Properties

Label 820.2.j.c.483.10
Level $820$
Weight $2$
Character 820.483
Analytic conductor $6.548$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(483,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.483"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [240,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(120\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 483.10
Character \(\chi\) \(=\) 820.483
Dual form 820.2.j.c.747.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36551 + 0.367958i) q^{2} +0.984353i q^{3} +(1.72921 - 1.00490i) q^{4} +(0.127778 + 2.23241i) q^{5} +(-0.362201 - 1.34414i) q^{6} -2.37783 q^{7} +(-1.99149 + 2.00847i) q^{8} +2.03105 q^{9} +(-0.995917 - 3.00136i) q^{10} +(2.42433 + 2.42433i) q^{11} +(0.989175 + 1.70216i) q^{12} +0.537595 q^{13} +(3.24694 - 0.874943i) q^{14} +(-2.19748 + 0.125779i) q^{15} +(1.98036 - 3.47537i) q^{16} +5.98392 q^{17} +(-2.77341 + 0.747341i) q^{18} +(0.382078 + 0.382078i) q^{19} +(2.46431 + 3.73192i) q^{20} -2.34063i q^{21} +(-4.20249 - 2.41839i) q^{22} +(-5.12858 + 5.12858i) q^{23} +(-1.97705 - 1.96033i) q^{24} +(-4.96735 + 0.570507i) q^{25} +(-0.734089 + 0.197813i) q^{26} +4.95233i q^{27} +(-4.11178 + 2.38948i) q^{28} +(-1.46623 - 1.46623i) q^{29} +(2.95440 - 0.980334i) q^{30} +1.66059i q^{31} +(-1.42540 + 5.47433i) q^{32} +(-2.38640 + 2.38640i) q^{33} +(-8.17108 + 2.20183i) q^{34} +(-0.303835 - 5.30831i) q^{35} +(3.51212 - 2.04100i) q^{36} +(3.19027 - 3.19027i) q^{37} +(-0.662319 - 0.381141i) q^{38} +0.529183i q^{39} +(-4.73821 - 4.18919i) q^{40} +(5.91705 + 2.44714i) q^{41} +(0.861253 + 3.19614i) q^{42} +(-0.287011 - 0.287011i) q^{43} +(6.62840 + 1.75598i) q^{44} +(0.259523 + 4.53414i) q^{45} +(5.11601 - 8.89022i) q^{46} -3.64014i q^{47} +(3.42099 + 1.94937i) q^{48} -1.34592 q^{49} +(6.57302 - 2.60681i) q^{50} +5.89029i q^{51} +(0.929617 - 0.540229i) q^{52} -10.5416 q^{53} +(-1.82225 - 6.76243i) q^{54} +(-5.10234 + 5.72189i) q^{55} +(4.73543 - 4.77581i) q^{56} +(-0.376100 + 0.376100i) q^{57} +(2.54165 + 1.46263i) q^{58} -1.58121 q^{59} +(-3.67352 + 2.42575i) q^{60} -0.445242i q^{61} +(-0.611030 - 2.26755i) q^{62} -4.82949 q^{63} +(-0.0679329 - 7.99971i) q^{64} +(0.0686928 + 1.20013i) q^{65} +(2.38055 - 4.13674i) q^{66} +6.98956i q^{67} +(10.3475 - 6.01323i) q^{68} +(-5.04834 - 5.04834i) q^{69} +(2.36812 + 7.13672i) q^{70} +(-3.62995 - 3.62995i) q^{71} +(-4.04481 + 4.07931i) q^{72} +(-9.73449 + 9.73449i) q^{73} +(-3.18245 + 5.53023i) q^{74} +(-0.561580 - 4.88962i) q^{75} +(1.04464 + 0.276745i) q^{76} +(-5.76465 - 5.76465i) q^{77} +(-0.194717 - 0.722603i) q^{78} +(-9.18180 + 9.18180i) q^{79} +(8.01151 + 3.97690i) q^{80} +1.21831 q^{81} +(-8.98022 - 1.16435i) q^{82} +(10.8658 - 10.8658i) q^{83} +(-2.35209 - 4.04744i) q^{84} +(0.764613 + 13.3586i) q^{85} +(0.497523 + 0.286307i) q^{86} +(1.44328 - 1.44328i) q^{87} +(-9.69724 + 0.0411734i) q^{88} +(10.0408 + 10.0408i) q^{89} +(-2.02276 - 6.09590i) q^{90} -1.27831 q^{91} +(-3.71471 + 14.0221i) q^{92} -1.63461 q^{93} +(1.33942 + 4.97063i) q^{94} +(-0.804136 + 0.901778i) q^{95} +(-5.38867 - 1.40310i) q^{96} -14.1882 q^{97} +(1.83786 - 0.495241i) q^{98} +(4.92394 + 4.92394i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240 q - 4 q^{6} + 12 q^{8} - 240 q^{9} - 20 q^{10} - 32 q^{13} - 8 q^{14} + 8 q^{16} + 32 q^{17} - 12 q^{18} + 16 q^{20} - 28 q^{22} + 12 q^{24} - 16 q^{25} - 8 q^{28} - 10 q^{30} + 24 q^{33} - 20 q^{34}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36551 + 0.367958i −0.965559 + 0.260186i
\(3\) 0.984353i 0.568317i 0.958777 + 0.284158i \(0.0917141\pi\)
−0.958777 + 0.284158i \(0.908286\pi\)
\(4\) 1.72921 1.00490i 0.864607 0.502449i
\(5\) 0.127778 + 2.23241i 0.0571441 + 0.998366i
\(6\) −0.362201 1.34414i −0.147868 0.548743i
\(7\) −2.37783 −0.898736 −0.449368 0.893347i \(-0.648351\pi\)
−0.449368 + 0.893347i \(0.648351\pi\)
\(8\) −1.99149 + 2.00847i −0.704098 + 0.710103i
\(9\) 2.03105 0.677016
\(10\) −0.995917 3.00136i −0.314937 0.949113i
\(11\) 2.42433 + 2.42433i 0.730964 + 0.730964i 0.970811 0.239847i \(-0.0770973\pi\)
−0.239847 + 0.970811i \(0.577097\pi\)
\(12\) 0.989175 + 1.70216i 0.285550 + 0.491370i
\(13\) 0.537595 0.149102 0.0745510 0.997217i \(-0.476248\pi\)
0.0745510 + 0.997217i \(0.476248\pi\)
\(14\) 3.24694 0.874943i 0.867782 0.233838i
\(15\) −2.19748 + 0.125779i −0.567388 + 0.0324759i
\(16\) 1.98036 3.47537i 0.495089 0.868842i
\(17\) 5.98392 1.45131 0.725657 0.688057i \(-0.241536\pi\)
0.725657 + 0.688057i \(0.241536\pi\)
\(18\) −2.77341 + 0.747341i −0.653699 + 0.176150i
\(19\) 0.382078 + 0.382078i 0.0876548 + 0.0876548i 0.749575 0.661920i \(-0.230258\pi\)
−0.661920 + 0.749575i \(0.730258\pi\)
\(20\) 2.46431 + 3.73192i 0.551035 + 0.834482i
\(21\) 2.34063i 0.510766i
\(22\) −4.20249 2.41839i −0.895975 0.515602i
\(23\) −5.12858 + 5.12858i −1.06938 + 1.06938i −0.0719776 + 0.997406i \(0.522931\pi\)
−0.997406 + 0.0719776i \(0.977069\pi\)
\(24\) −1.97705 1.96033i −0.403563 0.400151i
\(25\) −4.96735 + 0.570507i −0.993469 + 0.114101i
\(26\) −0.734089 + 0.197813i −0.143967 + 0.0387942i
\(27\) 4.95233i 0.953076i
\(28\) −4.11178 + 2.38948i −0.777053 + 0.451569i
\(29\) −1.46623 1.46623i −0.272271 0.272271i 0.557743 0.830014i \(-0.311668\pi\)
−0.830014 + 0.557743i \(0.811668\pi\)
\(30\) 2.95440 0.980334i 0.539396 0.178984i
\(31\) 1.66059i 0.298252i 0.988818 + 0.149126i \(0.0476459\pi\)
−0.988818 + 0.149126i \(0.952354\pi\)
\(32\) −1.42540 + 5.47433i −0.251977 + 0.967733i
\(33\) −2.38640 + 2.38640i −0.415419 + 0.415419i
\(34\) −8.17108 + 2.20183i −1.40133 + 0.377611i
\(35\) −0.303835 5.30831i −0.0513574 0.897267i
\(36\) 3.51212 2.04100i 0.585353 0.340166i
\(37\) 3.19027 3.19027i 0.524478 0.524478i −0.394443 0.918921i \(-0.629062\pi\)
0.918921 + 0.394443i \(0.129062\pi\)
\(38\) −0.662319 0.381141i −0.107442 0.0618293i
\(39\) 0.529183i 0.0847372i
\(40\) −4.73821 4.18919i −0.749177 0.662369i
\(41\) 5.91705 + 2.44714i 0.924089 + 0.382178i
\(42\) 0.861253 + 3.19614i 0.132894 + 0.493175i
\(43\) −0.287011 0.287011i −0.0437687 0.0437687i 0.684884 0.728652i \(-0.259853\pi\)
−0.728652 + 0.684884i \(0.759853\pi\)
\(44\) 6.62840 + 1.75598i 0.999268 + 0.264724i
\(45\) 0.259523 + 4.53414i 0.0386875 + 0.675910i
\(46\) 5.11601 8.89022i 0.754314 1.31079i
\(47\) 3.64014i 0.530969i −0.964115 0.265484i \(-0.914468\pi\)
0.964115 0.265484i \(-0.0855319\pi\)
\(48\) 3.42099 + 1.94937i 0.493777 + 0.281367i
\(49\) −1.34592 −0.192274
\(50\) 6.57302 2.60681i 0.929565 0.368658i
\(51\) 5.89029i 0.824806i
\(52\) 0.929617 0.540229i 0.128915 0.0749162i
\(53\) −10.5416 −1.44800 −0.724000 0.689800i \(-0.757698\pi\)
−0.724000 + 0.689800i \(0.757698\pi\)
\(54\) −1.82225 6.76243i −0.247977 0.920251i
\(55\) −5.10234 + 5.72189i −0.687999 + 0.771540i
\(56\) 4.73543 4.77581i 0.632798 0.638195i
\(57\) −0.376100 + 0.376100i −0.0498157 + 0.0498157i
\(58\) 2.54165 + 1.46263i 0.333735 + 0.192053i
\(59\) −1.58121 −0.205856 −0.102928 0.994689i \(-0.532821\pi\)
−0.102928 + 0.994689i \(0.532821\pi\)
\(60\) −3.67352 + 2.42575i −0.474250 + 0.313163i
\(61\) 0.445242i 0.0570074i −0.999594 0.0285037i \(-0.990926\pi\)
0.999594 0.0285037i \(-0.00907424\pi\)
\(62\) −0.611030 2.26755i −0.0776008 0.287979i
\(63\) −4.82949 −0.608459
\(64\) −0.0679329 7.99971i −0.00849161 0.999964i
\(65\) 0.0686928 + 1.20013i 0.00852030 + 0.148858i
\(66\) 2.38055 4.13674i 0.293025 0.509197i
\(67\) 6.98956i 0.853911i 0.904273 + 0.426955i \(0.140414\pi\)
−0.904273 + 0.426955i \(0.859586\pi\)
\(68\) 10.3475 6.01323i 1.25482 0.729212i
\(69\) −5.04834 5.04834i −0.607749 0.607749i
