 0.227619 + 0.520743i
\(301\) 0.682463 0.682463i 0.0393365 0.0393365i
\(302\) −18.5774 10.6906i −1.06901 0.615176i
\(303\) −1.27375 1.27375i −0.0731751 0.0731751i
\(304\) 0.571211 + 2.08451i 0.0327612 + 0.119555i
\(305\) 0.993964 + 0.0568921i 0.0569142 + 0.00325763i
\(306\) 4.47203 + 16.5959i 0.255649 + 0.948722i
\(307\) −14.1654 14.1654i −0.808462 0.808462i 0.175939 0.984401i \(-0.443704\pi\)
−0.984401 + 0.175939i \(0.943704\pi\)
\(308\) 4.17542 15.7612i 0.237917 0.898078i
\(309\) 10.1271 + 10.1271i 0.576111 + 0.576111i
\(310\) 1.07433 + 5.14019i 0.0610177 + 0.291943i
\(311\) −7.48403 7.48403i −0.424380 0.424380i 0.462329 0.886709i \(-0.347014\pi\)
−0.886709 + 0.462329i \(0.847014\pi\)
\(312\) 1.05386 1.06285i 0.0596633 0.0601721i
\(313\) 6.82256i 0.385634i 0.981235 + 0.192817i \(0.0617624\pi\)
−0.981235 + 0.192817i \(0.938238\pi\)
\(314\) −7.55423 + 2.03561i −0.426310 + 0.114876i
\(315\) 0.617103 10.7814i 0.0347698 0.607465i
\(316\) −25.1041 6.65051i −1.41221 0.374120i
\(317\) 0.246649i 0.0138532i −0.999976 0.00692659i \(-0.997795\pi\)
0.999976 0.00692659i \(-0.00220482\pi\)
\(318\) 14.1694 3.81818i 0.794579 0.214113i
\(319\) 7.10924i 0.398041i
\(320\) 17.8673 + 0.870533i 0.998815 + 0.0486643i
\(321\) 1.95737 + 1.95737i 0.109250 + 0.109250i
\(322\) −12.1650 + 21.1394i −0.677929 + 1.17806i
\(323\) −2.28633 + 2.28633i −0.127215 + 0.127215i
\(324\) −2.10671 + 1.22427i −0.117040 + 0.0680153i
\(325\) −2.67042 0.306702i −0.148128 0.0170127i
\(326\) 17.1778 29.8503i 0.951389 1.65325i
\(327\) −5.09085 + 5.09085i −0.281525 + 0.281525i
\(328\) −16.7577 6.86875i −0.925289 0.379263i
\(329\) 8.65564i 0.477201i
\(330\) −8.93073 5.84295i −0.491621 0.321644i
\(331\) 3.89985 3.89985i 0.214355 0.214355i −0.591759 0.806115i \(-0.701566\pi\)
0.806115 + 0.591759i \(0.201566\pi\)
\(332\) 29.7084 + 7.87027i 1.63046 + 0.431937i
\(333\) 6.47960 + 6.47960i 0.355080 + 0.355080i
\(334\) −4.56827 16.9530i −0.249965 0.927628i
\(335\) 15.6036 + 0.893112i 0.852515 + 0.0487959i
\(336\) 8.13454 + 4.63528i 0.443775 + 0.252875i
\(337\) 0.402306 0.402306i 0.0219150 0.0219150i −0.696064 0.717979i \(-0.745067\pi\)
0.717979 + 0.696064i \(0.245067\pi\)
\(338\) −4.67712 17.3569i −0.254402 0.944093i
\(339\) 13.2673 + 13.2673i 0.720580 + 0.720580i
\(340\) 12.1018 + 23.8682i 0.656315 + 1.29444i
\(341\) −4.02583 4.02583i −0.218011 0.218011i
\(342\) −1.34520 0.774117i −0.0727402 0.0418594i
\(343\) −19.8452 −1.07154
\(344\) −1.14803 + 0.00487441i −0.0618978 + 0.000262811i
\(345\) 10.6249 + 11.9150i 0.572026 + 0.641485i
\(346\) −9.61486 + 16.7080i −0.516898 + 0.898227i
\(347\) 16.5766i 0.889881i −0.895560 0.444940i \(-0.853225\pi\)
0.895560 0.444940i \(-0.146775\pi\)
\(348\) 3.94610 + 1.04539i 0.211533 + 0.0560389i
\(349\) −17.0520 −0.912770 −0.456385 0.889782i \(-0.650856\pi\)
−0.456385 + 0.889782i \(0.650856\pi\)
\(350\) −2.49374 16.6279i −0.133296 0.888796i
\(351\) 2.66235i 0.142106i
\(352\) −16.7272 + 9.81594i −0.891564 + 0.523192i
\(353\) 9.50622 9.50622i 0.505965 0.505965i −0.407320 0.913285i \(-0.633537\pi\)
0.913285 + 0.407320i \(0.133537\pi\)
\(354\) −2.12537 + 0.572716i −0.112962 + 0.0304395i
\(355\) −7.63972 8.56738i −0.405474 0.454709i
\(356\) −7.27272 + 27.4528i −0.385453 + 1.45499i
\(357\) 14.0061i 0.741283i
\(358\) 12.2369 + 7.04188i 0.646738 + 0.372175i
\(359\) −11.3331 −0.598140 −0.299070 0.954231i \(-0.596676\pi\)
−0.299070 + 0.954231i \(0.596676\pi\)
\(360\) −9.55095 + 8.58987i −0.503379 + 0.452726i
\(361\) 18.7080i 0.984633i
\(362\) 14.0694 + 8.09645i 0.739472 + 0.425540i
\(363\) 0.742966 0.0389956
\(364\) −2.21047 + 1.28457i −0.115860 + 0.0673299i
\(365\) −22.9753 + 20.4876i −1.20258 + 1.07237i
\(366\) −0.161267 0.598468i −0.00842956 0.0312824i
\(367\) −5.67851 5.67851i −0.296416 0.296416i 0.543192 0.839608i \(-0.317215\pi\)
−0.839608 + 0.543192i \(0.817215\pi\)
\(368\) 27.9802 7.66729i 1.45857 0.399685i
\(369\) 12.0178 4.97025i 0.625623 0.258741i
\(370\) 11.9391 + 7.81119i 0.620685 + 0.406084i
\(371\) −25.0661 −1.30137
\(372\) 2.82659 1.64262i 0.146552 0.0851658i
\(373\) −12.4490 + 12.4490i −0.644586 + 0.644586i −0.951679 0.307093i \(-0.900644\pi\)
0.307093 + 0.951679i \(0.400644\pi\)
\(374\) −25.1474 14.4714i −1.30034 0.748300i
\(375\) −10.8439 1.87847i −0.559977 0.0970035i
\(376\) −7.24930 + 7.31112i −0.373854 + 0.377042i
\(377\) −0.788236 + 0.788236i −0.0405962 + 0.0405962i
\(378\) −16.0799 + 4.33301i −0.827062 + 0.222866i
\(379\) −12.2160 −0.627496 −0.313748 0.949506i \(-0.601585\pi\)
−0.313748 + 0.949506i \(0.601585\pi\)
\(380\) −2.29672 0.751292i −0.117819 0.0385405i
\(381\) −13.8097 13.8097i −0.707490 0.707490i
\(382\) 7.87179 13.6790i 0.402756 0.699879i
\(383\) 31.5722 1.61327 0.806633 0.591053i \(-0.201288\pi\)
0.806633 + 0.591053i \(0.201288\pi\)
\(384\) −2.98881 10.7281i −0.152522 0.547467i
\(385\) 12.1325 + 13.6057i 0.618329 + 0.693410i
\(386\) 4.59672 + 17.0586i 0.233967 + 0.868258i
