Properties

Label 820.2.bq.a.569.6
Level $820$
Weight $2$
Character 820.569
Analytic conductor $6.548$
Analytic rank $0$
Dimension $176$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(49,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 10, 19])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 569.6
Character \(\chi\) \(=\) 820.569
Dual form 820.2.bq.a.49.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37884 - 1.37884i) q^{3} +(-2.23133 - 0.145551i) q^{5} +(-0.0463388 - 0.292571i) q^{7} +0.802406i q^{9} +(1.40198 + 0.714346i) q^{11} +(-3.46233 - 0.548380i) q^{13} +(2.87595 + 3.27734i) q^{15} +(-3.94420 - 2.00967i) q^{17} +(0.467063 + 2.94892i) q^{19} +(-0.339516 + 0.467303i) q^{21} +(-1.12543 - 1.54902i) q^{23} +(4.95763 + 0.649542i) q^{25} +(-3.03013 + 3.03013i) q^{27} +(4.61197 + 9.05151i) q^{29} +(-0.629522 - 1.93747i) q^{31} +(-0.948143 - 2.91808i) q^{33} +(0.0608129 + 0.659567i) q^{35} +(9.17488 + 2.98110i) q^{37} +(4.01788 + 5.53014i) q^{39} +(0.449547 + 6.38732i) q^{41} +(-6.88192 + 5.00000i) q^{43} +(0.116791 - 1.79043i) q^{45} +(-0.920552 + 5.81214i) q^{47} +(6.57394 - 2.13600i) q^{49} +(2.66741 + 8.20945i) q^{51} +(6.34023 - 3.23051i) q^{53} +(-3.02431 - 1.79800i) q^{55} +(3.42208 - 4.71009i) q^{57} +(-7.47962 + 5.43426i) q^{59} +(3.99337 - 5.49640i) q^{61} +(0.234761 - 0.0371825i) q^{63} +(7.64578 + 1.72756i) q^{65} +(6.17845 + 12.1259i) q^{67} +(-0.584066 + 3.68765i) q^{69} +(-11.0761 - 5.64356i) q^{71} -7.00586 q^{73} +(-5.94017 - 7.73140i) q^{75} +(0.144031 - 0.443282i) q^{77} +(-1.93786 + 1.93786i) q^{79} +10.7634 q^{81} -6.08123i q^{83} +(8.50829 + 5.05831i) q^{85} +(6.12141 - 18.8398i) q^{87} +(-8.22569 + 1.30282i) q^{89} +1.03839i q^{91} +(-1.80345 + 3.53947i) q^{93} +(-0.612952 - 6.64798i) q^{95} +(-2.14160 - 4.20314i) q^{97} +(-0.573196 + 1.12496i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q + 4 q^{11} - 10 q^{15} - 4 q^{19} + 12 q^{25} + 8 q^{29} - 8 q^{31} - 6 q^{35} + 40 q^{39} + 28 q^{41} - 4 q^{45} + 20 q^{49} - 32 q^{51} - 50 q^{55} + 12 q^{59} + 40 q^{61} - 10 q^{65} - 28 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.37884 1.37884i −0.796074 0.796074i 0.186400 0.982474i \(-0.440318\pi\)
−0.982474 + 0.186400i \(0.940318\pi\)
\(4\) 0 0
\(5\) −2.23133 0.145551i −0.997879 0.0650922i
\(6\) 0 0
\(7\) −0.0463388 0.292571i −0.0175144 0.110582i 0.977382 0.211480i \(-0.0678283\pi\)
−0.994897 + 0.100898i \(0.967828\pi\)
\(8\) 0 0
\(9\) 0.802406i 0.267469i
\(10\) 0 0
\(11\) 1.40198 + 0.714346i 0.422714 + 0.215384i 0.652390 0.757884i \(-0.273767\pi\)
−0.229676 + 0.973267i \(0.573767\pi\)
\(12\) 0 0
\(13\) −3.46233 0.548380i −0.960278 0.152093i −0.343433 0.939177i \(-0.611590\pi\)
−0.616846 + 0.787084i \(0.711590\pi\)
\(14\) 0 0
\(15\) 2.87595 + 3.27734i 0.742568 + 0.846204i
\(16\) 0 0
\(17\) −3.94420 2.00967i −0.956610 0.487417i −0.0952727 0.995451i \(-0.530372\pi\)
−0.861337 + 0.508034i \(0.830372\pi\)
\(18\) 0 0
\(19\) 0.467063 + 2.94892i 0.107152 + 0.676528i 0.981534 + 0.191290i \(0.0612671\pi\)
−0.874382 + 0.485238i \(0.838733\pi\)
\(20\) 0 0
\(21\) −0.339516 + 0.467303i −0.0740884 + 0.101974i
\(22\) 0 0
\(23\) −1.12543 1.54902i −0.234669 0.322994i 0.675400 0.737452i \(-0.263971\pi\)
−0.910068 + 0.414458i \(0.863971\pi\)
\(24\) 0 0
\(25\) 4.95763 + 0.649542i 0.991526 + 0.129908i
\(26\) 0 0
\(27\) −3.03013 + 3.03013i −0.583149 + 0.583149i
\(28\) 0 0
\(29\) 4.61197 + 9.05151i 0.856422 + 1.68082i 0.724186 + 0.689605i \(0.242216\pi\)
0.132236 + 0.991218i \(0.457784\pi\)
\(30\) 0 0
\(31\) −0.629522 1.93747i −0.113065 0.347980i 0.878473 0.477792i \(-0.158563\pi\)
−0.991539 + 0.129812i \(0.958563\pi\)
\(32\) 0 0
\(33\) −0.948143 2.91808i −0.165050 0.507973i
\(34\) 0 0
\(35\) 0.0608129 + 0.659567i 0.0102793 + 0.111487i
\(36\) 0 0
\(37\) 9.17488 + 2.98110i 1.50834 + 0.490089i 0.942437 0.334383i \(-0.108528\pi\)
0.565903 + 0.824472i \(0.308528\pi\)
\(38\) 0 0
\(39\) 4.01788 + 5.53014i 0.643376 + 0.885530i
\(40\) 0 0
\(41\) 0.449547 + 6.38732i 0.0702074 + 0.997532i
\(42\) 0 0
\(43\) −6.88192 + 5.00000i −1.04948 + 0.762494i −0.972114 0.234509i \(-0.924652\pi\)
−0.0773684 + 0.997003i \(0.524652\pi\)
\(44\) 0 0
\(45\) 0.116791 1.79043i 0.0174101 0.266901i
\(46\) 0 0
\(47\) −0.920552 + 5.81214i −0.134276 + 0.847788i 0.824962 + 0.565189i \(0.191197\pi\)
−0.959238 + 0.282599i \(0.908803\pi\)
\(48\) 0 0
\(49\) 6.57394 2.13600i 0.939135 0.305143i
\(50\) 0 0
\(51\) 2.66741 + 8.20945i 0.373512 + 1.14955i
\(52\) 0 0
\(53\) 6.34023 3.23051i 0.870898 0.443744i 0.0393679 0.999225i \(-0.487466\pi\)
0.831530 + 0.555480i \(0.187466\pi\)
\(54\) 0 0
\(55\) −3.02431 1.79800i −0.407798 0.242442i
\(56\) 0 0
\(57\) 3.42208 4.71009i 0.453266 0.623867i
\(58\) 0 0
\(59\) −7.47962 + 5.43426i −0.973764 + 0.707481i −0.956306 0.292367i \(-0.905557\pi\)
−0.0174575 + 0.999848i \(0.505557\pi\)
\(60\) 0 0
\(61\) 3.99337 5.49640i 0.511299 0.703742i −0.472839 0.881149i \(-0.656771\pi\)
0.984138 + 0.177406i \(0.0567707\pi\)
\(62\) 0 0
\(63\) 0.234761 0.0371825i 0.0295771 0.00468455i
\(64\) 0 0
\(65\) 7.64578 + 1.72756i 0.948342 + 0.214277i
\(66\) 0 0
\(67\) 6.17845 + 12.1259i 0.754817 + 1.48141i 0.872633 + 0.488377i \(0.162411\pi\)
−0.117815 + 0.993036i \(0.537589\pi\)
\(68\) 0 0
\(69\) −0.584066 + 3.68765i −0.0703133 + 0.443940i
\(70\) 0 0
\(71\) −11.0761 5.64356i −1.31449 0.669767i −0.350717 0.936482i \(-0.614062\pi\)
−0.963776 + 0.266714i \(0.914062\pi\)
\(72\) 0 0
\(73\) −7.00586 −0.819974 −0.409987 0.912091i \(-0.634467\pi\)