\(70\) 2.36812 + 7.13672i 0.283045 + 0.853002i
\(71\) −3.62995 3.62995i −0.430796 0.430796i 0.458103 0.888899i \(-0.348529\pi\)
−0.888899 + 0.458103i \(0.848529\pi\)
\(72\) −4.04481 + 4.07931i −0.476686 + 0.480751i
\(73\) −9.73449 + 9.73449i −1.13934 + 1.13934i −0.150767 + 0.988569i \(0.548174\pi\)
−0.988569 + 0.150767i \(0.951826\pi\)
\(74\) −3.18245 + 5.53023i −0.369952 + 0.642876i
\(75\) −0.561580 4.88962i −0.0648457 0.564605i
\(76\) 1.04464 + 0.276745i 0.119829 + 0.0317448i
\(77\) −5.76465 5.76465i −0.656943 0.656943i
\(78\) −0.194717 0.722603i −0.0220474 0.0818187i
\(79\) −9.18180 + 9.18180i −1.03303 + 1.03303i −0.0335972 + 0.999435i \(0.510696\pi\)
−0.999435 + 0.0335972i \(0.989304\pi\)
\(80\) 8.01151 + 3.97690i 0.895714 + 0.444631i
\(81\) 1.21831 0.135367
\(82\) −8.98022 1.16435i −0.991699 0.128581i
\(83\) 10.8658 10.8658i 1.19268 1.19268i 0.216366 0.976312i \(-0.430579\pi\)
0.976312 0.216366i \(-0.0694205\pi\)
\(84\) −2.35209 4.04744i −0.256634 0.441612i
\(85\) 0.764613 + 13.3586i 0.0829340 + 1.44894i
\(86\) 0.497523 + 0.286307i 0.0536493 + 0.0308733i
\(87\) 1.44328 1.44328i 0.154736 0.154736i
\(88\) −9.69724 + 0.0411734i −1.03373 + 0.00438909i
\(89\) 10.0408 + 10.0408i 1.06433 + 1.06433i 0.997784 + 0.0665422i \(0.0211967\pi\)
0.0665422 + 0.997784i \(0.478803\pi\)
\(90\) −2.02276 6.09590i −0.213217 0.642565i
\(91\) −1.27831 −0.134003
\(92\) −3.71471 + 14.0221i −0.387285 + 1.46191i
\(93\) −1.63461 −0.169501
\(94\) 1.33942 + 4.97063i 0.138151 + 0.512681i
\(95\) −0.804136 + 0.901778i −0.0825026 + 0.0925205i
\(96\) −5.38867 1.40310i −0.549979 0.143203i
\(97\) −14.1882 −1.44059 −0.720296 0.693666i \(-0.755994\pi\)
−0.720296 + 0.693666i \(0.755994\pi\)
\(98\) 1.83786 0.495241i 0.185652 0.0500269i
\(99\) 4.92394 + 4.92394i 0.494874 + 0.494874i
\(100\) −8.01630 + 5.97821i −0.801630 + 0.597821i
\(101\) −1.29400 1.29400i −0.128758 0.128758i 0.639791 0.768549i \(-0.279021\pi\)
−0.768549 + 0.639791i \(0.779021\pi\)
\(102\) −2.16738 8.04323i −0.214603 0.796398i
\(103\) −10.2881 10.2881i −1.01371 1.01371i −0.999905 0.0138097i \(-0.995604\pi\)
−0.0138097 0.999905i \(-0.504396\pi\)
\(104\) −1.07062 + 1.07975i −0.104982 + 0.105878i
\(105\) 5.22525 0.299081i 0.509932 0.0291873i
\(106\) 14.3946 3.87887i 1.39813 0.376749i
\(107\) −1.98848 1.98848i −0.192234 0.192234i 0.604427 0.796661i \(-0.293402\pi\)
−0.796661 + 0.604427i \(0.793402\pi\)
\(108\) 4.97659 + 8.56363i 0.478872 + 0.824036i
\(109\) 5.17177 5.17177i 0.495366 0.495366i −0.414626 0.909992i \(-0.636088\pi\)
0.909992 + 0.414626i \(0.136088\pi\)
\(110\) 4.86186 9.69072i 0.463560 0.923974i
\(111\) 3.14036 + 3.14036i 0.298069 + 0.298069i
\(112\) −4.70896 + 8.26384i −0.444955 + 0.780860i
\(113\) 13.4782 + 13.4782i 1.26792 + 1.26792i 0.947160 + 0.320761i \(0.103939\pi\)
0.320761 + 0.947160i \(0.396061\pi\)
\(114\) 0.375178 0.651956i 0.0351386 0.0610613i
\(115\) −12.1044 10.7938i −1.12875 1.00653i
\(116\) −4.00882 1.06201i −0.372210 0.0986050i
\(117\) 1.09188 0.100945
\(118\) 2.15915 0.581820i 0.198766 0.0535609i
\(119\) −14.2288 −1.30435
\(120\) 4.12364 4.66408i 0.376436 0.425770i
\(121\) 0.754776i 0.0686160i
\(122\) 0.163830 + 0.607981i 0.0148325 + 0.0550440i
\(123\) −2.40885 + 5.82447i −0.217198 + 0.525175i
\(124\) 1.66873 + 2.87152i 0.149856 + 0.257870i
\(125\) −1.90832 11.0163i −0.170686 0.985326i
\(126\) 6.59470 1.77705i 0.587503 0.158312i
\(127\) 14.0292 + 14.0292i 1.24489 + 1.24489i 0.957949 + 0.286938i \(0.0926374\pi\)
0.286938 + 0.957949i \(0.407363\pi\)
\(128\) 3.03632 + 10.8987i 0.268376 + 0.963314i
\(129\) 0.282520 0.282520i 0.0248745 0.0248745i
\(130\) −0.535400 1.61352i −0.0469577 0.141515i
\(131\) −10.8871 −0.951209 −0.475604 0.879659i \(-0.657771\pi\)
−0.475604 + 0.879659i \(0.657771\pi\)
\(132\) −1.72850 + 6.52468i −0.150447 + 0.567901i
\(133\) −0.908518 0.908518i −0.0787785 0.0787785i
\(134\) −2.57187 9.54429i −0.222175 0.824501i
\(135\) −11.0556 + 0.632799i −0.951519 + 0.0544626i
\(136\) −11.9169 + 12.0185i −1.02187 + 1.03058i
\(137\) −2.32979 −0.199047 −0.0995236 0.995035i \(-0.531732\pi\)
−0.0995236 + 0.995035i \(0.531732\pi\)
\(138\) 8.75111 + 5.03596i 0.744944 + 0.428689i
\(139\) −6.92723 −0.587560 −0.293780 0.955873i \(-0.594913\pi\)
−0.293780 + 0.955873i \(0.594913\pi\)
\(140\) −5.85970 8.87387i −0.495235 0.749979i
\(141\) 3.58318 0.301758
\(142\) 6.29239 + 3.62105i 0.528046 + 0.303872i
\(143\) 1.30331 + 1.30331i 0.108988 + 0.108988i
\(144\) 4.02220 7.05864i 0.335184 0.588220i
\(145\) 3.08587 3.46057i 0.256268 0.287385i
\(146\) 9.71062 16.8744i 0.803657 1.39654i
\(147\) 1.32486i 0.109272i
\(148\) 2.31076 8.72257i 0.189944 0.716991i
\(149\) 4.89996 4.89996i 0.401420 0.401420i −0.477313 0.878733i \(-0.658389\pi\)
0.878733 + 0.477313i \(0.158389\pi\)
\(150\) 2.56602 + 6.47017i 0.209515 + 0.528287i
\(151\) 10.7169 + 10.7169i 0.872129 + 0.872129i 0.992704 0.120575i \(-0.0384739\pi\)
−0.120575 + 0.992704i \(0.538474\pi\)
\(152\) −1.52830 + 0.00648898i −0.123961 + 0.000526326i
\(153\) 12.1536 0.982563
\(154\) 9.99282 + 5.75052i 0.805245 + 0.463390i
\(155\) −3.70713 + 0.212187i −0.297764 + 0.0170433i
\(156\) 0.531776 + 0.915071i 0.0425761 + 0.0732643i
\(157\) 5.53219i 0.441517i −0.975329 0.220758i \(-0.929147\pi\)
0.975329 0.220758i \(-0.0708532\pi\)
\(158\) 9.15928 15.9163i 0.728673 1.26623i
\(159\) 10.3767i 0.822922i
\(160\) −12.4031 2.48258i −0.980551 0.196265i
\(161\) 12.1949 12.1949i 0.961094 0.961094i
\(162\) −1.66360 + 0.448286i −0.130705 + 0.0352207i
\(163\) 17.2200 17.2200i 1.34877 1.34877i 0.461780 0.886994i \(-0.347211\pi\)
0.886994 0.461780i \(-0.152789\pi\)
\(164\) 12.6910 1.71442i 0.990998 0.133874i
\(165\) −5.63236 5.02250i −0.438479 0.391001i
\(166\) −10.8392 + 18.8355i −0.841283 + 1.46192i
\(167\) 12.4152 0.960716 0.480358 0.877072i \(-0.340507\pi\)
0.480358 + 0.877072i \(0.340507\pi\)
\(168\) 4.70109 + 4.66133i 0.362697 + 0.359630i
\(169\) −12.7110 −0.977769
\(170\) −5.95949 17.9599i −0.457072 1.37746i
\(171\) 0.776020 + 0.776020i 0.0593437 + 0.0593437i
\(172\) −0.784720 0.207886i −0.0598343 0.0158512i
\(173\) 9.63849 9.63849i 0.732801 0.732801i −0.238373 0.971174i \(-0.576614\pi\)
0.971174 + 0.238373i \(0.0766140\pi\)
\(174\) −1.43974 + 2.50188i −0.109147 + 0.189667i
\(175\) 11.8115 1.35657i 0.892866 0.102547i
\(176\) 13.2265 3.62440i 0.996984 0.273200i
\(177\) 1.55647i 0.116991i
\(178\) −17.4054 10.0162i −1.30459 0.750746i
\(179\) −7.05919 7.05919i −0.527629 0.527629i 0.392236 0.919865i \(-0.371702\pi\)
−0.919865 + 0.392236i \(0.871702\pi\)
\(180\) 5.00512 + 7.57970i 0.373060 + 0.564958i
\(181\) 8.11635 + 8.11635i 0.603284 + 0.603284i 0.941182 0.337899i \(-0.109716\pi\)
−0.337899 + 0.941182i \(0.609716\pi\)
\(182\) 1.74554 0.470365i 0.129388 0.0348658i
\(183\) 0.438275 0.0323982
\(184\) −0.0871007 20.5142i −0.00642115 1.51232i
\(185\) 7.52966 + 6.71437i 0.553592 + 0.493650i
\(186\) 2.23207 0.601469i 0.163663 0.0441018i
\(187\) 14.5070 + 14.5070i 1.06086 + 1.06086i
\(188\) −3.65797 6.29458i −0.266785 0.459079i
\(189\) 11.7758i 0.856564i
\(190\) 0.766235 1.52727i 0.0555886 0.110800i
\(191\) 7.89114 7.89114i 0.570983 0.570983i −0.361420 0.932403i \(-0.617708\pi\)
0.932403 + 0.361420i \(0.117708\pi\)
\(192\) 7.87454 0.0668700i 0.568296 0.00482592i
\(193\) 12.4925 0.899229 0.449614 0.893223i \(-0.351561\pi\)
0.449614 + 0.893223i \(0.351561\pi\)
\(194\) 19.3741 5.22066i 1.39098 0.374822i
\(195\) −1.18136 + 0.0676180i −0.0845987 + 0.00484223i
\(196\) −2.32738 + 1.35251i −0.166241 + 0.0966078i
\(197\) 16.9550 + 16.9550i 1.20799 + 1.20799i 0.971676 + 0.236317i \(0.0759404\pi\)