\(387\) 0.582933 0.582933i 0.0296321 0.0296321i
\(388\) 24.5344 14.2577i 1.24555 0.723825i
\(389\) −26.4555 −1.34135 −0.670673 0.741753i \(-0.733995\pi\)
−0.670673 + 0.741753i \(0.733995\pi\)
\(390\) 0.342357 + 1.63803i 0.0173359 + 0.0829449i
\(391\) 30.6890 + 30.6890i 1.55201 + 1.55201i
\(392\) 2.70324 + 2.68038i 0.136534 + 0.135380i
\(393\) 10.7167i 0.540588i
\(394\) 29.3909 + 16.9134i 1.48069 + 0.852085i
\(395\) 21.6708 19.3243i 1.09038 0.972313i
\(396\) 3.56648 13.4626i 0.179222 0.676521i
\(397\) 37.5243i 1.88329i 0.336607 + 0.941645i \(0.390721\pi\)
−0.336607 + 0.941645i \(0.609279\pi\)
\(398\) −2.56555 1.47638i −0.128599 0.0740044i
\(399\) −0.894302 0.894302i −0.0447711 0.0447711i
\(400\) −11.8198 + 16.1335i −0.590992 + 0.806677i
\(401\) 9.48157i 0.473487i −0.971572 0.236744i \(-0.923920\pi\)
0.971572 0.236744i \(-0.0760801\pi\)
\(402\) −2.53163 9.39495i −0.126266 0.468577i
\(403\) 0.892727i 0.0444699i
\(404\) 0.937262 3.53794i 0.0466305 0.176019i
\(405\) 0.155673 2.71976i 0.00773544 0.135146i
\(406\) −6.04361 3.47789i −0.299940 0.172605i
\(407\) −15.4686 −0.766749
\(408\) 11.7305 11.8305i 0.580744 0.585697i
\(409\) 32.4759i 1.60583i −0.596093 0.802915i \(-0.703281\pi\)
0.596093 0.802915i \(-0.296719\pi\)
\(410\) 16.7324 11.4029i 0.826355 0.563149i
\(411\) 2.29333i 0.113122i
\(412\) −7.45180 + 28.1288i −0.367124 + 1.38580i
\(413\) 3.75985 0.185010
\(414\) −10.3909 + 18.0565i −0.510683 + 0.887427i
\(415\) −25.6454 + 22.8686i −1.25888 + 1.12258i
\(416\) 2.94297 + 0.766287i 0.144291 + 0.0375703i
\(417\) 6.81884i 0.333920i
\(418\) 2.52969 0.681668i 0.123731 0.0333415i
\(419\) 22.4633i 1.09740i 0.836019 + 0.548701i \(0.184877\pi\)
−0.836019 + 0.548701i \(0.815123\pi\)
\(420\) −9.33611 + 4.73367i −0.455556 + 0.230979i
\(421\) 0.180340 + 0.180340i 0.00878923 + 0.00878923i 0.711488 0.702699i \(-0.248022\pi\)
−0.702699 + 0.711488i \(0.748022\pi\)
\(422\) 8.64715 15.0264i 0.420936 0.731472i
\(423\) 7.39330i 0.359475i
\(424\) 21.1725 + 20.9935i 1.02823 + 1.01953i
\(425\) −29.7242 3.41387i −1.44184 0.165597i
\(426\) −3.56439 + 6.19393i −0.172695 + 0.300097i
\(427\) 1.05871i 0.0512346i
\(428\) −1.44029 + 5.43673i −0.0696189 + 0.262794i
\(429\) −1.28292 1.28292i −0.0619398 0.0619398i
\(430\) 0.702728 1.07409i 0.0338886 0.0517974i
\(431\) −18.9292 −0.911787 −0.455893 0.890034i \(-0.650680\pi\)
−0.455893 + 0.890034i \(0.650680\pi\)
\(432\) 17.2112 + 9.80738i 0.828073 + 0.471858i
\(433\) 1.88134 1.88134i 0.0904115 0.0904115i −0.660455 0.750866i \(-0.729636\pi\)
0.750866 + 0.660455i \(0.229636\pi\)
\(434\) −5.39186 + 1.45293i −0.258817 + 0.0697427i
\(435\) −3.40643 + 3.03759i −0.163326 + 0.145641i
\(436\) −14.1402 3.74599i −0.677193 0.179400i
\(437\) −3.91904 −0.187473
\(438\) 16.6104 + 9.55868i 0.793674 + 0.456731i
\(439\) 3.81285 + 3.81285i 0.181978 + 0.181978i 0.792217 0.610239i \(-0.208927\pi\)
−0.610239 + 0.792217i \(0.708927\pi\)
\(440\) 1.14718 21.6535i 0.0546896 1.03229i
\(441\) −2.73362 −0.130172
\(442\) 1.18369 + 4.39273i 0.0563026 + 0.208941i
\(443\) 1.00722 1.00722i 0.0478543 0.0478543i −0.682775 0.730629i \(-0.739227\pi\)
0.730629 + 0.682775i \(0.239227\pi\)
\(444\) 2.27461 8.58609i 0.107948 0.407478i
\(445\) −21.1323 23.6983i −1.00177 1.12341i
\(446\) 18.6283 32.3709i 0.882076 1.53281i
\(447\) −4.82329 + 4.82329i −0.228134 + 0.228134i
\(448\) 0.161533 + 19.0220i 0.00763172 + 0.898704i
\(449\) 24.1621 1.14028 0.570141 0.821547i \(-0.306889\pi\)
0.570141 + 0.821547i \(0.306889\pi\)
\(450\) −2.13005 14.2028i −0.100412 0.669529i
\(451\) −8.41223 + 20.2776i −0.396117 + 0.954834i
\(452\) −9.76245 + 36.8509i −0.459187 + 1.73332i
\(453\) −10.5492 10.5492i −0.495645 0.495645i
\(454\) 4.84812 1.30641i 0.227533 0.0613127i
\(455\) 0.163340 2.85372i 0.00765750 0.133784i
\(456\) 0.00638745 + 1.50439i 0.000299120 + 0.0704493i
\(457\) −8.62879 −0.403638 −0.201819 0.979423i \(-0.564685\pi\)
−0.201819 + 0.979423i \(0.564685\pi\)
\(458\) 0.693910 1.20582i 0.0324243 0.0563445i
\(459\) 29.6343i 1.38321i
\(460\) −10.0845 + 30.8285i −0.470192 + 1.43739i
\(461\) 7.56242 0.352217 0.176108 0.984371i \(-0.443649\pi\)
0.176108 + 0.984371i \(0.443649\pi\)
\(462\) 5.66054 9.83647i 0.263352 0.457634i
\(463\) 9.28486i 0.431504i −0.976448 0.215752i \(-0.930780\pi\)
0.976448 0.215752i \(-0.0692203\pi\)
\(464\) 2.19202 + 7.99932i 0.101762 + 0.371359i
\(465\) −0.208867 + 3.64913i −0.00968599 + 0.169224i
\(466\) −6.35120 23.5695i −0.294214 1.09184i
\(467\) −5.74357 + 5.74357i −0.265781 + 0.265781i −0.827397 0.561617i \(-0.810179\pi\)
0.561617 + 0.827397i \(0.310179\pi\)
\(468\) −1.88810 + 1.09723i −0.0872773 + 0.0507195i
\(469\) 16.6200i 0.767440i
\(470\) −2.35500 11.2677i −0.108628 0.519738i
\(471\) −5.44563 −0.250921
\(472\) −3.17582 3.14897i −0.146179 0.144943i
\(473\) 1.39162i 0.0639867i
\(474\) −15.6673 9.01596i −0.719622 0.414117i
\(475\) 2.11589 1.67994i 0.0970838 0.0770808i
\(476\) −24.6046 + 14.2985i −1.12775 + 0.655369i
