gp: [N,k,chi] = [820,2,Mod(483,820)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(820, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("820.483");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [240,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(820, [\chi])\):
\( T_{3}^{120} + 240 T_{3}^{118} + 27984 T_{3}^{116} + 2112528 T_{3}^{114} + 116091792 T_{3}^{112} + \cdots + 40\!\cdots\!72 \)
T3^120 + 240*T3^118 + 27984*T3^116 + 2112528*T3^114 + 116091792*T3^112 + 4950926968*T3^110 + 170579892728*T3^108 + 4880807675344*T3^106 + 118318963206630*T3^104 + 2466980532741464*T3^102 + 44763057062905152*T3^100 + 713457116392438968*T3^98 + 10064401187242767740*T3^96 + 126434708444219069032*T3^94 + 1421758086428296388336*T3^92 + 14372004067354279109464*T3^90 + 131065643798609505601049*T3^88 + 1081522617715466767584152*T3^86 + 8095423015063320642410032*T3^84 + 55080720220035876716050776*T3^82 + 341236333087442784270943932*T3^80 + 1927547542246508728763012096*T3^78 + 9938513486524211986661036584*T3^76 + 46812499751864547284592846936*T3^74 + 201547808261222591215636977912*T3^72 + 793456314791305941012387901312*T3^70 + 2856640888522482130535658626656*T3^68 + 9404692608901380198130064119808*T3^66 + 28305464350282466274699281107120*T3^64 + 77844082775071509806524462599872*T3^62 + 195485944089870680964722901053968*T3^60 + 447873460816172635193852713692896*T3^58 + 935120253106633351286606122450320*T3^56 + 1776958093977991231395426203827072*T3^54 + 3068361489940984840346239649158784*T3^52 + 4805809821373884306652268245081984*T3^50 + 6813148836396414544205156773682560*T3^48 + 8721845516440369326342355996192640*T3^46 + 10054463484046976053704858194028736*T3^44 + 10405071886367255451591349761462272*T3^42 + 9632204058584429078206405420166912*T3^40 + 7944120129790929606429849658868736*T3^38 + 5810377926653242590718921763469056*T3^36 + 3748987799872932607634267877861888*T3^34 + 2121053368730030350199265362599680*T3^32 + 1044952992233260159809997350221824*T3^30 + 444687750015853610821433930254336*T3^28 + 161942817203060455475681309497344*T3^26 + 49918008869799073896285237388288*T3^24 + 12856733199274892652008330573824*T3^22 + 2724662698899919571361770771456*T3^20 + 466450947778939377964769394688*T3^18 + 63084712008940411888632737792*T3^16 + 6558594976665834151092338688*T3^14 + 506753311886600842649473024*T3^12 + 27895507628633618078990336*T3^10 + 1036856408375854846427136*T3^8 + 24243719749768664317952*T3^6 + 322324592457911959552*T3^4 + 2038116419490021376*T3^2 + 4009174312681472
\( T_{13}^{60} + 8 T_{13}^{59} - 370 T_{13}^{58} - 3024 T_{13}^{57} + 63754 T_{13}^{56} + \cdots + 31\!\cdots\!00 \)
T13^60 + 8*T13^59 - 370*T13^58 - 3024*T13^57 + 63754*T13^56 + 532548*T13^55 - 6807980*T13^54 - 58105752*T13^53 + 505953635*T13^52 + 4406222252*T13^51 - 27871223314*T13^50 - 246924768436*T13^49 + 1184148952306*T13^48 + 10615751425524*T13^47 - 39889053371176*T13^46 - 358775055378124*T13^45 + 1087578035730553*T13^44 + 9690056679731496*T13^43 - 24392399492119862*T13^42 - 211488671150742476*T13^41 + 455824026163971804*T13^40 + 3756864770914380200*T13^39 - 7165302370211164696*T13^38 - 54538578414481931184*T13^37 + 95301257336839997568*T13^36 + 647889165675615219520*T13^35 - 1074144063436299535568*T13^34 - 6290252446697177058112*T13^33 + 10229452288294804192592*T13^32 + 49714632908727949191488*T13^31 - 81735505946415153670656*T13^30 - 317608909482070919449664*T13^29 + 542293450499220423958400*T13^28 + 1622440836099535458222848*T13^27 - 2949230523013620688615808*T13^26 - 6520203827147165394741248*T13^25 + 12950384005910065885858816*T13^24 + 20108481351689584276491264*T13^23 - 45123340024521435579108352*T13^22 - 45651464913713424883990528*T13^21 + 122223884768656070246825984*T13^20 + 70077630229484759770263552*T13^19 - 250935737109710133729374208*T13^18 - 55167522443257656952430592*T13^17 + 377736255851900323884032000*T13^16 - 25604319076146331591294976*T13^15 - 397512670336443736762777600*T13^14 + 123392905965360927670272000*T13^13 + 270591861748160987751350272*T13^12 - 145682258448507713159757824*T13^11 - 101532684853103457389641728*T13^10 + 84745052003517040517971968*T13^9 + 11190204729392434832146432*T13^8 - 22842457848281506974793728*T13^7 + 3380032092353485572145152*T13^6 + 1803881133865810719932416*T13^5 - 492849182026957191118848*T13^4 - 16362586165041654923264*T13^3 + 10776532289059728916480*T13^2 - 411759697221019238400*T13 + 3159021950599168000