0.236317 + 0.971676i \(0.424060\pi\)
\(198\) −8.53547 4.91186i −0.606589 0.349071i
\(199\) 1.48001 + 1.48001i 0.104915 + 0.104915i 0.757616 0.652701i \(-0.226364\pi\)
−0.652701 + 0.757616i \(0.726364\pi\)
\(200\) 8.74657 11.1129i 0.618476 0.785804i
\(201\) −6.88020 −0.485292
\(202\) 2.24310 + 1.29083i 0.157824 + 0.0908222i
\(203\) 3.48644 + 3.48644i 0.244700 + 0.244700i
\(204\) 5.91915 + 10.1856i 0.414423 + 0.713132i
\(205\) −4.70695 + 13.5220i −0.328748 + 0.944418i
\(206\) 17.8340 + 10.2628i 1.24255 + 0.715046i
\(207\) −10.4164 + 10.4164i −0.723990 + 0.723990i
\(208\) 1.06463 1.86834i 0.0738188 0.129546i
\(209\) 1.85257i 0.128145i
\(210\) −7.02506 + 2.33107i −0.484775 + 0.160859i
\(211\) 8.66840 8.66840i 0.596758 0.596758i −0.342691 0.939448i \(-0.611338\pi\)
0.939448 + 0.342691i \(0.111338\pi\)
\(212\) −18.2287 + 10.5932i −1.25195 + 0.727546i
\(213\) 3.57315 3.57315i 0.244828 0.244828i
\(214\) 3.44696 + 1.98361i 0.235630 + 0.135597i
\(215\) 0.604053 0.677401i 0.0411961 0.0461983i
\(216\) −9.94662 9.86251i −0.676782 0.671059i
\(217\) 3.94861i 0.268049i
\(218\) −5.15909 + 8.96508i −0.349418 + 0.607192i
\(219\) −9.58218 9.58218i −0.647504 0.647504i
\(220\) −3.07311 + 15.0217i −0.207189 + 1.01276i
\(221\) 3.21693 0.216394
\(222\) −5.44370 3.13266i −0.365357 0.210250i
\(223\) 18.6741 18.6741i 1.25051 1.25051i 0.295019 0.955491i \(-0.404674\pi\)
0.955491 0.295019i \(-0.0953260\pi\)
\(224\) 3.38936 13.0170i 0.226461 0.869737i
\(225\) −10.0889 + 1.15873i −0.672595 + 0.0772485i
\(226\) −23.3640 13.4451i −1.55415 0.894357i
\(227\) 3.55042i 0.235650i −0.993034 0.117825i \(-0.962408\pi\)
0.993034 0.117825i \(-0.0375921\pi\)
\(228\) −0.272415 + 1.02830i −0.0180411 + 0.0681008i
\(229\) −0.695616 + 0.695616i −0.0459676 + 0.0459676i −0.729717 0.683749i \(-0.760348\pi\)
0.683749 + 0.729717i \(0.260348\pi\)
\(230\) 20.5004 + 10.2851i 1.35175 + 0.678178i
\(231\) 5.67446 5.67446i 0.373352 0.373352i
\(232\) 5.86485 0.0249015i 0.385046 0.00163486i
\(233\) −17.2606 −1.13078 −0.565391 0.824823i \(-0.691275\pi\)
−0.565391 + 0.824823i \(0.691275\pi\)
\(234\) −1.49097 + 0.401767i −0.0974678 + 0.0262643i
\(235\) 8.12630 0.465130i 0.530101 0.0303417i
\(236\) −2.73425 + 1.58896i −0.177985 + 0.103432i
\(237\) −9.03813 9.03813i −0.587090 0.587090i
\(238\) 19.4295 5.23559i 1.25942 0.339373i
\(239\) 2.76688 2.76688i 0.178975 0.178975i −0.611934 0.790909i \(-0.709608\pi\)
0.790909 + 0.611934i \(0.209608\pi\)
\(240\) −3.91468 + 7.88615i −0.252691 + 0.509049i
\(241\) 2.06854i 0.133246i 0.997778 + 0.0666232i \(0.0212225\pi\)
−0.997778 + 0.0666232i \(0.978777\pi\)
\(242\) −0.277726 1.03065i −0.0178529 0.0662527i
\(243\) 16.0562i 1.03001i
\(244\) −0.447423 0.769918i −0.0286433 0.0492890i
\(245\) −0.171978 3.00464i −0.0109873 0.191960i
\(246\) 1.14613 8.83970i 0.0730746 0.563599i
\(247\) 0.205403 + 0.205403i 0.0130695 + 0.0130695i
\(248\) −3.33526 3.30706i −0.211789 0.209998i
\(249\) 10.6958 + 10.6958i 0.677819 + 0.677819i
\(250\) 6.65936 + 14.3406i 0.421175 + 0.906979i
\(251\) 19.4900 1.23020 0.615099 0.788450i \(-0.289116\pi\)
0.615099 + 0.788450i \(0.289116\pi\)
\(252\) −8.35122 + 4.85315i −0.526078 + 0.305720i
\(253\) −24.8668 −1.56336
\(254\) −24.3191 13.9948i −1.52591 0.878109i
\(255\) −13.1496 + 0.752650i −0.823458 + 0.0471327i
\(256\) −8.15637 13.7649i −0.509773 0.860309i
\(257\) 1.25600i 0.0783474i 0.999232 + 0.0391737i \(0.0124726\pi\)
−0.999232 + 0.0391737i \(0.987527\pi\)
\(258\) −0.281827 + 0.489738i −0.0175458 + 0.0304898i
\(259\) −7.58594 + 7.58594i −0.471367 + 0.471367i
\(260\) 1.32480 + 2.00626i 0.0821605 + 0.124423i
\(261\) −2.97798 2.97798i −0.184332 0.184332i
\(262\) 14.8664 4.00599i 0.918448 0.247491i
\(263\) 20.7013 1.27649 0.638247 0.769831i \(-0.279660\pi\)
0.638247 + 0.769831i \(0.279660\pi\)
\(264\) −0.0405291 9.54551i −0.00249440 0.587486i
\(265\) −1.34698 23.5332i −0.0827446 1.44563i
\(266\) 1.57488 + 0.906290i 0.0965623 + 0.0555682i
\(267\) −9.88372 + 9.88372i −0.604874 + 0.604874i
\(268\) 7.02380 + 12.0864i 0.429047 + 0.738297i
\(269\) 15.4544i 0.942270i 0.882061 + 0.471135i \(0.156155\pi\)
−0.882061 + 0.471135i \(0.843845\pi\)
\(270\) 14.8637 4.93211i 0.904577 0.300159i
\(271\) 0.807361i 0.0490437i 0.999699 + 0.0245218i \(0.00780633\pi\)
−0.999699 + 0.0245218i \(0.992194\pi\)
\(272\) 11.8503 20.7963i 0.718530 1.26096i
\(273\) 1.25831i 0.0761563i
\(274\) 3.18134 0.857265i 0.192192 0.0517893i
\(275\) −13.4256 10.6594i −0.809594 0.642786i
\(276\) −13.8027 3.65659i −0.830826 0.220101i
\(277\) −8.00492 + 8.00492i −0.480969 + 0.480969i −0.905441 0.424472i \(-0.860460\pi\)
0.424472 + 0.905441i \(0.360460\pi\)
\(278\) 9.45917 2.54893i 0.567323 0.152875i
\(279\) 3.37275i 0.201921i
\(280\) 11.2667 + 9.96119i 0.673313 + 0.595295i
\(281\) −0.765437 0.765437i −0.0456621 0.0456621i 0.683907 0.729569i \(-0.260279\pi\)
−0.729569 + 0.683907i \(0.760279\pi\)
\(282\) −4.89286 + 1.31846i −0.291365 + 0.0785132i
\(283\) −2.54743 + 2.54743i −0.151429 + 0.151429i −0.778756 0.627327i \(-0.784149\pi\)
0.627327 + 0.778756i \(0.284149\pi\)
\(284\) −9.92469 2.62923i −0.588922 0.156016i
\(285\) −0.887668 0.791554i −0.0525809 0.0468876i
\(286\) −2.25924 1.30011i −0.133592 0.0768773i
\(287\) −14.0698 5.81888i −0.830512 0.343477i
\(288\) −2.89505 + 11.1186i −0.170593 + 0.655171i
\(289\) 18.8073 1.10631
\(290\) −2.94043 + 5.86091i −0.172668 + 0.344164i
\(291\) 13.9662i 0.818713i
\(292\) −7.05084 + 26.6152i −0.412619 + 1.55754i
\(293\) 13.7106i 0.800981i 0.916301 + 0.400490i \(0.131160\pi\)
−0.916301 + 0.400490i \(0.868840\pi\)
\(294\) 0.487492 + 1.80910i 0.0284311 + 0.105509i
\(295\) −0.202044 3.52992i −0.0117635 0.205520i
\(296\) 0.0541816 + 12.7610i 0.00314924 + 0.741717i
\(297\) −12.0061 + 12.0061i −0.696664 + 0.696664i
\(298\) −4.88794 + 8.49390i −0.283151 + 0.492038i
\(299\) −2.75710 + 2.75710i −0.159447 + 0.159447i
\(300\) −5.88467 7.89087i −0.339751 0.455580i
\(301\) 0.682463 + 0.682463i 0.0393365 + 0.0393365i
\(302\) −18.5774 10.6906i −1.06901 0.615176i
\(303\) 1.27375 1.27375i 0.0731751 0.0731751i
\(304\) 2.08451 0.571211i 0.119555 0.0327612i
\(305\) 0.993964 0.0568921i 0.0569142 0.00325763i
\(306\) −16.5959 + 4.47203i −0.948722 + 0.255649i
\(307\) 14.1654 14.1654i 0.808462 0.808462i −0.175939 0.984401i \(-0.556296\pi\)
0.984401 + 0.175939i \(0.0562961\pi\)
\(308\) −15.7612 4.17542i −0.898078 0.237917i
\(309\) 10.1271 10.1271i 0.576111 0.576111i
\(310\) 4.98404 1.65381i 0.283074 0.0939303i
\(311\) 7.48403 7.48403i 0.424380 0.424380i −0.462329 0.886709i \(-0.652986\pi\)
0.886709 + 0.462329i \(0.152986\pi\)
\(312\) −1.06285 1.05386i −0.0601721 0.0596633i
\(313\) 6.82256i 0.385634i −0.981235 0.192817i \(-0.938238\pi\)
0.981235 0.192817i \(-0.0617624\pi\)
\(314\) 2.03561 + 7.55423i 0.114876 + 0.426310i
\(315\) −0.617103 10.7814i −0.0347698 0.607465i
\(316\) −6.65051 + 25.1041i −0.374120 + 1.41221i
\(317\) 0.246649i 0.0138532i 0.999976 + 0.00692659i \(0.00220482\pi\)
−0.999976 + 0.00692659i \(0.997795\pi\)
\(318\) 3.81818 + 14.1694i 0.214113 + 0.794579i
\(319\) 7.10924i 0.398041i
\(320\) 17.8500 1.17384i 0.997845 0.0656197i
\(321\) 1.95737 1.95737i 0.109250 0.109250i
\(322\) −12.1650 + 21.1394i −0.677929 + 1.17806i
\(323\) 2.28633 + 2.28633i 0.127215 + 0.127215i
\(324\) 2.10671 1.22427i 0.117040 0.0680153i
\(325\) −2.67042 + 0.306702i −0.148128 + 0.0170127i
\(326\) −17.1778 + 29.8503i −0.951389 + 1.65325i
\(327\) 5.09085 + 5.09085i 0.281525 + 0.281525i
\(328\) −16.6988 + 7.01080i −0.922035 + 0.387107i
\(329\) 8.65564i 0.477201i
\(330\) 9.53909 + 4.78578i 0.525110 + 0.263449i