−0.409987 + 0.912091i \(0.634467\pi\)
\(74\) 0 0
\(75\) −5.94017 7.73140i −0.685912 0.892745i
\(76\) 0 0
\(77\) 0.144031 0.443282i 0.0164139 0.0505167i
\(78\) 0 0
\(79\) −1.93786 + 1.93786i −0.218026 + 0.218026i −0.807666 0.589640i \(-0.799270\pi\)
0.589640 + 0.807666i \(0.299270\pi\)
\(80\) 0 0
\(81\) 10.7634 1.19593
\(82\) 0 0
\(83\) 6.08123i 0.667502i −0.942661 0.333751i \(-0.891686\pi\)
0.942661 0.333751i \(-0.108314\pi\)
\(84\) 0 0
\(85\) 8.50829 + 5.05831i 0.922854 + 0.548651i
\(86\) 0 0
\(87\) 6.12141 18.8398i 0.656284 2.01984i
\(88\) 0 0
\(89\) −8.22569 + 1.30282i −0.871922 + 0.138099i −0.576331 0.817216i \(-0.695516\pi\)
−0.295590 + 0.955315i \(0.595516\pi\)
\(90\) 0 0
\(91\) 1.03839i 0.108853i
\(92\) 0 0
\(93\) −1.80345 + 3.53947i −0.187009 + 0.367026i
\(94\) 0 0
\(95\) −0.612952 6.64798i −0.0628876 0.682068i
\(96\) 0 0
\(97\) −2.14160 4.20314i −0.217447 0.426764i 0.756355 0.654161i \(-0.226978\pi\)
−0.973802 + 0.227398i \(0.926978\pi\)
\(98\) 0 0
\(99\) −0.573196 + 1.12496i −0.0576083 + 0.113063i
\(100\) 0 0
\(101\) 0.115937 + 0.731999i 0.0115362 + 0.0728366i 0.992785 0.119910i \(-0.0382605\pi\)
−0.981249 + 0.192746i \(0.938261\pi\)
\(102\) 0 0
\(103\) 4.37118 + 3.17584i 0.430705 + 0.312925i 0.781931 0.623365i \(-0.214235\pi\)
−0.351226 + 0.936291i \(0.614235\pi\)
\(104\) 0 0
\(105\) 0.825586 0.993289i 0.0805690 0.0969351i
\(106\) 0 0
\(107\) −5.93155 + 8.16408i −0.573424 + 0.789251i −0.992955 0.118490i \(-0.962195\pi\)
0.419531 + 0.907741i \(0.362195\pi\)
\(108\) 0 0
\(109\) 1.51484 + 1.51484i 0.145095 + 0.145095i 0.775923 0.630828i \(-0.217285\pi\)
−0.630828 + 0.775923i \(0.717285\pi\)
\(110\) 0 0
\(111\) −8.54024 16.7612i −0.810603 1.59090i
\(112\) 0 0
\(113\) −14.7113 + 4.77998i −1.38392 + 0.449663i −0.903956 0.427626i \(-0.859350\pi\)
−0.479963 + 0.877289i \(0.659350\pi\)
\(114\) 0 0
\(115\) 2.28574 + 3.62018i 0.213146 + 0.337584i
\(116\) 0 0
\(117\) 0.440023 2.77820i 0.0406801 0.256844i
\(118\) 0 0
\(119\) −0.405203 + 1.24709i −0.0371449 + 0.114320i
\(120\) 0 0
\(121\) −5.01037 6.89618i −0.455488 0.626926i
\(122\) 0 0
\(123\) 8.18725 9.42696i 0.738220 0.850000i
\(124\) 0 0
\(125\) −10.9675 2.17092i −0.980967 0.194173i
\(126\) 0 0
\(127\) −10.9732 3.56541i −0.973714 0.316379i −0.221400 0.975183i \(-0.571063\pi\)
−0.752314 + 0.658804i \(0.771063\pi\)
\(128\) 0 0
\(129\) 16.3833 + 2.59486i 1.44247 + 0.228464i
\(130\) 0 0
\(131\) −13.5762 + 4.41118i −1.18616 + 0.385406i −0.834651 0.550779i \(-0.814331\pi\)
−0.351507 + 0.936185i \(0.614331\pi\)
\(132\) 0 0
\(133\) 0.841126 0.273298i 0.0729349 0.0236980i
\(134\) 0 0
\(135\) 7.20225 6.32018i 0.619871 0.543954i
\(136\) 0 0
\(137\) −2.13593 + 2.13593i −0.182484 + 0.182484i −0.792438 0.609953i \(-0.791188\pi\)
0.609953 + 0.792438i \(0.291188\pi\)
\(138\) 0 0
\(139\) 13.3692 + 9.71327i 1.13396 + 0.823869i 0.986266 0.165164i \(-0.0528154\pi\)
0.147692 + 0.989033i \(0.452815\pi\)
\(140\) 0 0
\(141\) 9.28331 6.74472i 0.781796 0.568008i
\(142\) 0 0
\(143\) −4.46240 3.24212i −0.373165 0.271120i
\(144\) 0 0
\(145\) −8.97336 20.8681i −0.745197 1.73300i
\(146\) 0 0
\(147\) −12.0096 6.11922i −0.990538 0.504704i
\(148\) 0 0
\(149\) 2.04211 1.04051i 0.167296 0.0852416i −0.368337 0.929692i \(-0.620073\pi\)
0.535633 + 0.844451i \(0.320073\pi\)
\(150\) 0 0
\(151\) 0.532183 3.36007i 0.0433084 0.273439i −0.956526 0.291648i \(-0.905796\pi\)
0.999834 + 0.0182092i \(0.00579647\pi\)
\(152\) 0 0
\(153\) 1.61257 3.16485i 0.130369 0.255863i
\(154\) 0 0
\(155\) 1.12267 + 4.41475i 0.0901749 + 0.354601i
\(156\) 0 0
\(157\) 2.22566 + 14.0523i 0.177627 + 1.12149i 0.901888 + 0.431969i \(0.142181\pi\)
−0.724261 + 0.689526i \(0.757819\pi\)
\(158\) 0 0
\(159\) −13.1965 4.28781i −1.04655 0.340046i
\(160\) 0 0
\(161\) −0.401049 + 0.401049i −0.0316071 + 0.0316071i
\(162\) 0 0
\(163\) 10.2991i 0.806687i −0.915049 0.403344i \(-0.867848\pi\)
0.915049 0.403344i \(-0.132152\pi\)
\(164\) 0 0
\(165\) 1.69089 + 6.64920i 0.131635 + 0.517639i
\(166\) 0 0
\(167\) 7.85177 + 7.85177i 0.607588 + 0.607588i 0.942315 0.334727i \(-0.108644\pi\)
−0.334727 + 0.942315i \(0.608644\pi\)
\(168\) 0 0
\(169\) −0.676704 0.219874i −0.0520542 0.0169134i
\(170\) 0 0
\(171\) −2.36623 + 0.374774i −0.180950 + 0.0286597i
\(172\) 0 0
\(173\) −0.653351 −0.0496733 −0.0248367 0.999692i \(-0.507907\pi\)
−0.0248367 + 0.999692i \(0.507907\pi\)
\(174\) 0 0
\(175\) −0.0396931 1.48056i −0.00300052 0.111920i
\(176\) 0 0
\(177\) 17.8062 + 2.82022i 1.33840 + 0.211981i
\(178\) 0 0
\(179\) −20.3513 + 10.3695i −1.52112 + 0.775052i −0.997060 0.0766264i \(-0.975585\pi\)
−0.524065 + 0.851678i \(0.675585\pi\)
\(180\) 0 0
\(181\) 2.75939 5.41560i 0.205104 0.402539i −0.765425 0.643525i \(-0.777471\pi\)
0.970528 + 0.240987i \(0.0774711\pi\)
\(182\) 0 0
\(183\) −13.0849 + 2.07244i −0.967263 + 0.153199i
\(184\) 0 0
\(185\) −20.0382 7.98721i −1.47324 0.587231i
\(186\) 0 0
\(187\) −4.09411 5.63505i −0.299391 0.412076i
\(188\) 0 0
\(189\) 1.02694 + 0.746118i 0.0746991 + 0.0542721i
\(190\) 0 0
\(191\) −9.47076 9.47076i −0.685280 0.685280i 0.275905 0.961185i \(-0.411023\pi\)
−0.961185 + 0.275905i \(0.911023\pi\)
\(192\) 0 0
\(193\) 12.6082 6.42421i 0.907559 0.462424i 0.0630773 0.998009i \(-0.479909\pi\)
0.844482 + 0.535584i \(0.179909\pi\)
\(194\) 0 0
\(195\) −8.16028 12.9243i −0.584370 0.925531i
\(196\) 0 0
\(197\) −3.17745 9.77919i −0.226384 0.696738i −0.998148 0.0608294i \(-0.980625\pi\)
0.771764 0.635909i \(-0.219375\pi\)
\(198\) 0 0
\(199\) 0.362611 + 0.0574320i 0.0257048 + 0.00407125i 0.169274 0.985569i \(-0.445858\pi\)
