Properties

Label 820.2.bq.a.49.17
Level $820$
Weight $2$
Character 820.49
Analytic conductor $6.548$
Analytic rank $0$
Dimension $176$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(49,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 10, 19])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 49.17
Character \(\chi\) \(=\) 820.49
Dual form 820.2.bq.a.569.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37884 - 1.37884i) q^{3} +(-1.89073 + 1.19379i) q^{5} +(0.0463388 - 0.292571i) q^{7} -0.802406i q^{9} +(1.40198 - 0.714346i) q^{11} +(3.46233 - 0.548380i) q^{13} +(-0.960977 + 4.25306i) q^{15} +(3.94420 - 2.00967i) q^{17} +(0.467063 - 2.94892i) q^{19} +(-0.339516 - 0.467303i) q^{21} +(1.12543 - 1.54902i) q^{23} +(2.14974 - 4.51427i) q^{25} +(3.03013 + 3.03013i) q^{27} +(4.61197 - 9.05151i) q^{29} +(-0.629522 + 1.93747i) q^{31} +(0.948143 - 2.91808i) q^{33} +(0.261654 + 0.608493i) q^{35} +(-9.17488 + 2.98110i) q^{37} +(4.01788 - 5.53014i) q^{39} +(0.449547 - 6.38732i) q^{41} +(6.88192 + 5.00000i) q^{43} +(0.957902 + 1.51714i) q^{45} +(0.920552 + 5.81214i) q^{47} +(6.57394 + 2.13600i) q^{49} +(2.66741 - 8.20945i) q^{51} +(-6.34023 - 3.23051i) q^{53} +(-1.79800 + 3.02431i) q^{55} +(-3.42208 - 4.71009i) q^{57} +(-7.47962 - 5.43426i) q^{59} +(3.99337 + 5.49640i) q^{61} +(-0.234761 - 0.0371825i) q^{63} +(-5.89170 + 5.17013i) q^{65} +(-6.17845 + 12.1259i) q^{67} +(-0.584066 - 3.68765i) q^{69} +(-11.0761 + 5.64356i) q^{71} +7.00586 q^{73} +(-3.26030 - 9.18861i) q^{75} +(-0.144031 - 0.443282i) q^{77} +(-1.93786 - 1.93786i) q^{79} +10.7634 q^{81} -6.08123i q^{83} +(-5.05831 + 8.50829i) q^{85} +(-6.12141 - 18.8398i) q^{87} +(-8.22569 - 1.30282i) q^{89} -1.03839i q^{91} +(1.80345 + 3.53947i) q^{93} +(2.63729 + 6.13319i) q^{95} +(2.14160 - 4.20314i) q^{97} +(-0.573196 - 1.12496i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q + 4 q^{11} - 10 q^{15} - 4 q^{19} + 12 q^{25} + 8 q^{29} - 8 q^{31} - 6 q^{35} + 40 q^{39} + 28 q^{41} - 4 q^{45} + 20 q^{49} - 32 q^{51} - 50 q^{55} + 12 q^{59} + 40 q^{61} - 10 q^{65} - 28 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.37884 1.37884i 0.796074 0.796074i −0.186400 0.982474i \(-0.559682\pi\)
0.982474 + 0.186400i \(0.0596819\pi\)
\(4\) 0 0
\(5\) −1.89073 + 1.19379i −0.845562 + 0.533878i
\(6\) 0 0
\(7\) 0.0463388 0.292571i 0.0175144 0.110582i −0.977382 0.211480i \(-0.932172\pi\)
0.994897 + 0.100898i \(0.0321717\pi\)
\(8\) 0 0
\(9\) 0.802406i 0.267469i
\(10\) 0 0
\(11\) 1.40198 0.714346i 0.422714 0.215384i −0.229676 0.973267i \(-0.573767\pi\)