\(477\) −21.4105 −0.980319
\(478\) 2.76009 4.79629i 0.126244 0.219377i
\(479\) 20.2247 + 20.2247i 0.924089 + 0.924089i 0.997315 0.0732267i \(-0.0233297\pi\)
−0.0732267 + 0.997315i \(0.523330\pi\)
\(480\) 11.8505 + 3.82084i 0.540897 + 0.174397i
\(481\) 1.71508 + 1.71508i 0.0782007 + 0.0782007i
\(482\) 2.82460 0.761136i 0.128657 0.0346688i
\(483\) −12.0041 + 12.0041i −0.546205 + 0.546205i
\(484\) 0.758473 + 1.30517i 0.0344760 + 0.0593258i
\(485\) −1.81294 + 31.6739i −0.0823213 + 1.43824i
\(486\) −21.9249 + 5.90802i −0.994533 + 0.267993i
\(487\) −20.8030 20.8030i −0.942672 0.942672i 0.0557715 0.998444i \(-0.482238\pi\)
−0.998444 + 0.0557715i \(0.982238\pi\)
\(488\) 0.886695 0.894257i 0.0401388 0.0404811i
\(489\) 16.9506 16.9506i 0.766531 0.766531i
\(490\) −4.16614 + 0.870746i −0.188207 + 0.0393363i
\(491\) 10.3411i 0.466686i 0.972394 + 0.233343i \(0.0749665\pi\)
−0.972394 + 0.233343i \(0.925033\pi\)
\(492\) −10.0184 7.65111i −0.451665 0.344938i
\(493\) −8.77378 + 8.77378i −0.395151 + 0.395151i
\(494\) −0.356059 0.204900i −0.0160199 0.00921887i
\(495\) 10.3631 + 11.6214i 0.465787 + 0.522345i
\(496\) 5.77118 + 3.28857i 0.259133 + 0.147661i
\(497\) 8.63141 8.63141i 0.387172 0.387172i
\(498\) 18.5408 + 10.6696i 0.830833 + 0.478115i
\(499\) 21.1016 + 21.1016i 0.944639 + 0.944639i 0.998546 0.0539071i \(-0.0171675\pi\)
−0.0539071 + 0.998546i \(0.517167\pi\)
\(500\) −7.77034 20.9672i −0.347500 0.937680i
\(501\) 12.2209i 0.545991i
\(502\) −7.17151 26.6137i −0.320080 1.18783i
\(503\) 37.1237i 1.65526i 0.561272 + 0.827631i \(0.310312\pi\)
−0.561272 + 0.827631i \(0.689688\pi\)
\(504\) −9.69991 9.61789i −0.432068 0.428415i
\(505\) 2.72340 + 3.05409i 0.121190 + 0.135905i
\(506\) −9.14994 33.9557i −0.406765 1.50952i
\(507\) 12.5121i 0.555682i
\(508\) 10.1615 38.3573i 0.450845 1.70183i
\(509\) −24.2891 24.2891i −1.07660 1.07660i −0.996812 0.0797834i \(-0.974577\pi\)
−0.0797834 0.996812i \(-0.525423\pi\)
\(510\) 3.81075 + 18.2328i 0.168743 + 0.807360i
\(511\) −23.1470 23.1470i −1.02396 1.02396i
\(512\) 15.7949 16.2025i 0.698043 0.716056i
\(513\) −1.89218 1.89218i −0.0835417 0.0835417i
\(514\) 1.71508 0.462157i 0.0756490 0.0203849i
\(515\) −21.6527 24.2818i −0.954130 1.06999i
\(516\) −0.772441 0.204633i −0.0340048 0.00900848i
\(517\) 8.82491 + 8.82491i 0.388119 + 0.388119i
\(518\) −7.56733 + 13.1499i −0.332490 + 0.577776i
\(519\) −9.48768 + 9.48768i −0.416463 + 0.416463i
\(520\) −2.52802 + 2.27364i −0.110861 + 0.0997056i
\(521\) 9.21764 + 9.21764i 0.403832 + 0.403832i 0.879581 0.475749i \(-0.157823\pi\)
−0.475749 + 0.879581i \(0.657823\pi\)
\(522\) −5.16221 2.97067i −0.225944 0.130023i
\(523\) 3.29111 + 3.29111i 0.143910 + 0.143910i 0.775391 0.631481i \(-0.217553\pi\)
−0.631481 + 0.775391i \(0.717553\pi\)
\(524\) −18.8261 + 10.9404i −0.822421 + 0.477934i
\(525\) 1.33534 11.6267i 0.0582792 0.507431i
\(526\) −7.61720 28.2677i −0.332126 1.23253i
\(527\) 9.93686i 0.432857i
\(528\) −13.0195 + 3.56769i −0.566603 + 0.155264i
\(529\) 29.6048i 1.28716i
\(530\) −32.6304 + 6.81993i −1.41737 + 0.296239i
\(531\) 3.21152 0.139368
\(532\) 0.658053 2.48399i 0.0285302 0.107695i
\(533\) 3.18098 1.31557i 0.137784 0.0569836i
\(534\) −9.85948 + 17.1331i −0.426662 + 0.741421i
\(535\) −4.18503 4.69320i −0.180935 0.202905i
\(536\) 13.9196 14.0383i 0.601237 0.606364i
\(537\) 6.94874 + 6.94874i 0.299860 + 0.299860i
\(538\) 21.1030 5.68656i 0.909816 0.245165i
\(539\) 3.26295 3.26295i 0.140545 0.140545i
\(540\) −19.7535 + 10.0156i −0.850054 + 0.431001i
\(541\) 7.48478i 0.321796i 0.986971 + 0.160898i \(0.0514390\pi\)
−0.986971 + 0.160898i \(0.948561\pi\)
\(542\) −1.10246 + 0.297075i −0.0473546 + 0.0127605i
\(543\) 7.98936 + 7.98936i 0.342856 + 0.342856i
\(544\) 32.7579 + 8.52947i 1.40448 + 0.365698i
\(545\) 12.2064 10.8847i 0.522864 0.466249i
\(546\) −1.71823 + 0.463005i −0.0735334 + 0.0198148i
\(547\) 6.24532i 0.267031i 0.991047 + 0.133515i \(0.0426265\pi\)
−0.991047 + 0.133515i \(0.957373\pi\)
\(548\) 4.02870 2.34120i 0.172098 0.100011i
\(549\) 0.904308i 0.0385949i
\(550\) 19.4955 + 14.4105i 0.831292 + 0.614466i
\(551\) 1.12043i 0.0477317i
\(552\) 20.1932 0.0857378i 0.859478 0.00364925i
\(553\) 21.8328 + 21.8328i 0.928424 + 0.928424i
\(554\) 7.98529 13.8763i 0.339263 0.589545i
\(555\) 6.60931 + 7.41185i 0.280550 + 0.314615i
\(556\) −11.9787 + 6.96116i −0.508008 + 0.295219i
\(557\) 42.3582 1.79478 0.897388 0.441243i \(-0.145462\pi\)
0.897388 + 0.441243i \(0.145462\pi\)
\(558\) −4.60551 + 1.24103i −0.194967 + 0.0525370i
\(559\) 0.154296 0.154296i 0.00652601 0.00652601i
\(560\) −17.8466 11.5683i −0.754157 0.488849i
\(561\) −14.2800 14.2800i −0.602903 0.602903i
\(562\) −1.32686 0.763559i −0.0559701 0.0322088i
\(563\) 12.3315i 0.519712i −0.965647 0.259856i \(-0.916325\pi\)
0.965647 0.259856i \(-0.0836752\pi\)
\(564\) −6.19609 + 3.60073i −0.260902 + 0.151618i
\(565\) −28.3667 31.8111i −1.19340 1.33830i