−0.143569 + 0.989640i \(0.545858\pi\)
\(200\) 0 0
\(201\) 8.20057 25.2388i 0.578424 1.78021i
\(202\) 0 0
\(203\) 2.43450 1.76877i 0.170868 0.124143i
\(204\) 0 0
\(205\) −0.0734068 14.3176i −0.00512696 0.999987i
\(206\) 0 0
\(207\) 1.24294 0.903052i 0.0863906 0.0627665i
\(208\) 0 0
\(209\) −1.45173 + 4.46798i −0.100419 + 0.309057i
\(210\) 0 0
\(211\) −2.59599 0.411165i −0.178716 0.0283058i 0.0664352 0.997791i \(-0.478837\pi\)
−0.245151 + 0.969485i \(0.578837\pi\)
\(212\) 0 0
\(213\) 7.49062 + 23.0538i 0.513249 + 1.57962i
\(214\) 0 0
\(215\) 16.0835 10.1550i 1.09689 0.692563i
\(216\) 0 0
\(217\) −0.537676 + 0.273960i −0.0364999 + 0.0185976i
\(218\) 0 0
\(219\) 9.65997 + 9.65997i 0.652760 + 0.652760i
\(220\) 0 0
\(221\) 12.5541 + 9.12107i 0.844479 + 0.613550i
\(222\) 0 0
\(223\) 10.7385 + 14.7802i 0.719101 + 0.989758i 0.999553 + 0.0298896i \(0.00951557\pi\)
−0.280452 + 0.959868i \(0.590484\pi\)
\(224\) 0 0
\(225\) −0.521196 + 3.97803i −0.0347464 + 0.265202i
\(226\) 0 0
\(227\) −6.40775 + 1.01489i −0.425297 + 0.0673604i −0.365414 0.930845i \(-0.619073\pi\)
−0.0598828 + 0.998205i \(0.519073\pi\)
\(228\) 0 0
\(229\) −0.430823 + 0.845537i −0.0284696 + 0.0558747i −0.904803 0.425830i \(-0.859982\pi\)
0.876334 + 0.481705i \(0.159982\pi\)
\(230\) 0 0
\(231\) −0.809812 + 0.412620i −0.0532817 + 0.0271484i
\(232\) 0 0
\(233\) 16.1650 + 2.56028i 1.05900 + 0.167730i 0.661556 0.749895i \(-0.269896\pi\)
0.397447 + 0.917625i \(0.369896\pi\)
\(234\) 0 0
\(235\) 2.90001 12.8348i 0.189176 0.837249i
\(236\) 0 0
\(237\) 5.34399 0.347129
\(238\) 0 0
\(239\) 6.26820 0.992785i 0.405456 0.0642179i 0.0496243 0.998768i \(-0.484198\pi\)
0.355832 + 0.934550i \(0.384198\pi\)
\(240\) 0 0
\(241\) −13.9836 4.54355i −0.900764 0.292676i −0.178212 0.983992i \(-0.557031\pi\)
−0.722552 + 0.691316i \(0.757031\pi\)
\(242\) 0 0
\(243\) −5.75057 5.75057i −0.368899 0.368899i
\(244\) 0 0
\(245\) −14.9795 + 3.80928i −0.957006 + 0.243366i
\(246\) 0 0
\(247\) 10.4663i 0.665952i
\(248\) 0 0
\(249\) −8.38505 + 8.38505i −0.531381 + 0.531381i
\(250\) 0 0
\(251\) −23.1253 7.51385i −1.45965 0.474270i −0.531690 0.846939i \(-0.678443\pi\)
−0.927964 + 0.372669i \(0.878443\pi\)
\(252\) 0 0
\(253\) −0.471297 2.97565i −0.0296302 0.187078i
\(254\) 0 0
\(255\) −4.75697 18.7062i −0.297893 1.17143i
\(256\) 0 0
\(257\) 3.15544 6.19290i 0.196831 0.386302i −0.771404 0.636346i \(-0.780445\pi\)
0.968235 + 0.250044i \(0.0804450\pi\)
\(258\) 0 0
\(259\) 0.447032 2.82245i 0.0277772 0.175378i
\(260\) 0 0
\(261\) −7.26298 + 3.70067i −0.449567 + 0.229066i
\(262\) 0 0
\(263\) 25.6443 + 13.0664i 1.58129 + 0.805709i 0.999968 0.00796322i \(-0.00253480\pi\)
0.581324 + 0.813672i \(0.302535\pi\)
\(264\) 0 0
\(265\) −14.6173 + 6.28549i −0.897935 + 0.386115i
\(266\) 0 0
\(267\) 13.1383 + 9.54554i 0.804051 + 0.584178i
\(268\) 0 0
\(269\) −1.46737 + 1.06611i −0.0894673 + 0.0650018i −0.631620 0.775278i \(-0.717610\pi\)
0.542152 + 0.840280i \(0.317610\pi\)
\(270\) 0 0
\(271\) 4.24101 + 3.08128i 0.257623 + 0.187174i 0.709099 0.705109i \(-0.249102\pi\)
−0.451475 + 0.892284i \(0.649102\pi\)
\(272\) 0 0
\(273\) 1.43178 1.43178i 0.0866550 0.0866550i
\(274\) 0 0
\(275\) 6.48652 + 4.45211i 0.391152 + 0.268472i
\(276\) 0 0
\(277\) 16.0008 5.19897i 0.961395 0.312376i 0.214057 0.976821i \(-0.431332\pi\)
0.747337 + 0.664445i \(0.231332\pi\)
\(278\) 0 0
\(279\) 1.55464 0.505132i 0.0930736 0.0302414i
\(280\) 0 0
\(281\) 16.8922 + 2.67546i 1.00770 + 0.159605i 0.638401 0.769704i \(-0.279596\pi\)
0.369304 + 0.929309i \(0.379596\pi\)
\(282\) 0 0
\(283\) 17.6319 + 5.72897i 1.04811 + 0.340552i 0.781926 0.623371i \(-0.214237\pi\)
0.266184 + 0.963922i \(0.414237\pi\)
\(284\) 0 0
\(285\) −8.32134 + 10.0117i −0.492914 + 0.593040i
\(286\) 0 0
\(287\) 1.84792 0.427505i 0.109079 0.0252348i
\(288\) 0 0
\(289\) 1.52560 + 2.09981i 0.0897414 + 0.123518i
\(290\) 0 0
\(291\) −2.84252 + 8.74839i −0.166632 + 0.512840i
\(292\) 0 0
\(293\) 1.02513 6.47241i 0.0598886 0.378122i −0.939480 0.342603i \(-0.888692\pi\)
0.999369 0.0355192i \(-0.0113085\pi\)
\(294\) 0 0
\(295\) 17.4804 11.0369i 1.01775 0.642596i
\(296\) 0 0
\(297\) −6.41276 + 2.08363i −0.372106 + 0.120905i
\(298\) 0 0
\(299\) 3.04716 + 5.98040i 0.176222 + 0.345855i
\(300\) 0 0
\(301\) 1.78176 + 1.78176i 0.102699 + 0.102699i
\(302\) 0 0
\(303\) 0.849451 1.16917i 0.0487997 0.0671670i
\(304\) 0 0
\(305\) −9.71052 + 11.6830i −0.556023 + 0.668968i
\(306\) 0 0
\(307\) −5.49138 3.98972i −0.313409 0.227705i 0.419949 0.907548i \(-0.362048\pi\)
−0.733358 + 0.679843i \(0.762048\pi\)
\(308\) 0 0
\(309\) −1.64817 10.4061i −0.0937612 0.591985i
\(310\) 0 0
\(311\) 5.73879 11.2630i 0.325417 0.638667i −0.669108 0.743165i \(-0.733324\pi\)
0.994525 + 0.104498i \(0.0333237\pi\)
\(312\) 0 0
\(313\) 9.08612 + 17.8325i 0.513578 + 1.00795i 0.991568 + 0.129588i \(0.0413656\pi\)
−0.477990 + 0.878365i \(0.658634\pi\)
\(314\) 0 0
\(315\) −0.529240 + 0.0487966i −0.0298193 + 0.00274938i
\(316\) 0 0
\(317\) −7.43766 + 14.5972i −0.417741 + 0.819862i 0.582236 + 0.813020i \(0.302178\pi\)
−0.999977 + 0.00684242i \(0.997822\pi\)
\(318\) 0 0
\(319\) 15.9846i 0.894967i
\(320\) 0 0
\(321\) 19.4356 3.07830i 1.08479 0.171814i
\(322\) 0 0
\(323\) 4.08417 12.5698i 0.227249 0.699401i
\(324\) 0 0
\(325\) −16.8088 4.96759i −0.932383 0.275552i
\(326\) 0 0
\(327\) 4.17744i 0.231013i
\(328\) 0 0
\(329\) 1.74312 0.0961015
\(330\) 0 0
\(331\) −17.9626 + 17.9626i −0.987313 + 0.987313i −0.999921 0.0126077i \(-0.995987\pi\)
0.0126077 + 0.999921i \(0.495987\pi\)