0.652390 + 0.757884i \(0.273767\pi\)
\(12\) 0 0
\(13\) 3.46233 0.548380i 0.960278 0.152093i 0.343433 0.939177i \(-0.388410\pi\)
0.616846 + 0.787084i \(0.288410\pi\)
\(14\) 0 0
\(15\) −0.960977 + 4.25306i −0.248123 + 1.09814i
\(16\) 0 0
\(17\) 3.94420 2.00967i 0.956610 0.487417i 0.0952727 0.995451i \(-0.469628\pi\)
0.861337 + 0.508034i \(0.169628\pi\)
\(18\) 0 0
\(19\) 0.467063 2.94892i 0.107152 0.676528i −0.874382 0.485238i \(-0.838733\pi\)
0.981534 0.191290i \(-0.0612671\pi\)
\(20\) 0 0
\(21\) −0.339516 0.467303i −0.0740884 0.101974i
\(22\) 0 0
\(23\) 1.12543 1.54902i 0.234669 0.322994i −0.675400 0.737452i \(-0.736029\pi\)
0.910068 + 0.414458i \(0.136029\pi\)
\(24\) 0 0
\(25\) 2.14974 4.51427i 0.429949 0.902853i
\(26\) 0 0
\(27\) 3.03013 + 3.03013i 0.583149 + 0.583149i
\(28\) 0 0
\(29\) 4.61197 9.05151i 0.856422 1.68082i 0.132236 0.991218i \(-0.457784\pi\)
0.724186 0.689605i \(-0.242216\pi\)
\(30\) 0 0
\(31\) −0.629522 + 1.93747i −0.113065 + 0.347980i −0.991539 0.129812i \(-0.958563\pi\)
0.878473 + 0.477792i \(0.158563\pi\)
\(32\) 0 0
\(33\) 0.948143 2.91808i 0.165050 0.507973i
\(34\) 0 0
\(35\) 0.261654 + 0.608493i 0.0442276 + 0.102854i
\(36\) 0 0
\(37\) −9.17488 + 2.98110i −1.50834 + 0.490089i −0.942437 0.334383i \(-0.891472\pi\)
−0.565903 + 0.824472i \(0.691472\pi\)
\(38\) 0 0
\(39\) 4.01788 5.53014i 0.643376 0.885530i
\(40\) 0 0
\(41\) 0.449547 6.38732i 0.0702074 0.997532i
\(42\) 0 0
\(43\) 6.88192 + 5.00000i 1.04948 + 0.762494i 0.972114 0.234509i \(-0.0753483\pi\)
0.0773684 + 0.997003i \(0.475348\pi\)
\(44\) 0 0
\(45\) 0.957902 + 1.51714i 0.142796 + 0.226161i
\(46\) 0 0
\(47\) 0.920552 + 5.81214i 0.134276 + 0.847788i 0.959238 + 0.282599i \(0.0911966\pi\)
−0.824962 + 0.565189i \(0.808803\pi\)
\(48\) 0 0
\(49\) 6.57394 + 2.13600i 0.939135 + 0.305143i
\(50\) 0 0
\(51\) 2.66741 8.20945i 0.373512 1.14955i
\(52\) 0 0
\(53\) −6.34023 3.23051i −0.870898 0.443744i −0.0393679 0.999225i \(-0.512534\pi\)
−0.831530 + 0.555480i \(0.812534\pi\)
\(54\) 0 0
\(55\) −1.79800 + 3.02431i −0.242442 + 0.407798i
\(56\) 0 0
\(57\) −3.42208 4.71009i −0.453266 0.623867i
\(58\) 0 0
\(59\) −7.47962 5.43426i −0.973764 0.707481i −0.0174575 0.999848i \(-0.505557\pi\)
−0.956306 + 0.292367i \(0.905557\pi\)
\(60\) 0 0
\(61\) 3.99337 + 5.49640i 0.511299 + 0.703742i 0.984138 0.177406i \(-0.0567707\pi\)
−0.472839 + 0.881149i \(0.656771\pi\)
\(62\) 0 0
\(63\) −0.234761 0.0371825i −0.0295771 0.00468455i
\(64\) 0 0
\(65\) −5.89170 + 5.17013i −0.730775 + 0.641276i
\(66\) 0 0
\(67\) −6.17845 + 12.1259i −0.754817 + 1.48141i 0.117815 + 0.993036i \(0.462411\pi\)