\(331\) −3.89985 3.89985i −0.214355 0.214355i 0.591759 0.806115i \(-0.298434\pi\)
−0.806115 + 0.591759i \(0.798434\pi\)
\(332\) 7.87027 29.7084i 0.431937 1.63046i
\(333\) 6.47960 6.47960i 0.355080 0.355080i
\(334\) −16.9530 + 4.56827i −0.927628 + 0.249965i
\(335\) −15.6036 + 0.893112i −0.852515 + 0.0487959i
\(336\) −8.13454 4.63528i −0.443775 0.252875i
\(337\) 0.402306 + 0.402306i 0.0219150 + 0.0219150i 0.717979 0.696064i \(-0.245067\pi\)
−0.696064 + 0.717979i \(0.745067\pi\)
\(338\) 17.3569 4.67712i 0.944093 0.254402i
\(339\) −13.2673 + 13.2673i −0.720580 + 0.720580i
\(340\) 14.7462 + 22.3315i 0.799725 + 1.21110i
\(341\) −4.02583 + 4.02583i −0.218011 + 0.218011i
\(342\) −1.34520 0.774117i −0.0727402 0.0418594i
\(343\) 19.8452 1.07154
\(344\) 1.14803 0.00487441i 0.0618978 0.000262811i
\(345\) 10.6249 11.9150i 0.572026 0.641485i
\(346\) −9.61486 + 16.7080i −0.516898 + 0.898227i
\(347\) 16.5766i 0.889881i −0.895560 0.444940i \(-0.853225\pi\)
0.895560 0.444940i \(-0.146775\pi\)
\(348\) 1.04539 3.94610i 0.0560389 0.211533i
\(349\) −17.0520 −0.912770 −0.456385 0.889782i \(-0.650856\pi\)
−0.456385 + 0.889782i \(0.650856\pi\)
\(350\) −15.6295 + 6.19855i −0.835434 + 0.331326i
\(351\) 2.66235i 0.142106i
\(352\) −16.7272 + 9.81594i −0.891564 + 0.523192i
\(353\) 9.50622 + 9.50622i 0.505965 + 0.505965i 0.913285 0.407320i \(-0.133537\pi\)
−0.407320 + 0.913285i \(0.633537\pi\)
\(354\) 0.572716 + 2.12537i 0.0304395 + 0.112962i
\(355\) 7.63972 8.56738i 0.405474 0.454709i
\(356\) 27.4528 + 7.27272i 1.45499 + 0.385453i
\(357\) 14.0061i 0.741283i
\(358\) 12.2369 + 7.04188i 0.646738 + 0.372175i
\(359\) 11.3331 0.598140 0.299070 0.954231i \(-0.403324\pi\)
0.299070 + 0.954231i \(0.403324\pi\)
\(360\) −9.62354 8.50845i −0.507205 0.448435i
\(361\) 18.7080i 0.984633i
\(362\) −14.0694 8.09645i −0.739472 0.425540i
\(363\) −0.742966 −0.0389956
\(364\) −2.21047 + 1.28457i −0.115860 + 0.0673299i
\(365\) −22.9753 20.4876i −1.20258 1.07237i
\(366\) −0.598468 + 0.161267i −0.0312824 + 0.00842956i
\(367\) 5.67851 5.67851i 0.296416 0.296416i −0.543192 0.839608i \(-0.682785\pi\)
0.839608 + 0.543192i \(0.182785\pi\)
\(368\) 7.66729 + 27.9802i 0.399685 + 1.45857i
\(369\) 12.0178 + 4.97025i 0.625623 + 0.258741i
\(370\) −12.7524 6.39791i −0.662966 0.332611i
\(371\) 25.0661 1.30137
\(372\) −2.82659 + 1.64262i −0.146552 + 0.0851658i
\(373\) −12.4490 12.4490i −0.644586 0.644586i 0.307093 0.951679i \(-0.400644\pi\)
−0.951679 + 0.307093i \(0.900644\pi\)
\(374\) −25.1474 14.4714i −1.30034 0.748300i
\(375\) 10.8439 1.87847i 0.559977 0.0970035i
\(376\) 7.31112 + 7.24930i 0.377042 + 0.373854i
\(377\) −0.788236 0.788236i −0.0405962 0.0405962i
\(378\) 4.33301 + 16.0799i 0.222866 + 0.827062i
\(379\) 12.2160 0.627496 0.313748 0.949506i \(-0.398415\pi\)
0.313748 + 0.949506i \(0.398415\pi\)
\(380\) −0.484327 + 2.36744i −0.0248454 + 0.121447i
\(381\) −13.8097 + 13.8097i −0.707490 + 0.707490i
\(382\) −7.87179 + 13.6790i −0.402756 + 0.699879i
\(383\) −31.5722 −1.61327 −0.806633 0.591053i \(-0.798712\pi\)
−0.806633 + 0.591053i \(0.798712\pi\)
\(384\) −10.7281 + 2.98881i −0.547467 + 0.152522i
\(385\) 12.1325 13.6057i 0.618329 0.693410i
\(386\) −17.0586 + 4.59672i −0.868258 + 0.233967i
\(387\) −0.582933 0.582933i −0.0296321 0.0296321i
\(388\) −24.5344 + 14.2577i −1.24555 + 0.723825i
\(389\) −26.4555 −1.34135 −0.670673 0.741753i \(-0.733995\pi\)
−0.670673 + 0.741753i \(0.733995\pi\)
\(390\) 1.58827 0.527023i 0.0804251 0.0266868i
\(391\) −30.6890 + 30.6890i −1.55201 + 1.55201i
\(392\) 2.68038 2.70324i 0.135380 0.136534i
\(393\) 10.7167i 0.540588i
\(394\) −29.3909 16.9134i −1.48069 0.852085i
\(395\) −21.6708 19.3243i −1.09038 0.972313i
\(396\) 13.4626 + 3.56648i 0.676521 + 0.179222i
\(397\) 37.5243i 1.88329i −0.336607 0.941645i \(-0.609279\pi\)
0.336607 0.941645i \(-0.390721\pi\)
\(398\) −2.56555 1.47638i −0.128599 0.0740044i
\(399\) 0.894302 0.894302i 0.0447711 0.0447711i
\(400\) −7.85440 + 18.3932i −0.392720 + 0.919658i
\(401\) 9.48157i 0.473487i 0.971572 + 0.236744i \(0.0760801\pi\)
−0.971572 + 0.236744i \(0.923920\pi\)
\(402\) 9.39495 2.53163i 0.468577 0.126266i
\(403\) 0.892727i 0.0444699i
\(404\) −3.53794 0.937262i −0.176019 0.0466305i
\(405\) 0.155673 + 2.71976i 0.00773544 + 0.135146i
\(406\) −6.04361 3.47789i −0.299940 0.172605i
\(407\) 15.4686 0.766749
\(408\) −11.8305 11.7305i −0.585697 0.580744i
\(409\) 32.4759i 1.60583i 0.596093 + 0.802915i \(0.296719\pi\)
−0.596093 + 0.802915i \(0.703281\pi\)
\(410\) 1.45184 20.1963i 0.0717011 0.997426i
\(411\) 2.29333i 0.113122i
\(412\) −28.1288 7.45180i −1.38580 0.367124i
\(413\) 3.75985 0.185010
\(414\) 10.3909 18.0565i 0.510683 0.887427i
\(415\) 25.6454 + 22.8686i 1.25888 + 1.12258i
\(416\) −0.766287 + 2.94297i −0.0375703 + 0.144291i
\(417\) 6.81884i 0.333920i
\(418\) −0.681668 2.52969i −0.0333415 0.123731i
\(419\) 22.4633i 1.09740i 0.836019 + 0.548701i \(0.184877\pi\)
−0.836019 + 0.548701i \(0.815123\pi\)
\(420\) 8.73502 5.76802i 0.426225 0.281450i
\(421\) 0.180340 0.180340i 0.00878923 0.00878923i −0.702699 0.711488i \(-0.748022\pi\)
0.711488 + 0.702699i \(0.248022\pi\)
\(422\) −8.64715 + 15.0264i −0.420936 + 0.731472i
\(423\) 7.39330i 0.359475i
\(424\) 20.9935 21.1725i 1.01953 1.02823i
\(425\) −29.7242 + 3.41387i −1.44184 + 0.165597i
\(426\) −3.56439 + 6.19393i −0.172695 + 0.300097i
\(427\) 1.05871i 0.0512346i
\(428\) −5.43673 1.44029i −0.262794 0.0696189i
\(429\) −1.28292 + 1.28292i −0.0619398 + 0.0619398i
\(430\) −0.575583 + 1.14726i −0.0277571 + 0.0553258i
\(431\) 18.9292 0.911787 0.455893 0.890034i \(-0.349320\pi\)
0.455893 + 0.890034i \(0.349320\pi\)
\(432\) 17.2112 + 9.80738i 0.828073 + 0.471858i
\(433\) 1.88134 + 1.88134i 0.0904115 + 0.0904115i 0.750866 0.660455i \(-0.229636\pi\)
−0.660455 + 0.750866i \(0.729636\pi\)
\(434\) 1.45293 + 5.39186i 0.0697427 + 0.258817i
\(435\) 3.40643 + 3.03759i 0.163326 + 0.145641i
\(436\) 3.74599 14.1402i 0.179400 0.677193i
\(437\) −3.91904 −0.187473
\(438\) 16.6104 + 9.55868i 0.793674 + 0.456731i
\(439\) −3.81285 + 3.81285i −0.181978 + 0.181978i −0.792217 0.610239i \(-0.791073\pi\)
0.610239 + 0.792217i \(0.291073\pi\)
\(440\) −1.33101 21.6430i −0.0634534 1.03179i
\(441\) −2.73362 −0.130172
\(442\) −4.39273 + 1.18369i −0.208941 + 0.0563026i
\(443\) −1.00722 1.00722i −0.0478543 0.0478543i 0.682775 0.730629i \(-0.260773\pi\)
−0.730629 + 0.682775i \(0.760773\pi\)
\(444\) 8.58609 + 2.27461i 0.407478 + 0.107948i
\(445\) −21.1323 + 23.6983i −1.00177 + 1.12341i
\(446\) −18.6283 + 32.3709i −0.882076 + 1.53281i
\(447\) 4.82329 + 4.82329i 0.228134 + 0.228134i
\(448\) 0.161533 + 19.0220i 0.00763172 + 0.898704i
\(449\) 24.1621 1.14028 0.570141 0.821547i \(-0.306889\pi\)
0.570141 + 0.821547i \(0.306889\pi\)
\(450\) 13.3501 5.29455i 0.629331 0.249588i
\(451\) 8.41223 + 20.2776i 0.396117 + 0.954834i
\(452\) 36.8509 + 9.76245i 1.73332 + 0.459187i
\(453\) −10.5492 + 10.5492i −0.495645 + 0.495645i
\(454\) 1.30641 + 4.84812i 0.0613127 + 0.227533i
\(455\) −0.163340 2.85372i −0.00765750 0.133784i
\(456\) −0.00638745 1.50439i −0.000299120 0.0704493i
\(457\) −8.62879 −0.403638 −0.201819 0.979423i \(-0.564685\pi\)
−0.201819 + 0.979423i \(0.564685\pi\)
\(458\) 0.693910 1.20582i 0.0324243 0.0563445i
\(459\) 29.6343i 1.38321i
\(460\) −31.7778 6.50105i −1.48165 0.303113i
\(461\) 7.56242 0.352217 0.176108 0.984371i \(-0.443649\pi\)
0.176108 + 0.984371i \(0.443649\pi\)
\(462\) −5.66054 + 9.83647i −0.263352 + 0.457634i
\(463\) 9.28486i 0.431504i −0.976448 0.215752i \(-0.930780\pi\)
0.976448 0.215752i \(-0.0692203\pi\)