\(332\) 0 0
\(333\) −2.39205 + 7.36197i −0.131084 + 0.403434i
\(334\) 0 0
\(335\) −12.0212 27.9561i −0.656788 1.52740i
\(336\) 0 0
\(337\) −32.1929 −1.75366 −0.876829 0.480802i \(-0.840345\pi\)
−0.876829 + 0.480802i \(0.840345\pi\)
\(338\) 0 0
\(339\) 26.8753 + 13.6937i 1.45967 + 0.743738i
\(340\) 0 0
\(341\) 0.501444 3.16600i 0.0271547 0.171448i
\(342\) 0 0
\(343\) −1.87092 3.67190i −0.101020 0.198264i
\(344\) 0 0
\(345\) 1.83998 8.14333i 0.0990612 0.438422i
\(346\) 0 0
\(347\) −23.1637 + 3.66877i −1.24349 + 0.196950i −0.743296 0.668962i \(-0.766739\pi\)
−0.500196 + 0.865912i \(0.666739\pi\)
\(348\) 0 0
\(349\) −10.4885 + 14.4362i −0.561439 + 0.772754i −0.991509 0.130041i \(-0.958489\pi\)
0.430070 + 0.902796i \(0.358489\pi\)
\(350\) 0 0
\(351\) 12.1530 8.82967i 0.648679 0.471293i
\(352\) 0 0
\(353\) −20.4960 + 28.2103i −1.09089 + 1.50148i −0.243954 + 0.969787i \(0.578445\pi\)
−0.846936 + 0.531695i \(0.821555\pi\)
\(354\) 0 0
\(355\) 23.8930 + 14.2048i 1.26811 + 0.753910i
\(356\) 0 0
\(357\) 2.27824 1.16082i 0.120577 0.0614373i
\(358\) 0 0
\(359\) 1.02286 + 3.14804i 0.0539845 + 0.166147i 0.974414 0.224762i \(-0.0721606\pi\)
−0.920429 + 0.390909i \(0.872161\pi\)
\(360\) 0 0
\(361\) 9.59210 3.11666i 0.504848 0.164035i
\(362\) 0 0
\(363\) −2.60024 + 16.4172i −0.136477 + 0.861682i
\(364\) 0 0
\(365\) 15.6324 + 1.01971i 0.818235 + 0.0533739i
\(366\) 0 0
\(367\) −27.8405 + 20.2273i −1.45326 + 1.05586i −0.468209 + 0.883618i \(0.655100\pi\)
−0.985055 + 0.172240i \(0.944900\pi\)
\(368\) 0 0
\(369\) −5.12523 + 0.360719i −0.266809 + 0.0187783i
\(370\) 0 0
\(371\) −1.23895 1.70527i −0.0643232 0.0885333i
\(372\) 0 0
\(373\) −27.3609 8.89011i −1.41670 0.460312i −0.502145 0.864784i \(-0.667456\pi\)
−0.914551 + 0.404471i \(0.867456\pi\)
\(374\) 0 0
\(375\) 12.1291 + 18.1159i 0.626346 + 0.935499i
\(376\) 0 0
\(377\) −11.0045 33.8685i −0.566762 1.74431i
\(378\) 0 0
\(379\) 3.50430 + 10.7851i 0.180004 + 0.553994i 0.999827 0.0186228i \(-0.00592815\pi\)
−0.819823 + 0.572617i \(0.805928\pi\)
\(380\) 0 0
\(381\) 10.2142 + 20.0464i 0.523288 + 1.02701i
\(382\) 0 0
\(383\) 9.02383 9.02383i 0.461096 0.461096i −0.437918 0.899015i \(-0.644284\pi\)
0.899015 + 0.437918i \(0.144284\pi\)
\(384\) 0 0
\(385\) −0.385900 + 0.968143i −0.0196673 + 0.0493411i
\(386\) 0 0
\(387\) −4.01203 5.52209i −0.203943 0.280704i
\(388\) 0 0
\(389\) −9.36158 + 12.8851i −0.474651 + 0.653301i −0.977466 0.211093i \(-0.932298\pi\)
0.502815 + 0.864394i \(0.332298\pi\)
\(390\) 0 0
\(391\) 1.32590 + 8.37140i 0.0670537 + 0.423360i
\(392\) 0 0
\(393\) 24.8017 + 12.6371i 1.25108 + 0.637458i
\(394\) 0 0
\(395\) 4.60604 4.04193i 0.231755 0.203372i
\(396\) 0 0
\(397\) 32.5611 + 5.15717i 1.63420 + 0.258831i 0.904980 0.425453i \(-0.139885\pi\)
0.729215 + 0.684284i \(0.239885\pi\)
\(398\) 0 0
\(399\) −1.53661 0.782944i −0.0769269 0.0391962i
\(400\) 0 0
\(401\) 30.5887i 1.52752i 0.645497 + 0.763762i \(0.276650\pi\)
−0.645497 + 0.763762i \(0.723350\pi\)
\(402\) 0 0
\(403\) 1.11715 + 7.05338i 0.0556490 + 0.351354i
\(404\) 0 0
\(405\) −24.0166 1.56661i −1.19339 0.0778457i
\(406\) 0 0
\(407\) 10.7335 + 10.7335i 0.532039 + 0.532039i
\(408\) 0 0
\(409\) 25.3561 1.25378 0.626889 0.779109i \(-0.284328\pi\)
0.626889 + 0.779109i \(0.284328\pi\)
\(410\) 0 0
\(411\) 5.89020 0.290542
\(412\) 0 0
\(413\) 1.93651 + 1.93651i 0.0952892 + 0.0952892i
\(414\) 0 0
\(415\) −0.885127 + 13.5692i −0.0434492 + 0.666086i
\(416\) 0 0
\(417\) −5.04091 31.8270i −0.246854 1.55858i
\(418\) 0 0
\(419\) 17.9606i 0.877433i −0.898626 0.438716i \(-0.855433\pi\)
0.898626 0.438716i \(-0.144567\pi\)
\(420\) 0 0
\(421\) −0.0592811 0.0302052i −0.00288918 0.00147211i 0.452545 0.891741i \(-0.350516\pi\)
−0.455434 + 0.890269i \(0.650516\pi\)
\(422\) 0 0
\(423\) −4.66369 0.738657i −0.226757 0.0359147i
\(424\) 0 0
\(425\) −18.2485 12.5251i −0.885184 0.607558i
\(426\) 0 0
\(427\) −1.79314 0.913650i −0.0867760 0.0442146i
\(428\) 0 0
\(429\) 1.68257 + 10.6233i 0.0812352 + 0.512899i
\(430\) 0 0
\(431\) −3.84273 + 5.28907i −0.185098 + 0.254766i −0.891475 0.453071i \(-0.850329\pi\)
0.706377 + 0.707836i \(0.250329\pi\)
\(432\) 0 0
\(433\) −11.1873 15.3979i −0.537625 0.739978i 0.450643 0.892704i \(-0.351195\pi\)
−0.988269 + 0.152726i \(0.951195\pi\)
\(434\) 0 0
\(435\) −16.4010 + 41.1467i −0.786368 + 1.97283i
\(436\) 0 0
\(437\) 4.04229 4.04229i 0.193369 0.193369i
\(438\) 0 0
\(439\) −13.6078 26.7068i −0.649465 1.27465i −0.947397 0.320060i \(-0.896297\pi\)
0.297932 0.954587i \(-0.403703\pi\)
\(440\) 0 0
\(441\) 1.71394 + 5.27497i 0.0816163 + 0.251189i
\(442\) 0 0
\(443\) −7.93182 24.4116i −0.376852 1.15983i −0.942220 0.334994i \(-0.891266\pi\)
0.565368 0.824839i \(-0.308734\pi\)
\(444\) 0 0
\(445\) 18.5438 1.70977i 0.879062 0.0810507i
\(446\) 0 0
\(447\) −4.25043 1.38105i −0.201039 0.0653214i
\(448\) 0 0
\(449\) −2.60909 3.59111i −0.123131 0.169475i 0.743002 0.669290i \(-0.233401\pi\)
−0.866132 + 0.499815i \(0.833401\pi\)
\(450\) 0 0
\(451\) −3.93250 + 9.27606i −0.185174 + 0.436792i
\(452\) 0 0
\(453\) −5.36680 + 3.89921i −0.252154 + 0.183201i
\(454\) 0 0
\(455\) 0.151138 2.31699i 0.00708548 0.108622i
\(456\) 0 0
\(457\) 0.373752 2.35978i 0.0174834 0.110386i −0.977403 0.211383i \(-0.932203\pi\)
0.994887 + 0.100997i \(0.0322033\pi\)
\(458\) 0 0
\(459\) 18.0410 5.86189i 0.842083 0.273609i
\(460\) 0 0
\(461\) 4.68644 + 14.4234i 0.218269 + 0.671763i 0.998905 + 0.0467775i \(0.0148952\pi\)
−0.780636 + 0.624986i \(0.785105\pi\)
\(462\) 0 0