−0.872633 + 0.488377i \(0.837589\pi\)
\(68\) 0 0
\(69\) −0.584066 3.68765i −0.0703133 0.443940i
\(70\) 0 0
\(71\) −11.0761 + 5.64356i −1.31449 + 0.669767i −0.963776 0.266714i \(-0.914062\pi\)
−0.350717 + 0.936482i \(0.614062\pi\)
\(72\) 0 0
\(73\) 7.00586 0.819974 0.409987 0.912091i \(-0.365533\pi\)
0.409987 + 0.912091i \(0.365533\pi\)
\(74\) 0 0
\(75\) −3.26030 9.18861i −0.376467 1.06101i
\(76\) 0 0
\(77\) −0.144031 0.443282i −0.0164139 0.0505167i
\(78\) 0 0
\(79\) −1.93786 1.93786i −0.218026 0.218026i 0.589640 0.807666i \(-0.299270\pi\)
−0.807666 + 0.589640i \(0.799270\pi\)
\(80\) 0 0
\(81\) 10.7634 1.19593
\(82\) 0 0
\(83\) 6.08123i 0.667502i −0.942661 0.333751i \(-0.891686\pi\)
0.942661 0.333751i \(-0.108314\pi\)
\(84\) 0 0
\(85\) −5.05831 + 8.50829i −0.548651 + 0.922854i
\(86\) 0 0
\(87\) −6.12141 18.8398i −0.656284 2.01984i
\(88\) 0 0
\(89\) −8.22569 1.30282i −0.871922 0.138099i −0.295590 0.955315i \(-0.595516\pi\)
−0.576331 + 0.817216i \(0.695516\pi\)
\(90\) 0 0
\(91\) 1.03839i 0.108853i
\(92\) 0 0
\(93\) 1.80345 + 3.53947i 0.187009 + 0.367026i
\(94\) 0 0
\(95\) 2.63729 + 6.13319i 0.270580 + 0.629252i
\(96\) 0 0
\(97\) 2.14160 4.20314i 0.217447 0.426764i −0.756355 0.654161i \(-0.773022\pi\)
0.973802 + 0.227398i \(0.0730217\pi\)
\(98\) 0 0
\(99\) −0.573196 1.12496i −0.0576083 0.113063i
\(100\) 0 0
\(101\) 0.115937 0.731999i 0.0115362 0.0728366i −0.981249 0.192746i \(-0.938261\pi\)
0.992785 + 0.119910i \(0.0382605\pi\)
\(102\) 0 0
\(103\) −4.37118 + 3.17584i −0.430705 + 0.312925i −0.781931 0.623365i \(-0.785765\pi\)
0.351226 + 0.936291i \(0.385765\pi\)
\(104\) 0 0
\(105\) 1.19979 + 0.478236i 0.117088 + 0.0466711i
\(106\) 0 0
\(107\) 5.93155 + 8.16408i 0.573424 + 0.789251i 0.992955 0.118490i \(-0.0378054\pi\)
−0.419531 + 0.907741i \(0.637805\pi\)
\(108\) 0 0
\(109\) 1.51484 1.51484i 0.145095 0.145095i −0.630828 0.775923i \(-0.717285\pi\)
0.775923 + 0.630828i \(0.217285\pi\)
\(110\) 0 0
\(111\) −8.54024 + 16.7612i −0.810603 + 1.59090i
\(112\) 0 0
\(113\) 14.7113 + 4.77998i 1.38392 + 0.449663i 0.903956 0.427626i \(-0.140650\pi\)
0.479963 + 0.877289i \(0.340650\pi\)
\(114\) 0 0
\(115\) −0.278685 + 4.27231i −0.0259875 + 0.398395i
\(116\) 0 0
\(117\) −0.440023 2.77820i −0.0406801 0.256844i
\(118\) 0 0
\(119\) −0.405203 1.24709i −0.0371449 0.114320i
\(120\) 0 0
\(121\) −5.01037 + 6.89618i −0.455488 + 0.626926i
\(122\) 0 0
\(123\) −8.18725 9.42696i −0.738220 0.850000i
\(124\) 0 0
\(125\) 1.32449 + 11.1016i 0.118466 + 0.992958i
\(126\) 0 0
\(127\) 10.9732 3.56541i 0.973714 0.316379i 0.221400 0.975183i \(-0.428937\pi\)