\(464\) −7.99932 + 2.19202i −0.371359 + 0.101762i
\(465\) −0.208867 3.64913i −0.00968599 0.169224i
\(466\) 23.5695 6.35120i 1.09184 0.294214i
\(467\) 5.74357 + 5.74357i 0.265781 + 0.265781i 0.827397 0.561617i \(-0.189821\pi\)
−0.561617 + 0.827397i \(0.689821\pi\)
\(468\) 1.88810 1.09723i 0.0872773 0.0507195i
\(469\) 16.6200i 0.767440i
\(470\) −10.9254 + 3.62528i −0.503949 + 0.167222i
\(471\) 5.44563 0.250921
\(472\) 3.14897 3.17582i 0.144943 0.146179i
\(473\) 1.39162i 0.0639867i
\(474\) 15.6673 + 9.01596i 0.719622 + 0.414117i
\(475\) −2.11589 1.67994i −0.0970838 0.0770808i
\(476\) −24.6046 + 14.2985i −1.12775 + 0.655369i
\(477\) −21.4105 −0.980319
\(478\) −2.76009 + 4.79629i −0.126244 + 0.219377i
\(479\) −20.2247 + 20.2247i −0.924089 + 0.924089i −0.997315 0.0732267i \(-0.976670\pi\)
0.0732267 + 0.997315i \(0.476670\pi\)
\(480\) 2.44374 12.2090i 0.111541 0.557263i
\(481\) 1.71508 1.71508i 0.0782007 0.0782007i
\(482\) −0.761136 2.82460i −0.0346688 0.128657i
\(483\) 12.0041 + 12.0041i 0.546205 + 0.546205i
\(484\) 0.758473 + 1.30517i 0.0344760 + 0.0593258i
\(485\) −1.81294 31.6739i −0.0823213 1.43824i
\(486\) −5.90802 21.9249i −0.267993 0.994533i
\(487\) 20.8030 20.8030i 0.942672 0.942672i −0.0557715 0.998444i \(-0.517762\pi\)
0.998444 + 0.0557715i \(0.0177618\pi\)
\(488\) 0.894257 + 0.886695i 0.0404811 + 0.0401388i
\(489\) 16.9506 + 16.9506i 0.766531 + 0.766531i
\(490\) 1.34042 + 4.03958i 0.0605540 + 0.182489i
\(491\) 10.3411i 0.466686i 0.972394 + 0.233343i \(0.0749665\pi\)
−0.972394 + 0.233343i \(0.925033\pi\)
\(492\) 1.68759 + 12.4924i 0.0760826 + 0.563201i
\(493\) −8.77378 8.77378i −0.395151 0.395151i
\(494\) −0.356059 0.204900i −0.0160199 0.00921887i
\(495\) −10.3631 + 11.6214i −0.465787 + 0.522345i
\(496\) 5.77118 + 3.28857i 0.259133 + 0.147661i
\(497\) 8.63141 + 8.63141i 0.387172 + 0.387172i
\(498\) −18.5408 10.6696i −0.830833 0.478115i
\(499\) −21.1016 + 21.1016i −0.944639 + 0.944639i −0.998546 0.0539071i \(-0.982833\pi\)
0.0539071 + 0.998546i \(0.482833\pi\)
\(500\) −14.3701 17.1318i −0.642652 0.766158i
\(501\) 12.2209i 0.545991i
\(502\) −26.6137 + 7.17151i −1.18783 + 0.320080i
\(503\) 37.1237i 1.65526i 0.561272 + 0.827631i \(0.310312\pi\)
−0.561272 + 0.827631i \(0.689688\pi\)
\(504\) 9.61789 9.69991i 0.428415 0.432068i
\(505\) 2.72340 3.05409i 0.121190 0.135905i
\(506\) 33.9557 9.14994i 1.50952 0.406765i
\(507\) 12.5121i 0.555682i
\(508\) 38.3573 + 10.1615i 1.70183 + 0.450845i
\(509\) −24.2891 + 24.2891i −1.07660 + 1.07660i −0.0797834 + 0.996812i \(0.525423\pi\)
−0.996812 + 0.0797834i \(0.974577\pi\)
\(510\) 17.6789 5.86624i 0.782834 0.259762i
\(511\) 23.1470 23.1470i 1.02396 1.02396i
\(512\) 16.2025 + 15.7949i 0.716056 + 0.698043i
\(513\) −1.89218 + 1.89218i −0.0835417 + 0.0835417i
\(514\) −0.462157 1.71508i −0.0203849 0.0756490i
\(515\) 21.6527 24.2818i 0.954130 1.06999i
\(516\) 0.204633 0.772441i 0.00900848 0.0340048i
\(517\) 8.82491 8.82491i 0.388119 0.388119i
\(518\) 7.56733 13.1499i 0.332490 0.577776i
\(519\) 9.48768 + 9.48768i 0.416463 + 0.416463i
\(520\) −2.54724 2.25209i −0.111704 0.0987606i
\(521\) 9.21764 9.21764i 0.403832 0.403832i −0.475749 0.879581i \(-0.657823\pi\)
0.879581 + 0.475749i \(0.157823\pi\)
\(522\) 5.16221 + 2.97067i 0.225944 + 0.130023i
\(523\) −3.29111 + 3.29111i −0.143910 + 0.143910i −0.775391 0.631481i \(-0.782447\pi\)
0.631481 + 0.775391i \(0.282447\pi\)
\(524\) −18.8261 + 10.9404i −0.822421 + 0.477934i
\(525\) 1.33534 + 11.6267i 0.0582792 + 0.507431i
\(526\) −28.2677 + 7.61720i −1.23253 + 0.332126i
\(527\) 9.93686i 0.432857i
\(528\) 3.56769 + 13.0195i 0.155264 + 0.566603i
\(529\) 29.6048i 1.28716i
\(530\) 10.4986 + 31.6391i 0.456028 + 1.37431i
\(531\) −3.21152 −0.139368
\(532\) −2.48399 0.658053i −0.107695 0.0285302i
\(533\) 3.18098 + 1.31557i 0.137784 + 0.0569836i
\(534\) 9.85948 17.1331i 0.426662 0.741421i
\(535\) 4.18503 4.69320i 0.180935 0.202905i
\(536\) −14.0383 13.9196i −0.606364 0.601237i
\(537\) 6.94874 6.94874i 0.299860 0.299860i
\(538\) −5.68656 21.1030i −0.245165 0.909816i
\(539\) −3.26295 3.26295i −0.140545 0.140545i
\(540\) −18.4817 + 12.2041i −0.795325 + 0.525179i
\(541\) 7.48478i 0.321796i −0.986971 0.160898i \(-0.948561\pi\)
0.986971 0.160898i \(-0.0514390\pi\)
\(542\) −0.297075 1.10246i −0.0127605 0.0473546i
\(543\) −7.98936 + 7.98936i −0.342856 + 0.342856i
\(544\) −8.52947 + 32.7579i −0.365698 + 1.40448i
\(545\) 12.2064 + 10.8847i 0.522864 + 0.466249i
\(546\) 0.463005 + 1.71823i 0.0198148 + 0.0735334i
\(547\) 6.24532i 0.267031i 0.991047 + 0.133515i \(0.0426265\pi\)
−0.991047 + 0.133515i \(0.957373\pi\)
\(548\) −4.02870 + 2.34120i −0.172098 + 0.100011i
\(549\) 0.904308i 0.0385949i
\(550\) 22.2549 + 9.61541i 0.948954 + 0.410003i
\(551\) 1.12043i 0.0477317i
\(552\) 20.1932 0.0857378i 0.859478 0.00364925i
\(553\) 21.8328 21.8328i 0.928424 0.928424i
\(554\) 7.98529 13.8763i 0.339263 0.589545i
\(555\) −6.60931 + 7.41185i −0.280550 + 0.314615i
\(556\) −11.9787 + 6.96116i −0.508008 + 0.295219i
\(557\) 42.3582 1.79478 0.897388 0.441243i \(-0.145462\pi\)
0.897388 + 0.441243i \(0.145462\pi\)
\(558\) −1.24103 4.60551i −0.0525370 0.194967i
\(559\) −0.154296 0.154296i −0.00652601 0.00652601i
\(560\) −19.0500 9.45640i −0.805010 0.399606i
\(561\) −14.2800 + 14.2800i −0.602903 + 0.602903i
\(562\) 1.32686 + 0.763559i 0.0559701 + 0.0322088i
\(563\) 12.3315i 0.519712i −0.965647 0.259856i \(-0.916325\pi\)
0.965647 0.259856i \(-0.0836752\pi\)
\(564\) 6.19609 3.60073i 0.260902 0.151618i
\(565\) −28.3667 + 31.8111i −1.19340 + 1.33830i
\(566\) 2.54119 4.41588i 0.106814 0.185613i
\(567\) −2.89693 −0.121660
\(568\) 14.5197 0.0616488i 0.609232 0.00258673i
\(569\) 24.5979 1.03120 0.515600 0.856830i \(-0.327569\pi\)
0.515600 + 0.856830i \(0.327569\pi\)
\(570\) 1.50337 + 0.754246i 0.0629694 + 0.0315919i
\(571\) −22.3457 22.3457i −0.935138 0.935138i 0.0628830 0.998021i \(-0.479970\pi\)
−0.998021 + 0.0628830i \(0.979970\pi\)
\(572\) 3.56339 + 0.944006i 0.148993 + 0.0394709i
\(573\) 7.76767 + 7.76767i 0.324499 + 0.324499i
\(574\) 21.3534 + 2.76863i 0.891276 + 0.115560i
\(575\) 22.5496 28.4013i 0.940382 1.18442i
\(576\) −0.137975 16.2478i −0.00574896 0.676992i
\(577\) 35.6660i 1.48479i −0.669960 0.742397i \(-0.733689\pi\)
0.669960 0.742397i \(-0.266311\pi\)
\(578\) −25.6815 + 6.92030i −1.06821 + 0.287847i
\(579\) 12.2970i 0.511047i
\(580\) 1.85860 9.08506i 0.0771743 0.377236i
\(581\) −25.8371 + 25.8371i −1.07190 + 1.07190i
\(582\) 5.13898 + 19.0709i 0.213017 + 0.790515i
\(583\) −25.5563 25.5563i −1.05844 1.05844i
\(584\) −0.165325 38.9376i −0.00684118 1.61125i
\(585\) 0.139518 + 2.43753i 0.00576838 + 0.100780i
\(586\) −5.04492 18.7219i −0.208404 0.773394i
\(587\) −7.69367 −0.317552 −0.158776 0.987315i \(-0.550755\pi\)
−0.158776 + 0.987315i \(0.550755\pi\)
\(588\) −1.33135 2.29096i −0.0549038 0.0944776i
\(589\) −0.634477 + 0.634477i −0.0261432 + 0.0261432i
\(590\) 1.57476 + 4.74578i 0.0648316 + 0.195381i
\(591\) −16.6897 + 16.6897i −0.686522 + 0.686522i
\(592\) −4.76950 17.4053i −0.196025 0.715352i
\(593\) 39.9129i 1.63903i −0.573059 0.819514i \(-0.694243\pi\)
0.573059 0.819514i \(-0.305757\pi\)
\(594\) 11.9766 20.8121i 0.491408 0.853932i
\(595\) −1.81812 31.7645i −0.0745357 1.30222i
\(596\) 3.54911 13.3970i 0.145377 0.548764i
\(597\) −1.45686 + 1.45686i −0.0596251 + 0.0596251i
\(598\) 2.75034 4.77934i 0.112470 0.195442i
\(599\) −10.0761 −0.411698 −0.205849 0.978584i \(-0.565996\pi\)
−0.205849 + 0.978584i \(0.565996\pi\)
\(600\) 10.9391 + 8.60972i 0.446585 + 0.351490i
\(601\) −6.43189 6.43189i −0.262362 0.262362i 0.563651 0.826013i \(-0.309396\pi\)