\(566\) −2.54119 + 4.41588i −0.106814 + 0.185613i
\(567\) 2.89693 0.121660
\(568\) −14.5197 + 0.0616488i −0.609232 + 0.00258673i
\(569\) 24.5979 1.03120 0.515600 0.856830i \(-0.327569\pi\)
0.515600 + 0.856830i \(0.327569\pi\)
\(570\) −1.40750 0.920857i −0.0589535 0.0385705i
\(571\) 22.3457 22.3457i 0.935138 0.935138i −0.0628830 0.998021i \(-0.520030\pi\)
0.998021 + 0.0628830i \(0.0200295\pi\)
\(572\) 0.944006 3.56339i 0.0394709 0.148993i
\(573\) 7.76767 7.76767i 0.324499 0.324499i
\(574\) 13.1228 + 17.0712i 0.547735 + 0.712540i
\(575\) −22.5496 28.4013i −0.940382 1.18442i
\(576\) 0.137975 + 16.2478i 0.00574896 + 0.676992i
\(577\) 35.6660i 1.48479i 0.669960 + 0.742397i \(0.266311\pi\)
−0.669960 + 0.742397i \(0.733689\pi\)
\(578\) 6.92030 + 25.6815i 0.287847 + 1.06821i
\(579\) 12.2970i 0.511047i
\(580\) −8.81365 2.88308i −0.365967 0.119713i
\(581\) −25.8371 25.8371i −1.07190 1.07190i
\(582\) 19.0709 5.13898i 0.790515 0.213017i
\(583\) 25.5563 25.5563i 1.05844 1.05844i
\(584\) 0.165325 + 38.9376i 0.00684118 + 1.61125i
\(585\) 0.139518 2.43753i 0.00576838 0.100780i
\(586\) 18.7219 5.04492i 0.773394 0.208404i
\(587\) 7.69367 0.317552 0.158776 0.987315i \(-0.449245\pi\)
0.158776 + 0.987315i \(0.449245\pi\)
\(588\) 1.33135 + 2.29096i 0.0549038 + 0.0944776i
\(589\) −0.634477 0.634477i −0.0261432 0.0261432i
\(590\) 4.89447 1.02297i 0.201502 0.0421150i
\(591\) 16.6897 + 16.6897i 0.686522 + 0.686522i
\(592\) 17.4053 4.76950i 0.715352 0.196025i
\(593\) 39.9129i 1.63903i 0.573059 + 0.819514i \(0.305757\pi\)
−0.573059 + 0.819514i \(0.694243\pi\)
\(594\) 11.9766 20.8121i 0.491408 0.853932i
\(595\) 1.81812 31.7645i 0.0745357 1.30222i
\(596\) −13.3970 3.54911i −0.548764 0.145377i
\(597\) −1.45686 1.45686i −0.0596251 0.0596251i
\(598\) −2.75034 + 4.77934i −0.112470 + 0.195442i
\(599\) 10.0761 0.411698 0.205849 0.978584i \(-0.434004\pi\)
0.205849 + 0.978584i \(0.434004\pi\)
\(600\) −10.8656 + 8.70230i −0.443584 + 0.355270i
\(601\) −6.43189 + 6.43189i −0.262362 + 0.262362i −0.826013 0.563651i \(-0.809396\pi\)
0.563651 + 0.826013i \(0.309396\pi\)
\(602\) 1.18303 + 0.680790i 0.0482165 + 0.0277469i
\(603\) 14.1961i 0.578111i
\(604\) 7.76241 29.3012i 0.315848 1.19225i
\(605\) −1.68497 0.0964437i −0.0685038 0.00392099i
\(606\) 1.27063 2.20800i 0.0516157 0.0896940i
\(607\) 13.8202 + 13.8202i 0.560945 + 0.560945i 0.929576 0.368631i \(-0.120173\pi\)
−0.368631 + 0.929576i \(0.620173\pi\)
\(608\) −2.63623 + 1.54701i −0.106913 + 0.0627394i
\(609\) −3.43189 3.43189i −0.139067 0.139067i
\(610\) 0.288051 + 1.37820i 0.0116628 + 0.0558016i
\(611\) 1.95692i 0.0791685i
\(612\) −21.0162 + 12.2132i −0.849531 + 0.493688i
\(613\) 26.0622 + 26.0622i 1.05264 + 1.05264i 0.998535 + 0.0541082i \(0.0172316\pi\)
0.0541082 + 0.998535i \(0.482768\pi\)
\(614\) 14.1307 24.5552i 0.570267 0.990968i
\(615\) 13.3104 4.63330i 0.536728 0.186833i
\(616\) 23.0584 0.0979033i 0.929050 0.00394464i
\(617\) −7.21441 + 7.21441i −0.290441 + 0.290441i −0.837255 0.546813i \(-0.815841\pi\)
0.546813 + 0.837255i \(0.315841\pi\)
\(618\) −10.1023 + 17.5550i −0.406373 + 0.706164i
\(619\) −2.19204 −0.0881055 −0.0440528 0.999029i \(-0.514027\pi\)
−0.0440528 + 0.999029i \(0.514027\pi\)
\(620\) −6.62365 + 3.35838i −0.266012 + 0.134876i
\(621\) −25.3984 + 25.3984i −1.01920 + 1.01920i
\(622\) 7.46567 12.9733i 0.299346 0.520182i
\(623\) 23.8754 23.8754i 0.956548 0.956548i
\(624\) 1.83911 + 1.04797i 0.0736232 + 0.0419525i
\(625\) 24.3490 + 5.66781i 0.973962 + 0.226712i
\(626\) −9.31625 + 2.51042i −0.372352 + 0.100337i
\(627\) 1.82358 0.0728269
\(628\) −5.55929 9.56633i −0.221840 0.381738i
\(629\) 19.0903 + 19.0903i 0.761182 + 0.761182i
\(630\) 14.9492 3.12446i 0.595589 0.124481i
\(631\) 38.5123i 1.53315i 0.642154 + 0.766576i \(0.278041\pi\)
−0.642154 + 0.766576i \(0.721959\pi\)
\(632\) −0.155938 36.7269i −0.00620288 1.46092i
\(633\) 8.53277 8.53277i 0.339147 0.339147i
\(634\) 0.336801 0.0907566i 0.0133761 0.00360440i
\(635\) 29.5263 + 33.1115i 1.17172 + 1.31399i
\(636\) 10.4275 + 17.9434i 0.413477 + 0.711504i
\(637\) −0.723558 −0.0286684
\(638\) 9.70770 2.61590i 0.384332 0.103565i
\(639\) 7.37261 7.37261i 0.291656 0.291656i
\(640\) 5.38572 + 24.7183i 0.212889 + 0.977076i
\(641\) 3.83627 3.83627i 0.151523 0.151523i −0.627275 0.778798i \(-0.715830\pi\)
0.778798 + 0.627275i \(0.215830\pi\)
\(642\) −1.95257 + 3.39303i −0.0770617 + 0.133912i
\(643\) 41.8643i 1.65097i −0.564426 0.825484i \(-0.690902\pi\)
0.564426 0.825484i \(-0.309098\pi\)
\(644\) −33.3423 8.83295i −1.31387 0.348067i
\(645\) 0.666801 0.594602i 0.0262553 0.0234124i
\(646\) −3.96326 2.28072i −0.155933 0.0897337i
\(647\) 3.94395 + 3.94395i 0.155053 + 0.155053i 0.780370 0.625318i \(-0.215031\pi\)
−0.625318 + 0.780370i \(0.715031\pi\)
\(648\) −2.44694 2.42625i −0.0961247 0.0953119i
\(649\) −3.83338 + 3.83338i −0.150473 + 0.150473i
\(650\) −0.563801 3.75933i −0.0221141 0.147453i
\(651\) −3.88683 −0.152337
\(652\) 47.0814 + 12.4727i 1.84385 + 0.488469i