0.752314 + 0.658804i \(0.228937\pi\)
\(128\) 0 0
\(129\) 16.3833 2.59486i 1.44247 0.228464i
\(130\) 0 0
\(131\) −13.5762 4.41118i −1.18616 0.385406i −0.351507 0.936185i \(-0.614331\pi\)
−0.834651 + 0.550779i \(0.814331\pi\)
\(132\) 0 0
\(133\) −0.841126 0.273298i −0.0729349 0.0236980i
\(134\) 0 0
\(135\) −9.34651 2.11184i −0.804419 0.181758i
\(136\) 0 0
\(137\) 2.13593 + 2.13593i 0.182484 + 0.182484i 0.792438 0.609953i \(-0.208812\pi\)
−0.609953 + 0.792438i \(0.708812\pi\)
\(138\) 0 0
\(139\) 13.3692 9.71327i 1.13396 0.823869i 0.147692 0.989033i \(-0.452815\pi\)
0.986266 + 0.165164i \(0.0528154\pi\)
\(140\) 0 0
\(141\) 9.28331 + 6.74472i 0.781796 + 0.568008i
\(142\) 0 0
\(143\) 4.46240 3.24212i 0.373165 0.271120i
\(144\) 0 0
\(145\) 2.08557 + 22.6197i 0.173197 + 1.87846i
\(146\) 0 0
\(147\) 12.0096 6.11922i 0.990538 0.504704i
\(148\) 0 0
\(149\) 2.04211 + 1.04051i 0.167296 + 0.0852416i 0.535633 0.844451i \(-0.320073\pi\)
−0.368337 + 0.929692i \(0.620073\pi\)
\(150\) 0 0
\(151\) 0.532183 + 3.36007i 0.0433084 + 0.273439i 0.999834 0.0182092i \(-0.00579647\pi\)
−0.956526 + 0.291648i \(0.905796\pi\)
\(152\) 0 0
\(153\) −1.61257 3.16485i −0.130369 0.255863i
\(154\) 0 0
\(155\) −1.12267 4.41475i −0.0901749 0.354601i
\(156\) 0 0
\(157\) −2.22566 + 14.0523i −0.177627 + 1.12149i 0.724261 + 0.689526i \(0.242181\pi\)
−0.901888 + 0.431969i \(0.857819\pi\)
\(158\) 0 0
\(159\) −13.1965 + 4.28781i −1.04655 + 0.340046i
\(160\) 0 0
\(161\) −0.401049 0.401049i −0.0316071 0.0316071i
\(162\) 0 0
\(163\) 10.2991i 0.806687i −0.915049 0.403344i \(-0.867848\pi\)
0.915049 0.403344i \(-0.132152\pi\)
\(164\) 0 0
\(165\) 1.69089 + 6.64920i 0.131635 + 0.517639i
\(166\) 0 0
\(167\) −7.85177 + 7.85177i −0.607588 + 0.607588i −0.942315 0.334727i \(-0.891356\pi\)
0.334727 + 0.942315i \(0.391356\pi\)
\(168\) 0 0
\(169\) −0.676704 + 0.219874i −0.0520542 + 0.0169134i
\(170\) 0 0
\(171\) −2.36623 0.374774i −0.180950 0.0286597i
\(172\) 0 0
\(173\) 0.653351 0.0496733 0.0248367 0.999692i \(-0.492093\pi\)
0.0248367 + 0.999692i \(0.492093\pi\)
\(174\) 0 0
\(175\) −1.22113 0.838139i −0.0923087 0.0633573i
\(176\) 0 0
\(177\) −17.8062 + 2.82022i −1.33840 + 0.211981i
\(178\) 0 0
\(179\) −20.3513 10.3695i −1.52112 0.775052i −0.524065 0.851678i \(-0.675585\pi\)
−0.997060 + 0.0766264i \(0.975585\pi\)
\(180\) 0 0
\(181\) 2.75939 + 5.41560i 0.205104 + 0.402539i 0.970528 0.240987i \(-0.0774711\pi\)
−0.765425 + 0.643525i \(0.777471\pi\)
\(182\) 0 0
\(183\) 13.0849 + 2.07244i 0.967263 + 0.153199i
\(184\) 0 0
\(185\) 13.7884 16.5893i 1.01375 1.21967i