\(463\) −3.72998 + 1.90052i −0.173347 + 0.0883246i −0.538511 0.842619i \(-0.681013\pi\)
0.365164 + 0.930943i \(0.381013\pi\)
\(464\) 0 0
\(465\) 4.53926 7.63522i 0.210503 0.354075i
\(466\) 0 0
\(467\) −1.25860 + 1.73232i −0.0582412 + 0.0801621i −0.837144 0.546982i \(-0.815776\pi\)
0.778903 + 0.627145i \(0.215776\pi\)
\(468\) 0 0
\(469\) 3.26138 2.36953i 0.150597 0.109415i
\(470\) 0 0
\(471\) 16.3070 22.4447i 0.751389 1.03420i
\(472\) 0 0
\(473\) −13.2201 + 2.09385i −0.607859 + 0.0962755i
\(474\) 0 0
\(475\) 0.400079 + 14.9230i 0.0183569 + 0.684715i
\(476\) 0 0
\(477\) 2.59218 + 5.08744i 0.118688 + 0.232938i
\(478\) 0 0
\(479\) −0.976152 + 6.16318i −0.0446015 + 0.281603i −0.999901 0.0140353i \(-0.995532\pi\)
0.955300 + 0.295638i \(0.0955323\pi\)
\(480\) 0 0
\(481\) −30.1317 15.3529i −1.37389 0.700031i
\(482\) 0 0
\(483\) 1.10596 0.0503231
\(484\) 0 0
\(485\) 4.16685 + 9.69028i 0.189207 + 0.440013i
\(486\) 0 0
\(487\) −8.18513 + 25.1913i −0.370904 + 1.14152i 0.575297 + 0.817945i \(0.304886\pi\)
−0.946201 + 0.323580i \(0.895114\pi\)
\(488\) 0 0
\(489\) −14.2008 + 14.2008i −0.642183 + 0.642183i
\(490\) 0 0
\(491\) −7.71268 −0.348068 −0.174034 0.984740i \(-0.555680\pi\)
−0.174034 + 0.984740i \(0.555680\pi\)
\(492\) 0 0
\(493\) 44.9695i 2.02533i
\(494\) 0 0
\(495\) 1.44272 2.42672i 0.0648457 0.109073i
\(496\) 0 0
\(497\) −1.13789 + 3.50207i −0.0510414 + 0.157089i
\(498\) 0 0
\(499\) 10.8473 1.71805i 0.485593 0.0769103i 0.0911621 0.995836i \(-0.470942\pi\)
0.394431 + 0.918926i \(0.370942\pi\)
\(500\) 0 0
\(501\) 21.6527i 0.967371i
\(502\) 0 0
\(503\) −0.807477 + 1.58476i −0.0360036 + 0.0706611i −0.908308 0.418303i \(-0.862625\pi\)
0.872304 + 0.488964i \(0.162625\pi\)
\(504\) 0 0
\(505\) −0.152151 1.65020i −0.00677062 0.0734330i
\(506\) 0 0
\(507\) 0.629895 + 1.23624i 0.0279746 + 0.0549033i
\(508\) 0 0
\(509\) −15.1790 + 29.7904i −0.672796 + 1.32044i 0.261937 + 0.965085i \(0.415639\pi\)
−0.934733 + 0.355352i \(0.884361\pi\)
\(510\) 0 0
\(511\) 0.324643 + 2.04971i 0.0143613 + 0.0906740i
\(512\) 0 0
\(513\) −10.3509 7.52035i −0.457002 0.332032i
\(514\) 0 0
\(515\) −9.29127 7.72257i −0.409422 0.340297i
\(516\) 0 0
\(517\) −5.44248 + 7.49093i −0.239360 + 0.329451i
\(518\) 0 0
\(519\) 0.900867 + 0.900867i 0.0395437 + 0.0395437i
\(520\) 0 0
\(521\) 5.93523 + 11.6485i 0.260027 + 0.510332i 0.983701 0.179810i \(-0.0575481\pi\)
−0.723674 + 0.690142i \(0.757548\pi\)
\(522\) 0 0
\(523\) 24.3643 7.91643i 1.06537 0.346161i 0.276690 0.960959i \(-0.410762\pi\)
0.788685 + 0.614798i \(0.210762\pi\)
\(524\) 0 0
\(525\) −1.98673 + 2.09619i −0.0867078 + 0.0914851i
\(526\) 0 0
\(527\) −1.41071 + 8.90690i −0.0614517 + 0.387991i
\(528\) 0 0
\(529\) 5.97451 18.3877i 0.259762 0.799464i
\(530\) 0 0
\(531\) −4.36048 6.00169i −0.189229 0.260451i
\(532\) 0 0
\(533\) 1.94620 22.3616i 0.0842992 0.968587i
\(534\) 0 0
\(535\) 14.4235 17.3534i 0.623582 0.750252i
\(536\) 0 0
\(537\) 42.3590 + 13.7633i 1.82793 + 0.593930i
\(538\) 0 0
\(539\) 10.7424 + 1.70143i 0.462708 + 0.0732858i
\(540\) 0 0
\(541\) 21.8517 7.10005i 0.939478 0.305255i 0.201045 0.979582i \(-0.435566\pi\)
0.738433 + 0.674327i \(0.235566\pi\)
\(542\) 0 0
\(543\) −11.2720 + 3.66250i −0.483728 + 0.157173i
\(544\) 0 0
\(545\) −3.15961 3.60058i −0.135343 0.154232i
\(546\) 0 0
\(547\) 3.13537 3.13537i 0.134059 0.134059i −0.636893 0.770952i \(-0.719781\pi\)
0.770952 + 0.636893i \(0.219781\pi\)
\(548\) 0 0
\(549\) 4.41035 + 3.20430i 0.188229 + 0.136756i
\(550\) 0 0
\(551\) −24.5381 + 17.8280i −1.04536 + 0.759496i
\(552\) 0 0
\(553\) 0.656759 + 0.477163i 0.0279282 + 0.0202910i
\(554\) 0 0
\(555\) 16.6165 + 38.6426i 0.705329 + 1.64029i
\(556\) 0 0
\(557\) 12.0564 + 6.14306i 0.510847 + 0.260290i 0.690360 0.723466i \(-0.257452\pi\)
−0.179513 + 0.983756i \(0.557452\pi\)
\(558\) 0 0
\(559\) 26.5694 13.5378i 1.12377 0.572587i
\(560\) 0 0
\(561\) −2.12472 + 13.4150i −0.0897058 + 0.566380i
\(562\) 0 0
\(563\) −21.1809 + 41.5699i −0.892669 + 1.75196i −0.283390 + 0.959005i \(0.591459\pi\)
−0.609278 + 0.792956i \(0.708541\pi\)
\(564\) 0 0
\(565\) 33.5213 8.52446i 1.41025 0.358627i
\(566\) 0 0
\(567\) −0.498761 3.14905i −0.0209460 0.132248i
\(568\) 0 0
\(569\) −21.6384 7.03073i −0.907128 0.294744i −0.181952 0.983307i \(-0.558242\pi\)
−0.725176 + 0.688564i \(0.758242\pi\)
\(570\) 0 0
\(571\) −18.2775 + 18.2775i −0.764891 + 0.764891i −0.977202 0.212311i \(-0.931901\pi\)
0.212311 + 0.977202i \(0.431901\pi\)
\(572\) 0 0
\(573\) 26.1173i 1.09107i
\(574\) 0 0
\(575\) −4.57331 8.41049i −0.190720 0.350742i
\(576\) 0 0
\(577\) 19.6049 + 19.6049i 0.816163 + 0.816163i 0.985550 0.169387i \(-0.0541787\pi\)
−0.169387 + 0.985550i \(0.554179\pi\)
\(578\) 0 0
\(579\) −26.2427 8.52676i −1.09061 0.354360i
\(580\) 0 0
\(581\) −1.77919 + 0.281797i −0.0738134 + 0.0116909i
\(582\) 0 0
\(583\) 11.1966 0.463716
\(584\) 0 0
\(585\) −1.38620 + 6.13502i −0.0573124 + 0.253652i
\(586\) 0 0
\(587\) 26.9234 + 4.26425i 1.11125 + 0.176004i 0.684958 0.728583i \(-0.259821\pi\)
0.426289 + 0.904587i \(0.359821\pi\)
\(588\) 0 0
\(589\) 5.41941 2.76133i 0.223303 0.113778i
\(590\) 0 0
\(591\) −9.10275 + 17.8651i −0.374437 + 0.734874i
\(592\) 0 0
\(593\) 5.99460 0.949451i 0.246169 0.0389893i −0.0321306 0.999484i \(-0.510229\pi\)
0.278299 + 0.960494i \(0.410229\pi\)
\(594\) 0 0
\(595\) 1.08565 2.72368i 0.0445075 0.111660i
\(596\) 0 0
\(597\) −0.420794 0.579173i −0.0172219 0.0237040i
\(598\) 0 0
\(599\) 30.8534 + 22.4163i 1.26064 + 0.915906i 0.998789 0.0492029i \(-0.0156681\pi\)
0.261848 + 0.965109i \(0.415668\pi\)
\(600\) 0 0