\(653\) −44.4052 −1.73771 −0.868854 0.495068i \(-0.835143\pi\)
−0.868854 + 0.495068i \(0.835143\pi\)
\(654\) −8.82481 5.07837i −0.345077 0.198580i
\(655\) 1.39113 24.3045i 0.0543559 0.949654i
\(656\) 3.21318 25.4101i 0.125454 0.992099i
\(657\) −19.7712 19.7712i −0.771349 0.771349i
\(658\) 11.8193 3.18491i 0.460765 0.124161i
\(659\) −15.9623 15.9623i −0.621802 0.621802i 0.324190 0.945992i \(-0.394908\pi\)
−0.945992 + 0.324190i \(0.894908\pi\)
\(660\) 4.69245 14.3449i 0.182653 0.558376i
\(661\) 36.0355i 1.40162i 0.713348 + 0.700810i \(0.247178\pi\)
−0.713348 + 0.700810i \(0.752822\pi\)
\(662\) 6.76025 + 3.89029i 0.262745 + 0.151200i
\(663\) 3.16659i 0.122980i
\(664\) 0.184538 + 43.4629i 0.00716148 + 1.68669i
\(665\) 1.91210 + 2.14428i 0.0741480 + 0.0831515i
\(666\) −6.46371 + 11.2322i −0.250464 + 0.435237i
\(667\) −15.0393 −0.582325
\(668\) 21.4685 12.4760i 0.830642 0.482711i
\(669\) 18.3819 18.3819i 0.710686 0.710686i
\(670\) 4.52192 + 21.6354i 0.174697 + 0.835850i
\(671\) −1.07941 1.07941i −0.0416703 0.0416703i
\(672\) −3.33633 + 12.8133i −0.128702 + 0.494286i
\(673\) 33.8584i 1.30515i −0.757725 0.652574i \(-0.773689\pi\)
0.757725 0.652574i \(-0.226311\pi\)
\(674\) 0.697384 + 0.401320i 0.0268622 + 0.0154583i
\(675\) 2.82534 24.5999i 0.108747 0.946852i
\(676\) 21.9800 12.7733i 0.845385 0.491279i
\(677\) 30.0396 30.0396i 1.15451 1.15451i 0.168877 0.985637i \(-0.445986\pi\)
0.985637 0.168877i \(-0.0540140\pi\)
\(678\) −13.2348 + 22.9984i −0.508278 + 0.883248i
\(679\) −33.7371 −1.29471
\(680\) −28.1392 + 25.3077i −1.07909 + 0.970504i
\(681\) 3.49487 0.133924
\(682\) 4.01596 6.97864i 0.153779 0.267226i
\(683\) 9.38995 0.359296 0.179648 0.983731i \(-0.442504\pi\)
0.179648 + 0.983731i \(0.442504\pi\)
\(684\) 0.562082 2.12172i 0.0214918 0.0811262i
\(685\) −0.297696 + 5.20105i −0.0113744 + 0.198722i
\(686\) −7.30220 27.0987i −0.278799 1.03463i
\(687\) 0.684731 0.684731i 0.0261241 0.0261241i
\(688\) −0.429084 1.56585i −0.0163587 0.0596976i
\(689\) −5.66711 −0.215900
\(690\) −12.3605 + 18.8926i −0.470558 + 0.719230i
\(691\) 12.8603 + 12.8603i 0.489230 + 0.489230i 0.908063 0.418833i \(-0.137561\pi\)
−0.418833 + 0.908063i \(0.637561\pi\)
\(692\) −26.3527 6.98130i −1.00178 0.265389i
\(693\) −11.7083 + 11.7083i −0.444761 + 0.444761i
\(694\) 22.6355 6.09951i 0.859232 0.231534i
\(695\) 0.885147 15.4644i 0.0335755 0.586600i
\(696\) 0.0245118 + 5.77308i 0.000929119 + 0.218828i
\(697\) 35.4072 14.6435i 1.34114 0.554661i
\(698\) −6.27441 23.2845i −0.237490 0.881333i
\(699\) 16.9906i 0.642643i
\(700\) 21.7878 9.52358i 0.823503 0.359957i
\(701\) 4.43158 0.167378 0.0836892 0.996492i \(-0.473330\pi\)
0.0836892 + 0.996492i \(0.473330\pi\)
\(702\) −3.63545 + 0.979633i −0.137211 + 0.0369739i
\(703\) −2.43787 −0.0919460
\(704\) −19.5587 19.2293i −0.737144 0.724730i
\(705\) 0.457852 7.99915i 0.0172437 0.301265i
\(706\) 16.4787 + 9.48290i 0.620184 + 0.356894i
\(707\) −3.07691 + 3.07691i −0.115719 + 0.115719i
\(708\) −1.56409 2.69147i −0.0587823 0.101152i
\(709\) 26.8484 26.8484i 1.00831 1.00831i 0.00834935 0.999965i \(-0.497342\pi\)
0.999965 0.00834935i \(-0.00265771\pi\)
\(710\) 8.88771 13.5845i 0.333550 0.509818i
\(711\) 18.6487 + 18.6487i 0.699380 + 0.699380i
\(712\) −40.1630 + 0.170527i −1.50517 + 0.00639078i
\(713\) −8.51650 + 8.51650i −0.318945 + 0.318945i
\(714\) −19.1254 + 5.15367i −0.715752 + 0.192871i
\(715\) 2.74299 + 3.07606i 0.102582 + 0.115038i
\(716\) −5.11308 + 19.3006i −0.191085 + 0.721298i
\(717\) 2.72359 2.72359i 0.101714 0.101714i
\(718\) −4.17012 15.4755i −0.155628 0.577540i
\(719\) 33.9622 33.9622i 1.26657 1.26657i 0.318729 0.947846i \(-0.396744\pi\)
0.947846 0.318729i \(-0.103256\pi\)
\(720\) −15.2439 9.88116i −0.568105 0.368249i
\(721\) 24.4633 24.4633i 0.911062 0.911062i
\(722\) −25.5459 + 6.88378i −0.950721 + 0.256188i
\(723\) 2.03617 0.0757261
\(724\) −5.87879 + 22.1910i −0.218484 + 0.824723i
\(725\) 8.11974 6.44676i 0.301560 0.239427i
\(726\) 0.273380 + 1.01452i 0.0101461 + 0.0376525i
\(727\) 12.1156 0.449344 0.224672 0.974434i \(-0.427869\pi\)
0.224672 + 0.974434i \(0.427869\pi\)
\(728\) −2.56745 2.54574i −0.0951562 0.0943515i
\(729\) −12.1501 −0.450003
\(730\) −36.4298 23.8343i −1.34833 0.882147i
\(731\) 1.71745 1.71745i 0.0635222 0.0635222i
\(732\) 0.757871 0.440422i 0.0280117 0.0162785i
\(733\) −22.7663 22.7663i −0.840893 0.840893i 0.148082 0.988975i \(-0.452690\pi\)
−0.988975 + 0.148082i \(0.952690\pi\)
\(734\) 5.66459 9.84350i 0.209084 0.363330i
\(735\) −2.95763 0.169288i −0.109094 0.00624427i
\(736\) 20.7653 + 35.3858i 0.765418 + 1.30434i
\(737\) −16.9450 16.9450i −0.624178 0.624178i
\(738\) 11.2090 + 14.5816i 0.412608 + 0.536755i
\(739\) −45.6752 −1.68019 −0.840095 0.542440i \(-0.817501\pi\)
−0.840095 + 0.542440i \(0.817501\pi\)
\(740\) −6.27313 + 19.1771i −0.230605 + 0.704965i
\(741\) −0.202189 0.202189i −0.00742762 0.00742762i
\(742\) −9.22330 34.2280i −0.338598 1.25655i