−0.826013 + 0.563651i \(0.809396\pi\)
\(602\) −1.18303 0.680790i −0.0482165 0.0277469i
\(603\) 14.1961i 0.578111i
\(604\) 29.3012 + 7.76241i 1.19225 + 0.315848i
\(605\) −1.68497 + 0.0964437i −0.0685038 + 0.00392099i
\(606\) −1.27063 + 2.20800i −0.0516157 + 0.0896940i
\(607\) −13.8202 + 13.8202i −0.560945 + 0.560945i −0.929576 0.368631i \(-0.879827\pi\)
0.368631 + 0.929576i \(0.379827\pi\)
\(608\) −2.63623 + 1.54701i −0.106913 + 0.0627394i
\(609\) −3.43189 + 3.43189i −0.139067 + 0.139067i
\(610\) −1.33633 + 0.443424i −0.0541064 + 0.0179537i
\(611\) 1.95692i 0.0791685i
\(612\) 21.0162 12.2132i 0.849531 0.493688i
\(613\) 26.0622 26.0622i 1.05264 1.05264i 0.0541082 0.998535i \(-0.482768\pi\)
0.998535 0.0541082i \(-0.0172316\pi\)
\(614\) −14.1307 + 24.5552i −0.570267 + 0.990968i
\(615\) −13.3104 4.63330i −0.536728 0.186833i
\(616\) 23.0584 0.0979033i 0.929050 0.00394464i
\(617\) −7.21441 7.21441i −0.290441 0.290441i 0.546813 0.837255i \(-0.315841\pi\)
−0.837255 + 0.546813i \(0.815841\pi\)
\(618\) −10.1023 + 17.5550i −0.406373 + 0.706164i
\(619\) 2.19204 0.0881055 0.0440528 0.999029i \(-0.485973\pi\)
0.0440528 + 0.999029i \(0.485973\pi\)
\(620\) −6.19720 + 4.09221i −0.248886 + 0.164347i
\(621\) −25.3984 25.3984i −1.01920 1.01920i
\(622\) −7.46567 + 12.9733i −0.299346 + 0.520182i
\(623\) −23.8754 23.8754i −0.956548 0.956548i
\(624\) 1.83911 + 1.04797i 0.0736232 + 0.0419525i
\(625\) 24.3490 5.66781i 0.973962 0.226712i
\(626\) 2.51042 + 9.31625i 0.100337 + 0.372352i
\(627\) −1.82358 −0.0728269
\(628\) −5.55929 9.56633i −0.221840 0.381738i
\(629\) 19.0903 19.0903i 0.761182 0.761182i
\(630\) 4.80977 + 14.4950i 0.191626 + 0.577496i
\(631\) 38.5123i 1.53315i 0.642154 + 0.766576i \(0.278041\pi\)
−0.642154 + 0.766576i \(0.721959\pi\)
\(632\) −0.155938 36.7269i −0.00620288 1.46092i
\(633\) 8.53277 + 8.53277i 0.339147 + 0.339147i
\(634\) −0.0907566 0.336801i −0.00360440 0.0133761i
\(635\) −29.5263 + 33.1115i −1.17172 + 1.31399i
\(636\) −10.4275 17.9434i −0.413477 0.711504i
\(637\) −0.723558 −0.0286684
\(638\) 2.61590 + 9.70770i 0.103565 + 0.384332i
\(639\) −7.37261 7.37261i −0.291656 0.291656i
\(640\) −23.9423 + 8.17094i −0.946404 + 0.322985i
\(641\) 3.83627 + 3.83627i 0.151523 + 0.151523i 0.778798 0.627275i \(-0.215830\pi\)
−0.627275 + 0.778798i \(0.715830\pi\)
\(642\) −1.95257 + 3.39303i −0.0770617 + 0.133912i
\(643\) 41.8643i 1.65097i −0.564426 0.825484i \(-0.690902\pi\)
0.564426 0.825484i \(-0.309098\pi\)
\(644\) 8.83295 33.3423i 0.348067 1.31387i
\(645\) 0.666801 + 0.594602i 0.0262553 + 0.0234124i
\(646\) −3.96326 2.28072i −0.155933 0.0897337i
\(647\) −3.94395 + 3.94395i −0.155053 + 0.155053i −0.780370 0.625318i \(-0.784969\pi\)
0.625318 + 0.780370i \(0.284969\pi\)
\(648\) −2.42625 + 2.44694i −0.0953119 + 0.0961247i
\(649\) −3.83338 3.83338i −0.150473 0.150473i
\(650\) 3.53362 1.40141i 0.138600 0.0549677i
\(651\) 3.88683 0.152337
\(652\) 12.4727 47.0814i 0.488469 1.84385i
\(653\) −44.4052 −1.73771 −0.868854 0.495068i \(-0.835143\pi\)
−0.868854 + 0.495068i \(0.835143\pi\)
\(654\) −8.82481 5.07837i −0.345077 0.198580i
\(655\) −1.39113 24.3045i −0.0543559 0.949654i
\(656\) 20.2226 15.7177i 0.789559 0.613675i
\(657\) −19.7712 + 19.7712i −0.771349 + 0.771349i
\(658\) −3.18491 11.8193i −0.124161 0.460765i
\(659\) 15.9623 15.9623i 0.621802 0.621802i −0.324190 0.945992i \(-0.605092\pi\)
0.945992 + 0.324190i \(0.105092\pi\)
\(660\) −14.7867 3.02503i −0.575570 0.117749i
\(661\) 36.0355i 1.40162i −0.713348 0.700810i \(-0.752822\pi\)
0.713348 0.700810i \(-0.247178\pi\)
\(662\) 6.76025 + 3.89029i 0.262745 + 0.151200i
\(663\) 3.16659i 0.122980i
\(664\) 0.184538 + 43.4629i 0.00716148 + 1.68669i
\(665\) 1.91210 2.14428i 0.0741480 0.0831515i
\(666\) −6.46371 + 11.2322i −0.250464 + 0.435237i
\(667\) 15.0393 0.582325
\(668\) 21.4685 12.4760i 0.830642 0.482711i
\(669\) 18.3819 + 18.3819i 0.710686 + 0.710686i
\(670\) 20.9782 6.96102i 0.810458 0.268928i
\(671\) 1.07941 1.07941i 0.0416703 0.0416703i
\(672\) 12.8133 + 3.33633i 0.494286 + 0.128702i
\(673\) 33.8584i 1.30515i 0.757725 + 0.652574i \(0.226311\pi\)
−0.757725 + 0.652574i \(0.773689\pi\)
\(674\) −0.697384 0.401320i −0.0268622 0.0154583i
\(675\) −2.82534 24.5999i −0.108747 0.946852i
\(676\) −21.9800 + 12.7733i −0.845385 + 0.491279i
\(677\) 30.0396 + 30.0396i 1.15451 + 1.15451i 0.985637 + 0.168877i \(0.0540140\pi\)
0.168877 + 0.985637i \(0.445986\pi\)
\(678\) 13.2348 22.9984i 0.508278 0.883248i
\(679\) 33.7371 1.29471
\(680\) −28.3531 25.0678i −1.08729 0.961306i
\(681\) 3.49487 0.133924
\(682\) 4.01596 6.97864i 0.153779 0.267226i
\(683\) −9.38995 −0.359296 −0.179648 0.983731i \(-0.557496\pi\)
−0.179648 + 0.983731i \(0.557496\pi\)
\(684\) 2.12172 + 0.562082i 0.0811262 + 0.0214918i
\(685\) −0.297696 5.20105i −0.0113744 0.198722i
\(686\) −27.0987 + 7.30220i −1.03463 + 0.278799i
\(687\) −0.684731 0.684731i −0.0261241 0.0261241i
\(688\) −1.56585 + 0.429084i −0.0596976 + 0.0163587i
\(689\) −5.66711 −0.215900
\(690\) −10.1241 + 20.1796i −0.385420 + 0.768224i
\(691\) −12.8603 + 12.8603i −0.489230 + 0.489230i −0.908063 0.418833i \(-0.862439\pi\)
0.418833 + 0.908063i \(0.362439\pi\)
\(692\) 6.98130 26.3527i 0.265389 1.00178i
\(693\) −11.7083 11.7083i −0.444761 0.444761i
\(694\) 6.09951 + 22.6355i 0.231534 + 0.859232i
\(695\) −0.885147 15.4644i −0.0335755 0.586600i
\(696\) 0.0245118 + 5.77308i 0.000929119 + 0.218828i
\(697\) 35.4072 + 14.6435i 1.34114 + 0.554661i
\(698\) 23.2845 6.27441i 0.881333 0.237490i
\(699\) 16.9906i 0.642643i
\(700\) 19.0614 14.2152i 0.720454 0.537283i
\(701\) 4.43158 0.167378 0.0836892 0.996492i \(-0.473330\pi\)
0.0836892 + 0.996492i \(0.473330\pi\)
\(702\) −0.979633 3.63545i −0.0369739 0.137211i
\(703\) 2.43787 0.0919460
\(704\) 19.2293 19.5587i 0.724730 0.737144i
\(705\) 0.457852 + 7.99915i 0.0172437 + 0.301265i
\(706\) −16.4787 9.48290i −0.620184 0.356894i
\(707\) 3.07691 + 3.07691i 0.115719 + 0.115719i
\(708\) −1.56409 2.69147i −0.0587823 0.101152i
\(709\) 26.8484 + 26.8484i 1.00831 + 1.00831i 0.999965 + 0.00834935i \(0.00265771\pi\)
0.00834935 + 0.999965i \(0.497342\pi\)
\(710\) −7.27965 + 14.5099i −0.273200 + 0.544547i
\(711\) −18.6487 + 18.6487i −0.699380 + 0.699380i
\(712\) −40.1630 + 0.170527i −1.50517 + 0.00639078i
\(713\) −8.51650 8.51650i −0.318945 0.318945i
\(714\) 5.15367 + 19.1254i 0.192871 + 0.715752i
\(715\) −2.74299 + 3.07606i −0.102582 + 0.115038i
\(716\) −19.3006 5.11308i −0.721298 0.191085i
\(717\) 2.72359 + 2.72359i 0.101714 + 0.101714i
\(718\) −15.4755 + 4.17012i −0.577540 + 0.155628i
\(719\) −33.9622 33.9622i −1.26657 1.26657i −0.947846 0.318729i \(-0.896744\pi\)
−0.318729 0.947846i \(-0.603256\pi\)
\(720\) 16.2718 + 8.07728i 0.606413 + 0.301023i
\(721\) 24.4633 + 24.4633i 0.911062 + 0.911062i
\(722\) 6.88378 + 25.5459i 0.256188 + 0.950721i
\(723\) −2.03617 −0.0757261
\(724\) 22.1910 + 5.87879i 0.824723 + 0.218484i
\(725\) 8.11974 + 6.44676i 0.301560 + 0.239427i
\(726\) 1.01452 0.273380i 0.0376525 0.0101461i
\(727\) −12.1156 −0.449344 −0.224672 0.974434i \(-0.572131\pi\)
−0.224672 + 0.974434i \(0.572131\pi\)
\(728\) 2.54574 2.56745i 0.0943515 0.0951562i
\(729\) −12.1501 −0.450003
\(730\) 38.9114 + 19.5220i 1.44018 + 0.722540i
\(731\) −1.71745 1.71745i −0.0635222 0.0635222i
\(732\) 0.757871 0.440422i 0.0280117 0.0162785i
\(733\) −22.7663 + 22.7663i −0.840893 + 0.840893i −0.988975 0.148082i \(-0.952690\pi\)
0.148082 + 0.988975i \(0.452690\pi\)
\(734\) −5.66459 + 9.84350i −0.209084 + 0.363330i
\(735\) 2.95763 0.169288i 0.109094 0.00624427i