\(601\) 6.64339 + 6.64339i 0.270989 + 0.270989i 0.829498 0.558509i \(-0.188626\pi\)
−0.558509 + 0.829498i \(0.688626\pi\)
\(602\) 0 0
\(603\) −9.72988 + 4.95762i −0.396231 + 0.201890i
\(604\) 0 0
\(605\) 10.1760 + 16.1169i 0.413714 + 0.655245i
\(606\) 0 0
\(607\) 0.163156 + 0.502141i 0.00662228 + 0.0203813i 0.954313 0.298809i \(-0.0965892\pi\)
−0.947691 + 0.319190i \(0.896589\pi\)
\(608\) 0 0
\(609\) −5.79564 0.917939i −0.234851 0.0371967i
\(610\) 0 0
\(611\) 6.37452 19.6187i 0.257885 0.793690i
\(612\) 0 0
\(613\) 20.6035 14.9693i 0.832169 0.604606i −0.0880030 0.996120i \(-0.528049\pi\)
0.920172 + 0.391514i \(0.128049\pi\)
\(614\) 0 0
\(615\) −19.6405 + 19.8430i −0.791982 + 0.800145i
\(616\) 0 0
\(617\) −5.33859 + 3.87871i −0.214924 + 0.156151i −0.690039 0.723773i \(-0.742406\pi\)
0.475115 + 0.879924i \(0.342406\pi\)
\(618\) 0 0
\(619\) 14.5396 44.7482i 0.584395 1.79858i −0.0172922 0.999850i \(-0.505505\pi\)
0.601687 0.798732i \(-0.294495\pi\)
\(620\) 0 0
\(621\) 8.10395 + 1.28354i 0.325200 + 0.0515067i
\(622\) 0 0
\(623\) 0.762337 + 2.34623i 0.0305424 + 0.0939998i
\(624\) 0 0
\(625\) 24.1562 + 6.44037i 0.966248 + 0.257615i
\(626\) 0 0
\(627\) 8.16235 4.15892i 0.325973 0.166091i
\(628\) 0 0
\(629\) −30.1965 30.1965i −1.20401 1.20401i
\(630\) 0 0
\(631\) 9.73371 + 7.07195i 0.387493 + 0.281530i 0.764427 0.644710i \(-0.223022\pi\)
−0.376935 + 0.926240i \(0.623022\pi\)
\(632\) 0 0
\(633\) 3.01253 + 4.14639i 0.119737 + 0.164804i
\(634\) 0 0
\(635\) 23.9658 + 9.55274i 0.951055 + 0.379089i
\(636\) 0 0
\(637\) −23.9325 + 3.79054i −0.948241 + 0.150187i
\(638\) 0 0
\(639\) 4.52843 8.88754i 0.179142 0.351586i
\(640\) 0 0
\(641\) 30.2660 15.4213i 1.19543 0.609105i 0.261035 0.965329i \(-0.415936\pi\)
0.934400 + 0.356225i \(0.115936\pi\)
\(642\) 0 0
\(643\) −41.4158 6.55961i −1.63328 0.258686i −0.728650 0.684887i \(-0.759852\pi\)
−0.904629 + 0.426201i \(0.859852\pi\)
\(644\) 0 0
\(645\) −36.1788 8.17457i −1.42454 0.321873i
\(646\) 0 0
\(647\) 5.43559 0.213695 0.106847 0.994275i \(-0.465924\pi\)
0.106847 + 0.994275i \(0.465924\pi\)
\(648\) 0 0
\(649\) −14.3683 + 2.27571i −0.564003 + 0.0893293i
\(650\) 0 0
\(651\) 1.11912 + 0.363623i 0.0438617 + 0.0142515i
\(652\) 0 0
\(653\) −24.6719 24.6719i −0.965486 0.965486i 0.0339379 0.999424i \(-0.489195\pi\)
−0.999424 + 0.0339379i \(0.989195\pi\)
\(654\) 0 0
\(655\) 30.9350 7.86675i 1.20873 0.307379i
\(656\) 0 0
\(657\) 5.62154i 0.219317i
\(658\) 0 0
\(659\) −23.4890 + 23.4890i −0.915002 + 0.915002i −0.996660 0.0816582i \(-0.973978\pi\)
0.0816582 + 0.996660i \(0.473978\pi\)
\(660\) 0 0
\(661\) −1.20546 0.391678i −0.0468870 0.0152345i 0.285480 0.958385i \(-0.407847\pi\)
−0.332367 + 0.943150i \(0.607847\pi\)
\(662\) 0 0
\(663\) −4.73357 29.8866i −0.183837 1.16070i
\(664\) 0 0
\(665\) −1.91660 + 0.487391i −0.0743227 + 0.0189002i
\(666\) 0 0
\(667\) 8.83053 17.3309i 0.341920 0.671055i
\(668\) 0 0
\(669\) 5.57295 35.1862i 0.215463 1.36038i
\(670\) 0 0
\(671\) 9.52498 4.85322i 0.367708 0.187356i
\(672\) 0 0
\(673\) 20.6627 + 10.5282i 0.796489 + 0.405831i 0.804363 0.594138i \(-0.202507\pi\)
−0.00787448 + 0.999969i \(0.502507\pi\)
\(674\) 0 0
\(675\) −16.9905 + 13.0541i −0.653964 + 0.502452i
\(676\) 0 0
\(677\) −32.3842 23.5285i −1.24462 0.904272i −0.246727 0.969085i \(-0.579355\pi\)
−0.997897 + 0.0648127i \(0.979355\pi\)
\(678\) 0 0
\(679\) −1.13048 + 0.821340i −0.0433838 + 0.0315201i
\(680\) 0 0
\(681\) 10.2346 + 7.43590i 0.392192 + 0.284944i
\(682\) 0 0
\(683\) −2.23439 + 2.23439i −0.0854966 + 0.0854966i −0.748562 0.663065i \(-0.769255\pi\)
0.663065 + 0.748562i \(0.269255\pi\)
\(684\) 0 0
\(685\) 5.07683 4.45506i 0.193976 0.170219i
\(686\) 0 0
\(687\) 1.75990 0.571826i 0.0671443 0.0218165i
\(688\) 0 0
\(689\) −23.7235 + 7.70824i −0.903795 + 0.293661i
\(690\) 0 0
\(691\) −32.4411 5.13817i −1.23412 0.195465i −0.494911 0.868944i \(-0.664799\pi\)
−0.739207 + 0.673479i \(0.764799\pi\)
\(692\) 0 0
\(693\) 0.355692 + 0.115571i 0.0135116 + 0.00439019i
\(694\) 0 0
\(695\) −28.4172 23.6194i −1.07793 0.895934i
\(696\) 0 0
\(697\) 11.0633 26.0963i 0.419053 0.988469i
\(698\) 0 0
\(699\) −18.7587 25.8192i −0.709520 0.976571i
\(700\) 0 0
\(701\) 5.53530 17.0359i 0.209065 0.643437i −0.790457 0.612518i \(-0.790157\pi\)
0.999522 0.0309187i \(-0.00984331\pi\)
\(702\) 0 0
\(703\) −4.50577 + 28.4483i −0.169938 + 1.07295i
\(704\) 0 0
\(705\) −21.6958 + 13.6985i −0.817111 + 0.515915i
\(706\) 0 0
\(707\) 0.208789 0.0678398i 0.00785234 0.00255138i
\(708\) 0 0
\(709\) 3.40113 + 6.67510i 0.127732 + 0.250688i 0.946012 0.324132i \(-0.105072\pi\)
−0.818280 + 0.574820i \(0.805072\pi\)
\(710\) 0 0
\(711\) −1.55495 1.55495i −0.0583150 0.0583150i
\(712\) 0 0
\(713\) −2.29270 + 3.15563i −0.0858622 + 0.118179i
\(714\) 0 0
\(715\) 9.48518 + 7.88374i 0.354726 + 0.294835i
\(716\) 0 0
\(717\) −10.0117 7.27396i −0.373895 0.271651i
\(718\) 0 0
\(719\) −6.26414 39.5502i −0.233613 1.47497i −0.773801 0.633429i \(-0.781647\pi\)
0.540188 0.841544i \(-0.318353\pi\)
\(720\) 0 0
\(721\) 0.726606 1.42605i 0.0270602 0.0531087i
\(722\) 0 0
\(723\) 13.0163 + 25.5460i 0.484083 + 0.950067i
\(724\) 0 0
\(725\) 16.9851 + 47.8697i 0.630812 + 1.77784i
\(726\) 0 0
\(727\) 8.57435 16.8281i 0.318005 0.624120i −0.675570 0.737296i \(-0.736102\pi\)
0.993575 + 0.113176i \(0.0361024\pi\)
\(728\) 0 0
\(729\) 16.4319i 0.608587i
\(730\) 0 0
\(731\) 37.1920 5.89064i 1.37560 0.217873i
\(732\) 0 0
\(733\) 1.60113 4.92778i 0.0591391 0.182012i −0.917123 0.398605i \(-0.869495\pi\)
0.976262 + 0.216593i \(0.0694945\pi\)