\(743\) −29.1657 + 29.1657i −1.06999 + 1.06999i −0.0726284 + 0.997359i \(0.523139\pi\)
−0.997359 + 0.0726284i \(0.976861\pi\)
\(744\) 3.28307 + 3.25531i 0.120363 + 0.119346i
\(745\) 11.5648 10.3126i 0.423703 0.377825i
\(746\) −21.5799 12.4185i −0.790098 0.454673i
\(747\) −22.0690 22.0690i −0.807463 0.807463i
\(748\) 10.5076 39.6638i 0.384197 1.45025i
\(749\) 4.72828 4.72828i 0.172767 0.172767i
\(750\) −1.42505 15.4986i −0.0520354 0.565929i
\(751\) 0.346967 0.346967i 0.0126610 0.0126610i −0.700748 0.713409i \(-0.747150\pi\)
0.713409 + 0.700748i \(0.247150\pi\)
\(752\) −12.6508 7.20877i −0.461328 0.262877i
\(753\) 19.1850i 0.699142i
\(754\) −1.36638 0.786303i −0.0497606 0.0286354i
\(755\) 22.5552 + 25.2939i 0.820867 + 0.920541i
\(756\) −11.8335 20.3629i −0.430380 0.740591i
\(757\) −21.9350 −0.797242 −0.398621 0.917116i \(-0.630511\pi\)
−0.398621 + 0.917116i \(0.630511\pi\)
\(758\) −4.49500 16.6811i −0.163266 0.605884i
\(759\) 24.4777i 0.888484i
\(760\) 0.180797 3.41263i 0.00655819 0.123789i
\(761\) 36.0644 1.30733 0.653666 0.756783i \(-0.273230\pi\)
0.653666 + 0.756783i \(0.273230\pi\)
\(762\) 13.7758 23.9385i 0.499044 0.867202i
\(763\) 12.2976 + 12.2976i 0.445203 + 0.445203i
\(764\) 21.5753 + 5.71567i 0.780566 + 0.206786i
\(765\) 1.55297 27.1319i 0.0561476 0.980958i
\(766\) 11.6173 + 43.1121i 0.419749 + 1.55770i
\(767\) 0.850051 0.0306936
\(768\) 13.5496 8.02875i 0.488928 0.289713i
\(769\) 4.51666i 0.162875i 0.996678 + 0.0814375i \(0.0259511\pi\)
−0.996678 + 0.0814375i \(0.974049\pi\)
\(770\) −14.1144 + 21.5733i −0.508648 + 0.777449i
\(771\) 1.23635 0.0445261
\(772\) −21.6022 + 12.5537i −0.777479 + 0.451817i
\(773\) 19.2603i 0.692743i −0.938097 0.346372i \(-0.887414\pi\)
0.938097 0.346372i \(-0.112586\pi\)
\(774\) 1.01049 + 0.581503i 0.0363214 + 0.0209017i
\(775\) 0.947380 8.24875i 0.0340309 0.296304i
\(776\) 28.4966 + 28.2556i 1.02297 + 1.01432i
\(777\) −7.46724 + 7.46724i −0.267886 + 0.267886i
\(778\) −9.73451 36.1251i −0.348999 1.29515i
\(779\) −1.32578 + 3.19578i −0.0475010 + 0.114501i
\(780\) −2.11077 + 1.07022i −0.0755776 + 0.0383199i
\(781\) 17.6004i 0.629792i
\(782\) −30.6138 + 53.1984i −1.09475 + 1.90237i
\(783\) −7.26123 7.26123i −0.259495 0.259495i
\(784\) −2.66539 + 4.67755i −0.0951927 + 0.167056i
\(785\) 12.3501 + 0.706892i 0.440795 + 0.0252300i
\(786\) −14.6338 + 3.94331i −0.521969 + 0.140653i
\(787\) −22.9556 22.9556i −0.818277 0.818277i 0.167581 0.985858i \(-0.446404\pi\)
−0.985858 + 0.167581i \(0.946404\pi\)
\(788\) −12.2807 + 46.3568i −0.437483 + 1.65139i
\(789\) 20.3774i 0.725453i
\(790\) 34.3615 + 22.4811i 1.22253 + 0.799840i
\(791\) 32.0489 32.0489i 1.13953 1.13953i
\(792\) 19.6956 0.0836251i 0.699852 0.00297149i
\(793\) 0.239360i 0.00849992i
\(794\) −51.2397 + 13.8074i −1.81843 + 0.490006i
\(795\) −23.1650 1.32591i −0.821577 0.0470251i
\(796\) 1.07200 4.04652i 0.0379959 0.143425i
\(797\) 32.4093 + 32.4093i 1.14800 + 1.14800i 0.986946 + 0.161052i \(0.0514887\pi\)
0.161052 + 0.986946i \(0.448511\pi\)
\(798\) 0.892109 1.55024i 0.0315803 0.0548779i
\(799\) 21.7823i 0.770602i
\(800\) −26.3797 10.2036i −0.932662 0.360751i
\(801\) 20.3934 20.3934i 0.720566 0.720566i
\(802\) 12.9471 3.48882i 0.457179 0.123195i
\(803\) 47.1993 1.66563
\(804\) 11.8973 6.91390i 0.419586 0.243834i
\(805\) 28.7823 25.6659i 1.01444 0.904602i
\(806\) −1.21902 + 0.328486i −0.0429383 + 0.0115704i
\(807\) 15.2126 0.535507
\(808\) 5.17595 0.0219765i 0.182089 0.000773130i
\(809\) 29.6375 29.6375i 1.04200 1.04200i 0.0429204 0.999078i \(-0.486334\pi\)
0.999078 0.0429204i \(-0.0136662\pi\)
\(810\) 3.77114 0.788188i 0.132504 0.0276941i
\(811\) −11.2130 −0.393743 −0.196872 0.980429i \(-0.563078\pi\)
−0.196872 + 0.980429i \(0.563078\pi\)
\(812\) 2.52528 9.53231i 0.0886199 0.334518i
\(813\) −0.794728 −0.0278723
\(814\) −5.69179 21.1224i −0.199497 0.740341i
\(815\) −40.6425 + 36.2418i −1.42365 + 1.26950i
\(816\) 20.4709 + 11.6649i 0.716626 + 0.408352i
\(817\) 0.219321i 0.00767308i
\(818\) 44.3461 11.9498i 1.55052 0.417814i
\(819\) 2.59631 0.0907225
\(820\) 21.7276 + 18.6524i 0.758760 + 0.651371i
\(821\) 1.27850 0.0446201 0.0223100 0.999751i \(-0.492898\pi\)
0.0223100 + 0.999751i \(0.492898\pi\)
\(822\) 3.13156 0.843852i 0.109226 0.0294327i
\(823\) 42.2416i 1.47245i −0.676738 0.736224i \(-0.736607\pi\)
0.676738 0.736224i \(-0.263393\pi\)
\(824\) −41.1519 + 0.174726i −1.43360 + 0.00608688i
\(825\) 10.4926 + 13.2155i 0.365306 + 0.460106i
\(826\) 1.38347 + 5.13410i 0.0481371 + 0.178638i
\(827\) −5.58556 −0.194229 −0.0971145 0.995273i \(-0.530961\pi\)
−0.0971145 + 0.995273i \(0.530961\pi\)
\(828\) −28.4796 7.54476i −0.989735 0.262198i
\(829\) −29.7227 −1.03231 −0.516156 0.856495i \(-0.672638\pi\)
−0.516156 + 0.856495i \(0.672638\pi\)
\(830\) −40.6636 26.6043i −1.41146 0.923448i
\(831\) 7.87967 7.87967i 0.273343 0.273343i
\(832\) 0.0365204 + 4.30061i 0.00126612 + 0.149097i
\(833\) −8.05385 −0.279050