\(736\) −20.7653 35.3858i −0.765418 1.30434i
\(737\) −16.9450 + 16.9450i −0.624178 + 0.624178i
\(738\) −18.2393 2.36485i −0.671396 0.0870514i
\(739\) 45.6752 1.68019 0.840095 0.542440i \(-0.182499\pi\)
0.840095 + 0.542440i \(0.182499\pi\)
\(740\) 19.7676 + 4.04403i 0.726673 + 0.148661i
\(741\) −0.202189 + 0.202189i −0.00742762 + 0.00742762i
\(742\) −34.2280 + 9.22330i −1.25655 + 0.338598i
\(743\) 29.1657 + 29.1657i 1.06999 + 1.06999i 0.997359 + 0.0726284i \(0.0231387\pi\)
0.0726284 + 0.997359i \(0.476861\pi\)
\(744\) 3.25531 3.28307i 0.119346 0.120363i
\(745\) 11.5648 + 10.3126i 0.423703 + 0.377825i
\(746\) 21.5799 + 12.4185i 0.790098 + 0.454673i
\(747\) 22.0690 22.0690i 0.807463 0.807463i
\(748\) 39.6638 + 10.5076i 1.45025 + 0.384197i
\(749\) 4.72828 + 4.72828i 0.172767 + 0.172767i
\(750\) −14.1162 + 6.55516i −0.515451 + 0.239361i
\(751\) −0.346967 0.346967i −0.0126610 0.0126610i 0.700748 0.713409i \(-0.252850\pi\)
−0.713409 + 0.700748i \(0.752850\pi\)
\(752\) −12.6508 7.20877i −0.461328 0.262877i
\(753\) 19.1850i 0.699142i
\(754\) 1.36638 + 0.786303i 0.0497606 + 0.0286354i
\(755\) −22.5552 + 25.2939i −0.820867 + 0.920541i
\(756\) −11.8335 20.3629i −0.430380 0.740591i
\(757\) −21.9350 −0.797242 −0.398621 0.917116i \(-0.630511\pi\)
−0.398621 + 0.917116i \(0.630511\pi\)
\(758\) −16.6811 + 4.49500i −0.605884 + 0.163266i
\(759\) 24.4777i 0.888484i
\(760\) −0.209769 3.41097i −0.00760913 0.123729i
\(761\) 36.0644 1.30733 0.653666 0.756783i \(-0.273230\pi\)
0.653666 + 0.756783i \(0.273230\pi\)
\(762\) 13.7758 23.9385i 0.499044 0.867202i
\(763\) −12.2976 + 12.2976i −0.445203 + 0.445203i
\(764\) 5.71567 21.5753i 0.206786 0.780566i
\(765\) 1.55297 + 27.1319i 0.0561476 + 0.980958i
\(766\) 43.1121 11.6173i 1.55770 0.419749i
\(767\) −0.850051 −0.0306936
\(768\) 13.5496 8.02875i 0.488928 0.289713i
\(769\) 4.51666i 0.162875i −0.996678 0.0814375i \(-0.974049\pi\)
0.996678 0.0814375i \(-0.0259511\pi\)
\(770\) −11.5607 + 23.0429i −0.416618 + 0.830409i
\(771\) −1.23635 −0.0445261
\(772\) 21.6022 12.5537i 0.777479 0.451817i
\(773\) 19.2603i 0.692743i 0.938097 + 0.346372i \(0.112586\pi\)
−0.938097 + 0.346372i \(0.887414\pi\)
\(774\) 1.01049 + 0.581503i 0.0363214 + 0.0209017i
\(775\) −0.947380 8.24875i −0.0340309 0.296304i
\(776\) 28.2556 28.4966i 1.01432 1.02297i
\(777\) −7.46724 7.46724i −0.267886 0.267886i
\(778\) 36.1251 9.73451i 1.29515 0.348999i
\(779\) 1.32578 + 3.19578i 0.0475010 + 0.114501i
\(780\) −1.97487 + 1.30407i −0.0707116 + 0.0466932i
\(781\) 17.6004i 0.629792i
\(782\) 30.6138 53.1984i 1.09475 1.90237i
\(783\) 7.26123 7.26123i 0.259495 0.259495i
\(784\) −2.66539 + 4.67755i −0.0951927 + 0.167056i
\(785\) 12.3501 0.706892i 0.440795 0.0252300i
\(786\) 3.94331 + 14.6338i 0.140653 + 0.521969i
\(787\) 22.9556 22.9556i 0.818277 0.818277i −0.167581 0.985858i \(-0.553596\pi\)
0.985858 + 0.167581i \(0.0535957\pi\)
\(788\) 46.3568 + 12.2807i 1.65139 + 0.437483i
\(789\) 20.3774i 0.725453i
\(790\) 36.7022 + 18.4135i 1.30580 + 0.655125i
\(791\) −32.0489 32.0489i −1.13953 1.13953i
\(792\) −19.6956 + 0.0836251i −0.699852 + 0.00297149i
\(793\) 0.239360i 0.00849992i
\(794\) 13.8074 + 51.2397i 0.490006 + 1.81843i
\(795\) 23.1650 1.32591i 0.821577 0.0470251i
\(796\) 4.04652 + 1.07200i 0.143425 + 0.0379959i
\(797\) 32.4093 32.4093i 1.14800 1.14800i 0.161052 0.986946i \(-0.448511\pi\)
0.986946 0.161052i \(-0.0514887\pi\)
\(798\) −0.892109 + 1.55024i −0.0315803 + 0.0548779i
\(799\) 21.7823i 0.770602i
\(800\) 3.95731 28.0061i 0.139912 0.990164i
\(801\) 20.3934 + 20.3934i 0.720566 + 0.720566i
\(802\) −3.48882 12.9471i −0.123195 0.457179i
\(803\) −47.1993 −1.66563
\(804\) −11.8973 + 6.91390i −0.419586 + 0.243834i
\(805\) 28.7823 + 25.6659i 1.01444 + 0.904602i
\(806\) −0.328486 1.21902i −0.0115704 0.0429383i
\(807\) −15.2126 −0.535507
\(808\) 5.17595 0.0219765i 0.182089 0.000773130i
\(809\) 29.6375 + 29.6375i 1.04200 + 1.04200i 0.999078 + 0.0429204i \(0.0136662\pi\)
0.0429204 + 0.999078i \(0.486334\pi\)
\(810\) −1.21333 3.65657i −0.0426321 0.128479i
\(811\) 11.2130 0.393743 0.196872 0.980429i \(-0.436922\pi\)
0.196872 + 0.980429i \(0.436922\pi\)
\(812\) 9.53231 + 2.52528i 0.334518 + 0.0886199i
\(813\) −0.794728 −0.0278723
\(814\) −21.1224 + 5.69179i −0.740341 + 0.199497i
\(815\) 40.6425 + 36.2418i 1.42365 + 1.26950i
\(816\) 20.4709 + 11.6649i 0.716626 + 0.408352i
\(817\) 0.219321i 0.00767308i
\(818\) −11.9498 44.3461i −0.417814 1.55052i
\(819\) −2.59631 −0.0907225
\(820\) 5.44892 + 28.1124i 0.190285 + 0.981729i
\(821\) 1.27850 0.0446201 0.0223100 0.999751i \(-0.492898\pi\)
0.0223100 + 0.999751i \(0.492898\pi\)
\(822\) 0.843852 + 3.13156i 0.0294327 + 0.109226i
\(823\) 42.2416i 1.47245i −0.676738 0.736224i \(-0.736607\pi\)
0.676738 0.736224i \(-0.263393\pi\)
\(824\) 41.1519 0.174726i 1.43360 0.00608688i
\(825\) 10.4926 13.2155i 0.365306 0.460106i
\(826\) −5.13410 + 1.38347i −0.178638 + 0.0481371i
\(827\) 5.58556 0.194229 0.0971145 0.995273i \(-0.469039\pi\)
0.0971145 + 0.995273i \(0.469039\pi\)
\(828\) −7.54476 + 28.4796i −0.262198 + 0.989735i
\(829\) −29.7227 −1.03231 −0.516156 0.856495i \(-0.672638\pi\)
−0.516156 + 0.856495i \(0.672638\pi\)
\(830\) −43.4337 21.7908i −1.50760 0.756368i
\(831\) −7.87967 7.87967i −0.273343 0.273343i
\(832\) −0.0365204 4.30061i −0.00126612 0.149097i
\(833\) −8.05385 −0.279050
\(834\) 2.50905 + 9.31116i 0.0868812 + 0.322419i
\(835\) 1.58639 + 27.7158i 0.0548992 + 0.959146i
\(836\) 1.86164 + 3.20349i 0.0643863 + 0.110795i
\(837\) −8.22381 −0.284256
\(838\) −8.26554 30.6737i −0.285529 1.05961i
\(839\) 27.2272 + 27.2272i 0.939986 + 0.939986i 0.998298 0.0583124i \(-0.0185719\pi\)
−0.0583124 + 0.998298i \(0.518572\pi\)
\(840\) −9.80533 + 11.0904i −0.338316 + 0.382655i
\(841\) 24.7004i 0.851737i
\(842\) −0.179898 + 0.312613i −0.00619968 + 0.0107733i
\(843\) 0.753460 0.753460i 0.0259505 0.0259505i
\(844\) 6.27865 23.7004i 0.216120 0.815801i
\(845\) −1.62419 28.3762i −0.0558737 0.976171i
\(846\) 2.72043 + 10.0956i 0.0935302 + 0.347094i
\(847\) 1.79473i 0.0616676i
\(848\) −20.8761 + 36.6359i −0.716889 + 1.25808i
\(849\) −2.50757 2.50757i −0.0860597 0.0860597i
\(850\) 39.3324 15.5989i 1.34909 0.535039i
\(851\) 32.7232i 1.12174i
\(852\) 2.58809 9.76940i 0.0886664 0.334694i
\(853\) −4.97627 + 4.97627i −0.170384 + 0.170384i −0.787148 0.616764i \(-0.788443\pi\)
0.616764 + 0.787148i \(0.288443\pi\)
\(854\) −0.389561 1.44568i −0.0133305 0.0494700i
\(855\) −1.63324 + 1.83156i −0.0558556 + 0.0626379i
\(856\) 7.95386 0.0337712i 0.271857 0.00115427i
\(857\) −27.5935 + 27.5935i −0.942577 + 0.942577i −0.998439 0.0558611i \(-0.982210\pi\)
0.0558611 + 0.998439i \(0.482210\pi\)
\(858\) 1.27977 2.22389i 0.0436906 0.0759224i
\(859\) 29.2969i 0.999599i 0.866141 + 0.499800i \(0.166593\pi\)
−0.866141 + 0.499800i \(0.833407\pi\)
\(860\) 0.363818 1.77838i 0.0124061 0.0606423i
\(861\) 5.72783 13.8496i 0.195204 0.471993i
\(862\) −25.8479 + 6.96515i −0.880384 + 0.237234i
\(863\) 15.0652 + 15.0652i 0.512825 + 0.512825i 0.915391 0.402566i \(-0.131882\pi\)
−0.402566 + 0.915391i \(0.631882\pi\)
\(864\) −27.1107 7.05904i −0.922323 0.240154i
\(865\) 22.7487 + 20.2855i 0.773479 + 0.689728i
\(866\) −3.26124 1.87673i −0.110821 0.0637738i
\(867\) 18.5130i 0.628735i
\(868\) −3.96796 6.82800i −0.134681 0.231757i
\(869\) −44.5194 −1.51022
\(870\) −5.76920 2.89442i −0.195594 0.0981300i
\(871\) 3.75755i 0.127320i
\(872\) 0.0878342 + 20.6869i 0.00297444 + 0.700547i
\(873\) −28.8169 −0.975305
\(874\) 5.35147 1.44204i 0.181016 0.0487779i
\(875\) 4.53768 + 26.1948i 0.153401 + 0.885547i