\(734\) 0 0
\(735\) 25.9068 + 15.4020i 0.955585 + 0.568110i
\(736\) 0 0
\(737\) 21.4138i 0.788789i
\(738\) 0 0
\(739\) 13.8728 0.510318 0.255159 0.966899i \(-0.417872\pi\)
0.255159 + 0.966899i \(0.417872\pi\)
\(740\) 0 0
\(741\) −14.4313 + 14.4313i −0.530148 + 0.530148i
\(742\) 0 0
\(743\) 14.1618 43.5855i 0.519546 1.59900i −0.255309 0.966859i \(-0.582177\pi\)
0.774855 0.632139i \(-0.217823\pi\)
\(744\) 0 0
\(745\) −4.70805 + 2.02448i −0.172490 + 0.0741711i
\(746\) 0 0
\(747\) 4.87961 0.178536
\(748\) 0 0
\(749\) 2.66344 + 1.35709i 0.0973198 + 0.0495869i
\(750\) 0 0
\(751\) 2.27831 14.3847i 0.0831367 0.524904i −0.910612 0.413263i \(-0.864389\pi\)
0.993749 0.111642i \(-0.0356109\pi\)
\(752\) 0 0
\(753\) 21.5257 + 42.2465i 0.784439 + 1.53955i
\(754\) 0 0
\(755\) −1.67653 + 7.41995i −0.0610153 + 0.270040i
\(756\) 0 0
\(757\) −45.8347 + 7.25951i −1.66589 + 0.263851i −0.917013 0.398857i \(-0.869407\pi\)
−0.748878 + 0.662708i \(0.769407\pi\)
\(758\) 0 0
\(759\) −3.45311 + 4.75279i −0.125340 + 0.172516i
\(760\) 0 0
\(761\) 10.4251 7.57428i 0.377910 0.274567i −0.382574 0.923925i \(-0.624962\pi\)
0.760483 + 0.649358i \(0.224962\pi\)
\(762\) 0 0
\(763\) 0.373003 0.513394i 0.0135036 0.0185861i
\(764\) 0 0
\(765\) −4.05882 + 6.82710i −0.146747 + 0.246834i
\(766\) 0 0
\(767\) 28.8770 14.7136i 1.04269 0.531276i
\(768\) 0 0
\(769\) −10.5422 32.4456i −0.380162 1.17002i −0.939930 0.341368i \(-0.889110\pi\)
0.559768 0.828650i \(-0.310890\pi\)
\(770\) 0 0
\(771\) −12.8899 + 4.18817i −0.464217 + 0.150833i
\(772\) 0 0
\(773\) 8.15973 51.5185i 0.293485 1.85299i −0.195507 0.980702i \(-0.562635\pi\)
0.488992 0.872288i \(-0.337365\pi\)
\(774\) 0 0
\(775\) −1.86247 10.0142i −0.0669019 0.359719i
\(776\) 0 0
\(777\) −4.50809 + 3.27532i −0.161727 + 0.117501i
\(778\) 0 0
\(779\) −18.6257 + 4.30896i −0.667336 + 0.154384i
\(780\) 0 0
\(781\) −11.4971 15.8244i −0.411398 0.566240i
\(782\) 0 0
\(783\) −41.4022 13.4524i −1.47959 0.480749i
\(784\) 0 0
\(785\) −2.92086 31.6792i −0.104250 1.13068i
\(786\) 0 0
\(787\) 14.8657 + 45.7520i 0.529906 + 1.63088i 0.754405 + 0.656410i \(0.227926\pi\)
−0.224498 + 0.974474i \(0.572074\pi\)
\(788\) 0 0
\(789\) −17.3429 53.3758i −0.617422 1.90023i
\(790\) 0 0
\(791\) 2.08019 + 4.08260i 0.0739629 + 0.145160i
\(792\) 0 0
\(793\) −16.8405 + 16.8405i −0.598024 + 0.598024i
\(794\) 0 0
\(795\) 28.8217 + 11.4883i 1.02220 + 0.407447i
\(796\) 0 0
\(797\) 1.13056 + 1.55608i 0.0400463 + 0.0551190i 0.828571 0.559885i \(-0.189155\pi\)
−0.788524 + 0.615004i \(0.789155\pi\)
\(798\) 0 0
\(799\) 15.3113 21.0742i 0.541676 0.745553i
\(800\) 0 0
\(801\) −1.04539 6.60034i −0.0369371 0.233212i
\(802\) 0 0
\(803\) −9.82210 5.00461i −0.346614 0.176609i
\(804\) 0 0
\(805\) 0.953243 0.836497i 0.0335974 0.0294826i
\(806\) 0 0
\(807\) 3.49327 + 0.553279i 0.122969 + 0.0194763i
\(808\) 0 0
\(809\) −6.90702 3.51930i −0.242838 0.123732i 0.328336 0.944561i \(-0.393512\pi\)
−0.571174 + 0.820829i \(0.693512\pi\)
\(810\) 0 0
\(811\) 5.55756i 0.195152i 0.995228 + 0.0975762i \(0.0311090\pi\)
−0.995228 + 0.0975762i \(0.968891\pi\)
\(812\) 0 0
\(813\) −1.59909 10.0963i −0.0560826 0.354092i
\(814\) 0 0
\(815\) −1.49904 + 22.9806i −0.0525090 + 0.804976i
\(816\) 0 0
\(817\) −17.9589 17.9589i −0.628302 0.628302i
\(818\) 0 0
\(819\) −0.833211 −0.0291147
\(820\) 0 0
\(821\) −12.6761 −0.442400 −0.221200 0.975228i \(-0.570997\pi\)
−0.221200 + 0.975228i \(0.570997\pi\)
\(822\) 0 0
\(823\) 11.6812 + 11.6812i 0.407181 + 0.407181i 0.880754 0.473573i \(-0.157036\pi\)
−0.473573 + 0.880754i \(0.657036\pi\)
\(824\) 0 0
\(825\) −2.80512 15.0826i −0.0976619 0.525110i
\(826\) 0 0
\(827\) −4.68495 29.5796i −0.162912 1.02858i −0.924683 0.380738i \(-0.875670\pi\)
0.761772 0.647846i \(-0.224330\pi\)
\(828\) 0 0
\(829\) 49.0999i 1.70531i −0.522473 0.852656i \(-0.674991\pi\)
0.522473 0.852656i \(-0.325009\pi\)
\(830\) 0 0
\(831\) −29.2311 14.8940i −1.01402 0.516667i
\(832\) 0 0
\(833\) −30.2216 4.78664i −1.04712 0.165847i
\(834\) 0 0
\(835\) −16.3770 18.6627i −0.566751 0.645849i
\(836\) 0 0
\(837\) 7.77832 + 3.96325i 0.268858 + 0.136990i
\(838\) 0 0
\(839\) −7.43431 46.9384i −0.256661 1.62049i −0.693157 0.720787i \(-0.743781\pi\)
0.436496 0.899706i \(-0.356219\pi\)
\(840\) 0 0
\(841\) −43.6137 + 60.0292i −1.50392 + 2.06997i
\(842\) 0 0
\(843\) −19.6026 26.9807i −0.675150 0.929265i
\(844\) 0 0
\(845\) 1.47794 + 0.589106i 0.0508428 + 0.0202659i
\(846\) 0 0
\(847\) −1.78545 + 1.78545i −0.0613488 + 0.0613488i
\(848\) 0 0
\(849\) −16.4123 32.2110i −0.563269 1.10548i
\(850\) 0 0
\(851\) −5.70790 17.5671i −0.195664 0.602193i
\(852\) 0 0
\(853\) −13.2385 40.7438i −0.453276 1.39504i −0.873147 0.487456i \(-0.837925\pi\)
0.419871 0.907584i \(-0.362075\pi\)
\(854\) 0 0
\(855\) 5.33438 0.491837i 0.182432 0.0168205i
\(856\) 0 0
\(857\) 28.6940 + 9.32326i 0.980170 + 0.318476i 0.754914 0.655823i \(-0.227678\pi\)
0.225255 + 0.974300i \(0.427678\pi\)
\(858\) 0 0
\(859\) 16.3269 + 22.4720i 0.557067 + 0.766736i 0.990950 0.134233i \(-0.0428570\pi\)
−0.433883 + 0.900969i \(0.642857\pi\)
\(860\) 0 0
\(861\) −3.13745 1.95852i −0.106924 0.0667462i
\(862\) 0 0
\(863\) −21.1117 + 15.3386i −0.718651 + 0.522131i −0.885953 0.463775i \(-0.846495\pi\)
0.167302 + 0.985906i \(0.446495\pi\)
\(864\) 0 0
\(865\) 1.45784 + 0.0950956i 0.0495680 + 0.00323335i
\(866\) 0 0
\(867\) 0.791744 4.99887i 0.0268890 0.169771i
\(868\) 0 0
\(869\) −4.10114 + 1.33254i −0.139122 + 0.0452034i
\(870\) 0 0
\(871\) −14.7423 45.3720i −0.499522 1.53737i