\(834\) −9.31116 + 2.50905i −0.322419 + 0.0868812i
\(835\) −1.58639 + 27.7158i −0.0548992 + 0.959146i
\(836\) 1.86164 + 3.20349i 0.0643863 + 0.110795i
\(837\) −8.22381 −0.284256
\(838\) −30.6737 + 8.26554i −1.05961 + 0.285529i
\(839\) −27.2272 + 27.2272i −0.939986 + 0.939986i −0.998298 0.0583124i \(-0.981428\pi\)
0.0583124 + 0.998298i \(0.481428\pi\)
\(840\) −9.89915 11.0067i −0.341553 0.379768i
\(841\) 24.7004i 0.851737i
\(842\) −0.179898 + 0.312613i −0.00619968 + 0.0107733i
\(843\) −0.753460 0.753460i −0.0259505 0.0259505i
\(844\) 23.7004 + 6.27865i 0.815801 + 0.216120i
\(845\) −1.62419 + 28.3762i −0.0558737 + 0.976171i
\(846\) 10.0956 2.72043i 0.347094 0.0935302i
\(847\) 1.79473i 0.0616676i
\(848\) −20.8761 + 36.6359i −0.716889 + 1.25808i
\(849\) −2.50757 + 2.50757i −0.0860597 + 0.0860597i
\(850\) −6.27561 41.8447i −0.215252 1.43526i
\(851\) 32.7232i 1.12174i
\(852\) −9.76940 2.58809i −0.334694 0.0886664i
\(853\) −4.97627 4.97627i −0.170384 0.170384i 0.616764 0.787148i \(-0.288443\pi\)
−0.787148 + 0.616764i \(0.788443\pi\)
\(854\) −1.44568 + 0.389561i −0.0494700 + 0.0133305i
\(855\) 1.63324 + 1.83156i 0.0558556 + 0.0626379i
\(856\) −7.95386 + 0.0337712i −0.271857 + 0.00115427i
\(857\) −27.5935 27.5935i −0.942577 0.942577i 0.0558611 0.998439i \(-0.482210\pi\)
−0.998439 + 0.0558611i \(0.982210\pi\)
\(858\) 1.27977 2.22389i 0.0436906 0.0759224i
\(859\) 29.2969i 0.999599i 0.866141 + 0.499800i \(0.166593\pi\)
−0.866141 + 0.499800i \(0.833407\pi\)
\(860\) 1.72526 + 0.564358i 0.0588307 + 0.0192444i
\(861\) 5.72783 + 13.8496i 0.195204 + 0.471993i
\(862\) −6.96515 25.8479i −0.237234 0.880384i
\(863\) −15.0652 + 15.0652i −0.512825 + 0.512825i −0.915391 0.402566i \(-0.868118\pi\)
0.402566 + 0.915391i \(0.368118\pi\)
\(864\) −7.05904 + 27.1107i −0.240154 + 0.922323i
\(865\) 22.7487 20.2855i 0.773479 0.689728i
\(866\) 3.26124 + 1.87673i 0.110821 + 0.0637738i
\(867\) 18.5130i 0.628735i
\(868\) −3.96796 6.82800i −0.134681 0.231757i
\(869\) −44.5194 −1.51022
\(870\) −5.40127 3.53379i −0.183120 0.119807i
\(871\) 3.75755i 0.127320i
\(872\) −0.0878342 20.6869i −0.00297444 0.700547i
\(873\) −28.8169 −0.975305
\(874\) −1.44204 5.35147i −0.0487779 0.181016i
\(875\) −4.53768 + 26.1948i −0.153401 + 0.885547i
\(876\) −6.94051 + 26.1988i −0.234498 + 0.885174i
\(877\) −1.18587 1.18587i −0.0400442 0.0400442i 0.686801 0.726845i \(-0.259014\pi\)
−0.726845 + 0.686801i \(0.759014\pi\)
\(878\) −3.80350 + 6.60945i −0.128362 + 0.223058i
\(879\) 13.4961 0.455211
\(880\) 29.9901 6.40112i 1.01097 0.215782i
\(881\) 25.4990i 0.859083i 0.903047 + 0.429541i \(0.141325\pi\)
−0.903047 + 0.429541i \(0.858675\pi\)
\(882\) −1.00586 3.73278i −0.0338690 0.125689i
\(883\) 49.4771 1.66504 0.832518 0.553998i \(-0.186898\pi\)
0.832518 + 0.553998i \(0.186898\pi\)
\(884\) −5.56275 + 3.23268i −0.187096 + 0.108727i
\(885\) 3.47469 + 0.198883i 0.116800 + 0.00668537i
\(886\) 1.74598 + 1.00475i 0.0586572 + 0.0337551i
\(887\) 37.2624i 1.25115i 0.780164 + 0.625575i \(0.215135\pi\)
−0.780164 + 0.625575i \(0.784865\pi\)
\(888\) 12.5613 0.0533339i 0.421530 0.00178977i
\(889\) −33.3590 + 33.3590i −1.11882 + 1.11882i
\(890\) 24.5844 37.5763i 0.824069 1.25956i
\(891\) −2.95358 + 2.95358i −0.0989486 + 0.0989486i
\(892\) 51.0571 + 13.5259i 1.70952 + 0.452881i
\(893\) 1.39082 + 1.39082i 0.0465419 + 0.0465419i
\(894\) −8.36100 4.81146i −0.279634 0.160919i
\(895\) −14.8570 16.6611i −0.496616 0.556918i
\(896\) −25.9152 + 7.21987i −0.865765 + 0.241199i
\(897\) −2.71396 + 2.71396i −0.0906166 + 0.0906166i
\(898\) 8.89066 + 32.9935i 0.296685 + 1.10101i
\(899\) −2.43481 2.43481i −0.0812053 0.0812053i
\(900\) 18.6103 8.13466i 0.620343 0.271155i
\(901\) −63.0801 −2.10150
\(902\) −30.7845 4.02565i −1.02501 0.134040i
\(903\) 0.671785 + 0.671785i 0.0223556 + 0.0223556i
\(904\) −53.9123 + 0.228905i −1.79309 + 0.00761327i
\(905\) −17.0820 19.1562i −0.567824 0.636772i
\(906\) 10.5233 18.2867i 0.349615 0.607534i
\(907\) −35.2891 35.2891i −1.17176 1.17176i −0.981791 0.189966i \(-0.939162\pi\)
−0.189966 0.981791i \(-0.560838\pi\)
\(908\) 3.56781 + 6.13943i 0.118402 + 0.203744i
\(909\) −2.62818 + 2.62818i −0.0871711 + 0.0871711i
\(910\) 3.95687 0.827008i 0.131169 0.0274150i
\(911\) 12.6649 0.419606 0.209803 0.977744i \(-0.432718\pi\)
0.209803 + 0.977744i \(0.432718\pi\)
\(912\) −2.05190 + 0.562274i −0.0679451 + 0.0186187i
\(913\) 52.6847 1.74361
\(914\) −3.17503 11.7827i −0.105021 0.389736i
\(915\) −0.0560019 + 0.978412i −0.00185137 + 0.0323453i
\(916\) 1.90189 + 0.503845i 0.0628403 + 0.0166475i
\(917\) 25.8876 0.854885
\(918\) −40.4659 + 10.9042i −1.33557 + 0.359892i
\(919\) 24.6146 24.6146i 0.811961 0.811961i −0.172967 0.984928i \(-0.555335\pi\)
0.984928 + 0.172967i \(0.0553353\pi\)
\(920\) −45.8072 2.42681i −1.51022 0.0800096i
\(921\) 13.9438 13.9438i 0.459463 0.459463i
\(922\) 2.78265 + 10.3265i 0.0916418 + 0.340086i
\(923\) 1.95144 1.95144i 0.0642325 0.0642325i