\(876\) −26.1988 6.94051i −0.885174 0.234498i
\(877\) −1.18587 + 1.18587i −0.0400442 + 0.0400442i −0.726845 0.686801i \(-0.759014\pi\)
0.686801 + 0.726845i \(0.259014\pi\)
\(878\) 3.80350 6.60945i 0.128362 0.223058i
\(879\) −13.4961 −0.455211
\(880\) 9.78123 + 29.0639i 0.329725 + 0.979744i
\(881\) 25.4990i 0.859083i −0.903047 0.429541i \(-0.858675\pi\)
0.903047 0.429541i \(-0.141325\pi\)
\(882\) 3.73278 1.00586i 0.125689 0.0338690i
\(883\) −49.4771 −1.66504 −0.832518 0.553998i \(-0.813102\pi\)
−0.832518 + 0.553998i \(0.813102\pi\)
\(884\) 5.56275 3.23268i 0.187096 0.108727i
\(885\) 3.47469 0.198883i 0.116800 0.00668537i
\(886\) 1.74598 + 1.00475i 0.0586572 + 0.0337551i
\(887\) 37.2624i 1.25115i 0.780164 + 0.625575i \(0.215135\pi\)
−0.780164 + 0.625575i \(0.784865\pi\)
\(888\) −12.5613 + 0.0533339i −0.421530 + 0.00178977i
\(889\) −33.3590 33.3590i −1.11882 1.11882i
\(890\) 20.1363 40.1360i 0.674970 1.34536i
\(891\) 2.95358 + 2.95358i 0.0989486 + 0.0989486i
\(892\) 13.5259 51.0571i 0.452881 1.70952i
\(893\) 1.39082 1.39082i 0.0465419 0.0465419i
\(894\) −8.36100 4.81146i −0.279634 0.160919i
\(895\) 14.8570 16.6611i 0.496616 0.556918i
\(896\) −7.21987 25.9152i −0.241199 0.865765i
\(897\) −2.71396 2.71396i −0.0906166 0.0906166i
\(898\) −32.9935 + 8.89066i −1.10101 + 0.296685i
\(899\) 2.43481 2.43481i 0.0812053 0.0812053i
\(900\) −16.2815 + 12.1420i −0.542716 + 0.404734i
\(901\) −63.0801 −2.10150
\(902\) −18.9483 24.5938i −0.630908 0.818884i
\(903\) −0.671785 + 0.671785i −0.0223556 + 0.0223556i
\(904\) −53.9123 + 0.228905i −1.79309 + 0.00761327i
\(905\) −17.0820 + 19.1562i −0.567824 + 0.636772i
\(906\) 10.5233 18.2867i 0.349615 0.607534i
\(907\) 35.2891 35.2891i 1.17176 1.17176i 0.189966 0.981791i \(-0.439162\pi\)
0.981791 0.189966i \(-0.0608377\pi\)
\(908\) −3.56781 6.13943i −0.118402 0.203744i
\(909\) −2.62818 2.62818i −0.0871711 0.0871711i
\(910\) 1.27309 + 3.83667i 0.0422026 + 0.127184i
\(911\) −12.6649 −0.419606 −0.209803 0.977744i \(-0.567282\pi\)
−0.209803 + 0.977744i \(0.567282\pi\)
\(912\) 0.562274 + 2.05190i 0.0186187 + 0.0679451i
\(913\) 52.6847 1.74361
\(914\) 11.7827 3.17503i 0.389736 0.105021i
\(915\) 0.0560019 + 0.978412i 0.00185137 + 0.0323453i
\(916\) −0.503845 + 1.90189i −0.0166475 + 0.0628403i
\(917\) 25.8876 0.854885
\(918\) −10.9042 40.4659i −0.359892 1.33557i
\(919\) −24.6146 24.6146i −0.811961 0.811961i 0.172967 0.984928i \(-0.444665\pi\)
−0.984928 + 0.172967i \(0.944665\pi\)
\(920\) 45.7850 2.81570i 1.50949 0.0928310i
\(921\) 13.9438 + 13.9438i 0.459463 + 0.459463i
\(922\) −10.3265 + 2.78265i −0.340086 + 0.0916418i
\(923\) −1.95144 1.95144i −0.0642325 0.0642325i
\(924\) 4.11009 15.5146i 0.135212 0.510393i
\(925\) −14.0271 + 17.6673i −0.461209 + 0.580896i
\(926\) 3.41644 + 12.6785i 0.112271 + 0.416643i
\(927\) −20.8956 20.8956i −0.686301 0.686301i
\(928\) 10.1166 5.93664i 0.332092 0.194880i
\(929\) −8.97072 + 8.97072i −0.294320 + 0.294320i −0.838784 0.544464i \(-0.816733\pi\)
0.544464 + 0.838784i \(0.316733\pi\)
\(930\) 1.62794 + 4.90605i 0.0533822 + 0.160876i
\(931\) −0.514245 0.514245i −0.0168537 0.0168537i
\(932\) −29.8473 + 17.3452i −0.977682 + 0.568161i
\(933\) 7.36692 + 7.36692i 0.241182 + 0.241182i
\(934\) −9.95627 5.72948i −0.325779 0.187474i
\(935\) −30.5320 + 34.2393i −0.998503 + 1.11975i
\(936\) −2.17447 + 2.19302i −0.0710748 + 0.0716810i
\(937\) 4.95111 0.161746 0.0808729 0.996724i \(-0.474229\pi\)
0.0808729 + 0.996724i \(0.474229\pi\)
\(938\) 6.11547 + 22.6947i 0.199677 + 0.741009i
\(939\) 6.71581 0.219162
\(940\) 13.5847 8.97041i 0.443084 0.292583i
\(941\) 3.55700i 0.115955i −0.998318 0.0579775i \(-0.981535\pi\)
0.998318 0.0579775i \(-0.0184652\pi\)
\(942\) −7.43603 + 2.00376i −0.242279 + 0.0652861i
\(943\) −42.8965 + 17.7958i −1.39690 + 0.579510i
\(944\) −3.13136 + 5.49529i −0.101917 + 0.178856i
\(945\) 26.2885 1.50469i 0.855164 0.0489475i
\(946\) 0.512058 + 1.90026i 0.0166484 + 0.0617829i
\(947\) 7.19716 + 7.19716i 0.233876 + 0.233876i 0.814309 0.580432i \(-0.197116\pi\)
−0.580432 + 0.814309i \(0.697116\pi\)
\(948\) −24.7113 6.54645i −0.802584 0.212619i
\(949\) −5.23322 + 5.23322i −0.169877 + 0.169877i
\(950\) 3.50741 + 1.51540i 0.113795 + 0.0491662i
\(951\) −0.242790 −0.00787300
\(952\) 28.3364 28.5781i 0.918389 0.926221i
\(953\) −6.76768 6.76768i −0.219227 0.219227i 0.588946 0.808173i \(-0.299543\pi\)
−0.808173 + 0.588946i \(0.799543\pi\)
\(954\) 29.2362 7.87817i 0.946556 0.255065i
\(955\) 18.6246 + 16.6080i 0.602678 + 0.537422i
\(956\) 2.00409 7.56496i 0.0648169 0.244668i
\(957\) 6.99800 0.226213
\(958\) 20.1751 35.0587i 0.651827 1.13270i
\(959\) 5.53985 0.178891
\(960\) 1.15547 + 17.5707i 0.0372928 + 0.567092i
\(961\) 28.2424 0.911046
\(962\) −1.71087 + 2.97302i −0.0551607 + 0.0958541i
\(963\) −4.03870 4.03870i −0.130145 0.130145i
\(964\) 2.07867 + 3.57695i 0.0669495 + 0.115206i
\(965\) 1.59627 + 27.8884i 0.0513856 + 0.897760i
\(966\) −20.8087 11.9747i −0.669508 0.385278i
\(967\) 26.0334i 0.837179i −0.908176 0.418590i \(-0.862525\pi\)
0.908176 0.418590i \(-0.137475\pi\)
\(968\) −1.51595 1.50313i −0.0487244 0.0483124i
\(969\) −2.25055 + 2.25055i −0.0722982 + 0.0722982i
\(970\) 14.1303 + 42.5838i 0.453695 + 1.36728i
\(971\) −22.7261 22.7261i −0.729316 0.729316i 0.241167 0.970484i \(-0.422470\pi\)
−0.970484 + 0.241167i \(0.922470\pi\)
\(972\) 16.1349 + 27.7646i 0.517527 + 0.890551i
\(973\) 16.4718 0.528061
\(974\) −20.7519 + 36.0612i −0.664935 + 1.15548i
\(975\) −0.301903 2.62864i −0.00966863 0.0841838i
\(976\) −1.54738 0.881738i −0.0495304 0.0282237i
\(977\) 5.89849i 0.188709i −0.995539 0.0943547i \(-0.969921\pi\)
0.995539 0.0943547i \(-0.0300788\pi\)
\(978\) −29.3832 16.9090i −0.939571 0.540690i
\(979\) 48.6846i 1.55597i
\(980\) −3.31675 5.02285i −0.105950 0.160449i
\(981\) 10.5041 10.5041i 0.335371 0.335371i
\(982\) −3.80508 14.1208i −0.121425 0.450613i
\(983\) −25.4145 + 25.4145i −0.810596 + 0.810596i −0.984723 0.174127i \(-0.944290\pi\)
0.174127 + 0.984723i \(0.444290\pi\)
\(984\) −6.90110 16.4375i −0.219999 0.524008i
\(985\) −35.6841 + 40.0170i −1.13699 + 1.27505i
\(986\) 15.2090 + 8.75226i 0.484354 + 0.278729i
\(987\) −8.52020 −0.271201
\(988\) 0.561596 + 0.148777i 0.0178667 + 0.00473322i
\(989\) 2.94392 0.0936112
\(990\) 9.87467 19.6823i 0.313837 0.625546i
\(991\) 28.4839 + 28.4839i 0.904821 + 0.904821i 0.995848 0.0910270i \(-0.0290150\pi\)
−0.0910270 + 0.995848i \(0.529015\pi\)
\(992\) −9.09063 2.36701i −0.288628 0.0751526i
\(993\) 3.83883 3.83883i 0.121822 0.121822i
\(994\) −14.9622 8.61024i −0.474573 0.273100i
\(995\) −3.11489 + 3.49312i −0.0987486 + 0.110739i
\(996\) 29.2435 + 7.74713i 0.926616 + 0.245477i
\(997\) 30.8316i 0.976448i 0.872718 + 0.488224i \(0.162355\pi\)
−0.872718 + 0.488224i \(0.837645\pi\)
\(998\) 21.0499 36.5789i 0.666322 1.15789i
\(999\) 15.7993 + 15.7993i 0.499867 + 0.499867i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.j.c.483.10 240
4.3 odd 2 inner 820.2.j.c.483.69 yes 240
5.2 odd 4 820.2.s.c.647.52 yes 240
20.7 even 4 820.2.s.c.647.111 yes 240
41.9 even 4 820.2.s.c.583.111 yes 240
164.91 odd 4 820.2.s.c.583.52 yes 240
205.132 odd 4 inner 820.2.j.c.747.69 yes 240
820.747 even 4 inner 820.2.j.c.747.10 yes 240
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.j.c.483.10 240 1.1 even 1 trivial
820.2.j.c.483.69 yes 240 4.3 odd 2 inner
820.2.j.c.747.10 yes 240 820.747 even 4 inner
820.2.j.c.747.69 yes 240 205.132 odd 4 inner
820.2.s.c.583.52 yes 240 164.91 odd 4
820.2.s.c.583.111 yes 240 41.9 even 4
820.2.s.c.647.52 yes 240 5.2 odd 4
820.2.s.c.647.111 yes 240 20.7 even 4