\(872\) 0 0
\(873\) 3.37262 1.71844i 0.114146 0.0581603i
\(874\) 0 0
\(875\) −0.126928 + 3.30939i −0.00429095 + 0.111878i
\(876\) 0 0
\(877\) −12.1600 + 16.7369i −0.410615 + 0.565163i −0.963368 0.268182i \(-0.913577\pi\)
0.552753 + 0.833345i \(0.313577\pi\)
\(878\) 0 0
\(879\) −10.3379 + 7.51093i −0.348689 + 0.253337i
\(880\) 0 0
\(881\) −12.1871 + 16.7742i −0.410595 + 0.565136i −0.963363 0.268199i \(-0.913571\pi\)
0.552768 + 0.833335i \(0.313571\pi\)
\(882\) 0 0
\(883\) −25.3334 + 4.01242i −0.852537 + 0.135029i −0.567384 0.823453i \(-0.692044\pi\)
−0.285153 + 0.958482i \(0.592044\pi\)
\(884\) 0 0
\(885\) −39.3209 8.88454i −1.32176 0.298651i
\(886\) 0 0
\(887\) 4.70911 + 9.24214i 0.158116 + 0.310321i 0.956451 0.291894i \(-0.0942853\pi\)
−0.798335 + 0.602214i \(0.794285\pi\)
\(888\) 0 0
\(889\) −0.534652 + 3.37566i −0.0179317 + 0.113216i
\(890\) 0 0
\(891\) 15.0901 + 7.68877i 0.505536 + 0.257583i
\(892\) 0 0
\(893\) −17.5695 −0.587940
\(894\) 0 0
\(895\) 46.9196 20.1756i 1.56835 0.674395i
\(896\) 0 0
\(897\) 4.04446 12.4476i 0.135041 0.415612i
\(898\) 0 0
\(899\) 14.6337 14.6337i 0.488060 0.488060i
\(900\) 0 0
\(901\) −31.4994 −1.04940
\(902\) 0 0
\(903\) 4.91352i 0.163512i
\(904\) 0 0
\(905\) −6.94534 + 11.6823i −0.230871 + 0.388334i
\(906\) 0 0
\(907\) 3.30509 10.1720i 0.109744 0.337757i −0.881071 0.472985i \(-0.843177\pi\)
0.990815 + 0.135228i \(0.0431767\pi\)
\(908\) 0 0
\(909\) −0.587360 + 0.0930287i −0.0194815 + 0.00308557i
\(910\) 0 0
\(911\) 44.8426i 1.48570i −0.669457 0.742850i \(-0.733473\pi\)
0.669457 0.742850i \(-0.266527\pi\)
\(912\) 0 0
\(913\) 4.34410 8.52579i 0.143769 0.282162i
\(914\) 0 0
\(915\) 29.4983 2.71978i 0.975184 0.0899132i
\(916\) 0 0
\(917\) 1.91969 + 3.76760i 0.0633937 + 0.124417i
\(918\) 0 0
\(919\) −11.3492 + 22.2740i −0.374375 + 0.734752i −0.998931 0.0462282i \(-0.985280\pi\)
0.624556 + 0.780980i \(0.285280\pi\)
\(920\) 0 0
\(921\) 2.07055 + 13.0729i 0.0682269 + 0.430768i
\(922\) 0 0
\(923\) 35.2544 + 25.6138i 1.16041 + 0.843089i
\(924\) 0 0
\(925\) 43.5493 + 20.7386i 1.43189 + 0.681882i
\(926\) 0 0
\(927\) −2.54832 + 3.50746i −0.0836977 + 0.115200i
\(928\) 0 0
\(929\) 11.5532 + 11.5532i 0.379049 + 0.379049i 0.870759 0.491710i \(-0.163628\pi\)
−0.491710 + 0.870759i \(0.663628\pi\)
\(930\) 0 0
\(931\) 9.36935 + 18.3884i 0.307068 + 0.602655i
\(932\) 0 0
\(933\) −23.4428 + 7.61702i −0.767482 + 0.249370i
\(934\) 0 0
\(935\) 8.31510 + 13.1695i 0.271933 + 0.430690i
\(936\) 0 0
\(937\) −7.34460 + 46.3720i −0.239938 + 1.51491i 0.513902 + 0.857849i \(0.328199\pi\)
−0.753840 + 0.657058i \(0.771801\pi\)
\(938\) 0 0
\(939\) 12.0599 37.1165i 0.393560 1.21125i
\(940\) 0 0
\(941\) 22.8327 + 31.4265i 0.744324 + 1.02447i 0.998358 + 0.0572790i \(0.0182425\pi\)
−0.254034 + 0.967195i \(0.581758\pi\)
\(942\) 0 0
\(943\) 9.38817 7.88485i 0.305721 0.256766i
\(944\) 0 0
\(945\) −2.18285 1.81430i −0.0710080 0.0590193i
\(946\) 0 0
\(947\) −19.4193 6.30973i −0.631044 0.205039i −0.0240063 0.999712i \(-0.507642\pi\)
−0.607037 + 0.794673i \(0.707642\pi\)
\(948\) 0 0
\(949\) 24.2566 + 3.84187i 0.787403 + 0.124712i
\(950\) 0 0
\(951\) 30.3826 9.87191i 0.985224 0.320119i
\(952\) 0 0
\(953\) 20.1690 6.55332i 0.653339 0.212283i 0.0364532 0.999335i \(-0.488394\pi\)
0.616886 + 0.787053i \(0.288394\pi\)
\(954\) 0 0
\(955\) 19.7539 + 22.5108i 0.639220 + 0.728433i
\(956\) 0 0
\(957\) 22.0402 22.0402i 0.712460 0.712460i
\(958\) 0 0
\(959\) 0.723887 + 0.525934i 0.0233755 + 0.0169833i
\(960\) 0 0
\(961\) 21.7220 15.7820i 0.700711 0.509096i
\(962\) 0 0
\(963\) −6.55090 4.75951i −0.211100 0.153373i
\(964\) 0 0
\(965\) −29.0681 + 12.4994i −0.935735 + 0.402369i
\(966\) 0 0
\(967\) 17.9657 + 9.15397i 0.577738 + 0.294372i 0.718338 0.695694i \(-0.244903\pi\)
−0.140600 + 0.990066i \(0.544903\pi\)
\(968\) 0 0
\(969\) −22.9631 + 11.7003i −0.737682 + 0.375868i
\(970\) 0 0
\(971\) −0.697362 + 4.40297i −0.0223794 + 0.141298i −0.996348 0.0853847i \(-0.972788\pi\)
0.973969 + 0.226683i \(0.0727881\pi\)
\(972\) 0 0
\(973\) 2.22231 4.36154i 0.0712441 0.139825i
\(974\) 0 0
\(975\) 16.3271 + 30.0261i 0.522886 + 0.961606i
\(976\) 0 0
\(977\) 7.87632 + 49.7291i 0.251986 + 1.59098i 0.711422 + 0.702765i \(0.248051\pi\)
−0.459436 + 0.888211i \(0.651949\pi\)
\(978\) 0 0
\(979\) −12.4630 4.04946i −0.398318 0.129421i
\(980\) 0 0
\(981\) −1.21552 + 1.21552i −0.0388084 + 0.0388084i
\(982\) 0 0
\(983\) 34.6761i 1.10600i −0.833183 0.552998i \(-0.813484\pi\)
0.833183 0.552998i \(-0.186516\pi\)
\(984\) 0 0
\(985\) 5.66656 + 22.2830i 0.180552 + 0.709996i
\(986\) 0 0
\(987\) −2.40349 2.40349i −0.0765039 0.0765039i
\(988\) 0 0
\(989\) 15.4902 + 5.03308i 0.492561 + 0.160043i
\(990\) 0 0
\(991\) −43.1288 + 6.83093i −1.37003 + 0.216992i −0.797711 0.603039i \(-0.793956\pi\)
−0.572319 + 0.820031i \(0.693956\pi\)
\(992\) 0 0
\(993\) 49.5351 1.57195
\(994\) 0 0
\(995\) −0.800745 0.180928i −0.0253853 0.00573580i
\(996\) 0 0
\(997\) −26.5331 4.20244i −0.840313 0.133092i −0.278582 0.960412i \(-0.589864\pi\)
−0.561731 + 0.827320i \(0.689864\pi\)
\(998\) 0 0
\(999\) −36.8342 + 18.7680i −1.16538 + 0.593792i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bq.a.569.6 yes 176
5.4 even 2 inner 820.2.bq.a.569.17 yes 176
41.8 even 20 inner 820.2.bq.a.49.17 yes 176
205.49 even 20 inner 820.2.bq.a.49.6 176
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bq.a.49.6 176 205.49 even 20 inner
820.2.bq.a.49.17 yes 176 41.8 even 20 inner
820.2.bq.a.569.6 yes 176 1.1 even 1 trivial
820.2.bq.a.569.17 yes 176 5.4 even 2 inner