\(924\) 15.5146 + 4.11009i 0.510393 + 0.135212i
\(925\) −14.0271 17.6673i −0.461209 0.580896i
\(926\) 12.6785 3.41644i 0.416643 0.112271i
\(927\) 20.8956 20.8956i 0.686301 0.686301i
\(928\) −10.1166 + 5.93664i −0.332092 + 0.194880i
\(929\) −8.97072 8.97072i −0.294320 0.294320i 0.544464 0.838784i \(-0.316733\pi\)
−0.838784 + 0.544464i \(0.816733\pi\)
\(930\) −5.05976 + 1.05752i −0.165916 + 0.0346774i
\(931\) 0.514245 0.514245i 0.0168537 0.0168537i
\(932\) 29.8473 17.3452i 0.977682 0.568161i
\(933\) 7.36692 7.36692i 0.241182 0.241182i
\(934\) −9.95627 5.72948i −0.325779 0.187474i
\(935\) 30.5320 + 34.2393i 0.998503 + 1.11975i
\(936\) −2.19302 2.17447i −0.0716810 0.0710748i
\(937\) 4.95111 0.161746 0.0808729 0.996724i \(-0.474229\pi\)
0.0808729 + 0.996724i \(0.474229\pi\)
\(938\) −22.6947 + 6.11547i −0.741009 + 0.199677i
\(939\) −6.71581 −0.219162
\(940\) 14.5195 7.36180i 0.473574 0.240115i
\(941\) 3.55700i 0.115955i 0.998318 + 0.0579775i \(0.0184652\pi\)
−0.998318 + 0.0579775i \(0.981535\pi\)
\(942\) −2.00376 7.43603i −0.0652861 0.242279i
\(943\) 42.8965 + 17.7958i 1.39690 + 0.579510i
\(944\) 3.13136 5.49529i 0.101917 0.178856i
\(945\) 26.2885 + 1.50469i 0.855164 + 0.0489475i
\(946\) −1.90026 + 0.512058i −0.0617829 + 0.0166484i
\(947\) −7.19716 + 7.19716i −0.233876 + 0.233876i −0.814309 0.580432i \(-0.802884\pi\)
0.580432 + 0.814309i \(0.302884\pi\)
\(948\) 6.54645 24.7113i 0.212619 0.802584i
\(949\) −5.23322 5.23322i −0.169877 0.169877i
\(950\) 3.07252 + 2.27112i 0.0996858 + 0.0736848i
\(951\) 0.242790 0.00787300
\(952\) −28.5781 28.3364i −0.926221 0.918389i
\(953\) −6.76768 + 6.76768i −0.219227 + 0.219227i −0.808173 0.588946i \(-0.799543\pi\)
0.588946 + 0.808173i \(0.299543\pi\)
\(954\) −7.87817 29.2362i −0.255065 0.946556i
\(955\) −18.6246 + 16.6080i −0.602678 + 0.537422i
\(956\) 7.56496 + 2.00409i 0.244668 + 0.0648169i
\(957\) 6.99800 0.226213
\(958\) −20.1751 + 35.0587i −0.651827 + 1.13270i
\(959\) −5.53985 −0.178891
\(960\) −0.856912 + 17.5878i −0.0276567 + 0.567643i
\(961\) 28.2424 0.911046
\(962\) −1.71087 + 2.97302i −0.0551607 + 0.0958541i
\(963\) 4.03870 4.03870i 0.130145 0.130145i
\(964\) 2.07867 + 3.57695i 0.0669495 + 0.115206i
\(965\) 1.59627 27.8884i 0.0513856 0.897760i
\(966\) −20.8087 11.9747i −0.669508 0.385278i
\(967\) 26.0334i 0.837179i −0.908176 0.418590i \(-0.862525\pi\)
0.908176 0.418590i \(-0.137475\pi\)
\(968\) −1.50313 + 1.51595i −0.0483124 + 0.0487244i
\(969\) −2.25055 2.25055i −0.0722982 0.0722982i
\(970\) −43.9180 + 9.17911i −1.41012 + 0.294723i
\(971\) 22.7261 22.7261i 0.729316 0.729316i −0.241167 0.970484i \(-0.577530\pi\)
0.970484 + 0.241167i \(0.0775303\pi\)
\(972\) −16.1349 27.7646i −0.517527 0.890551i
\(973\) 16.4718 0.528061
\(974\) 20.7519 36.0612i 0.664935 1.15548i
\(975\) 0.301903 2.62864i 0.00966863 0.0841838i
\(976\) 1.54738 + 0.881738i 0.0495304 + 0.0282237i
\(977\) 5.89849i 0.188709i 0.995539 + 0.0943547i \(0.0300788\pi\)
−0.995539 + 0.0943547i \(0.969921\pi\)
\(978\) 29.3832 + 16.9090i 0.939571 + 0.540690i
\(979\) 48.6846i 1.55597i
\(980\) −2.72197 5.36849i −0.0869503 0.171490i
\(981\) 10.5041 + 10.5041i 0.335371 + 0.335371i
\(982\) −14.1208 + 3.80508i −0.450613 + 0.121425i
\(983\) 25.4145 + 25.4145i 0.810596 + 0.810596i 0.984723 0.174127i \(-0.0557105\pi\)
−0.174127 + 0.984723i \(0.555710\pi\)
\(984\) 6.76127 16.4955i 0.215542 0.525857i
\(985\) −35.6841 40.0170i −1.13699 1.27505i
\(986\) −15.2090 8.75226i −0.484354 0.278729i
\(987\) 8.52020 0.271201
\(988\) 0.148777 0.561596i 0.00473322 0.0178667i
\(989\) 2.94392 0.0936112
\(990\) −12.0560 + 18.4271i −0.383163 + 0.585651i
\(991\) −28.4839 + 28.4839i −0.904821 + 0.904821i −0.995848 0.0910270i \(-0.970985\pi\)
0.0910270 + 0.995848i \(0.470985\pi\)
\(992\) −2.36701 + 9.09063i −0.0751526 + 0.288628i
\(993\) 3.83883 + 3.83883i 0.121822 + 0.121822i
\(994\) 14.9622 + 8.61024i 0.474573 + 0.273100i
\(995\) 3.11489 + 3.49312i 0.0987486 + 0.110739i
\(996\) −7.74713 + 29.2435i −0.245477 + 0.926616i
\(997\) 30.8316i 0.976448i −0.872718 0.488224i \(-0.837645\pi\)
0.872718 0.488224i \(-0.162355\pi\)
\(998\) −21.0499 + 36.5789i −0.666322 + 1.15789i
\(999\) −15.7993 + 15.7993i −0.499867 + 0.499867i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.j.c.747.69 yes 240
4.3 odd 2 inner 820.2.j.c.747.10 yes 240
5.3 odd 4 820.2.s.c.583.111 yes 240
20.3 even 4 820.2.s.c.583.52 yes 240
41.32 even 4 820.2.s.c.647.52 yes 240
164.155 odd 4 820.2.s.c.647.111 yes 240
205.73 odd 4 inner 820.2.j.c.483.10 240
820.483 even 4 inner 820.2.j.c.483.69 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.j.c.483.10 240 205.73 odd 4 inner
820.2.j.c.483.69 yes 240 820.483 even 4 inner
820.2.j.c.747.10 yes 240 4.3 odd 2 inner
820.2.j.c.747.69 yes 240 1.1 even 1 trivial
820.2.s.c.583.52 yes 240 20.3 even 4
820.2.s.c.583.111 yes 240 5.3 odd 4
820.2.s.c.647.52 yes 240 41.32 even 4
820.2.s.c.647.111 yes 240 164.155 odd 4