\(186\) 0 0
\(187\) 4.09411 5.63505i 0.299391 0.412076i
\(188\) 0 0
\(189\) 1.02694 0.746118i 0.0746991 0.0542721i
\(190\) 0 0
\(191\) −9.47076 + 9.47076i −0.685280 + 0.685280i −0.961185 0.275905i \(-0.911023\pi\)
0.275905 + 0.961185i \(0.411023\pi\)
\(192\) 0 0
\(193\) −12.6082 6.42421i −0.907559 0.462424i −0.0630773 0.998009i \(-0.520091\pi\)
−0.844482 + 0.535584i \(0.820091\pi\)
\(194\) 0 0
\(195\) −0.994929 + 15.2525i −0.0712483 + 1.09225i
\(196\) 0 0
\(197\) 3.17745 9.77919i 0.226384 0.696738i −0.771764 0.635909i \(-0.780625\pi\)
0.998148 0.0608294i \(-0.0193746\pi\)
\(198\) 0 0
\(199\) 0.362611 0.0574320i 0.0257048 0.00407125i −0.143569 0.989640i \(-0.545858\pi\)
0.169274 + 0.985569i \(0.445858\pi\)
\(200\) 0 0
\(201\) 8.20057 + 25.2388i 0.578424 + 1.78021i
\(202\) 0 0
\(203\) −2.43450 1.76877i −0.170868 0.124143i
\(204\) 0 0
\(205\) 6.77513 + 12.6134i 0.473196 + 0.880957i
\(206\) 0 0
\(207\) −1.24294 0.903052i −0.0863906 0.0627665i
\(208\) 0 0
\(209\) −1.45173 4.46798i −0.100419 0.309057i
\(210\) 0 0
\(211\) −2.59599 + 0.411165i −0.178716 + 0.0283058i −0.245151 0.969485i \(-0.578837\pi\)
0.0664352 + 0.997791i \(0.478837\pi\)
\(212\) 0 0
\(213\) −7.49062 + 23.0538i −0.513249 + 1.57962i
\(214\) 0 0
\(215\) −18.9808 1.23813i −1.29448 0.0844396i
\(216\) 0 0
\(217\) 0.537676 + 0.273960i 0.0364999 + 0.0185976i
\(218\) 0 0
\(219\) 9.65997 9.65997i 0.652760 0.652760i
\(220\) 0 0
\(221\) 12.5541 9.12107i 0.844479 0.613550i
\(222\) 0 0
\(223\) −10.7385 + 14.7802i −0.719101 + 0.989758i 0.280452 + 0.959868i \(0.409516\pi\)
−0.999553 + 0.0298896i \(0.990484\pi\)
\(224\) 0 0
\(225\) −3.62227 1.72497i −0.241485 0.114998i
\(226\) 0 0
\(227\) 6.40775 + 1.01489i 0.425297 + 0.0673604i 0.365414 0.930845i \(-0.380927\pi\)
0.0598828 + 0.998205i \(0.480927\pi\)
\(228\) 0 0
\(229\) −0.430823 0.845537i −0.0284696 0.0558747i 0.876334 0.481705i \(-0.159982\pi\)
−0.904803 + 0.425830i \(0.859982\pi\)
\(230\) 0 0
\(231\) −0.809812 0.412620i −0.0532817 0.0271484i
\(232\) 0 0
\(233\) −16.1650 + 2.56028i −1.05900 + 0.167730i −0.661556 0.749895i \(-0.730104\pi\)
−0.397447 + 0.917625i \(0.630104\pi\)
\(234\) 0 0
\(235\) −8.67898 9.89026i −0.566154 0.645169i
\(236\) 0 0
\(237\) −5.34399 −0.347129
\(238\) 0 0
\(239\) 6.26820 + 0.992785i 0.405456 + 0.0642179i 0.355832 0.934550i \(-0.384198\pi\)
0.0496243 + 0.998768i \(0.484198\pi\)
\(240\) 0 0
\(241\) −13.9836 + 4.54355i −0.900764 + 0.292676i −0.722552 0.691316i \(-0.757031\pi\)
−0.178212 + 0.983992i \(0.557031\pi\)
\(242\) 0 0
\(243\) 5.75057 5.75057i 0.368899 0.368899i
\(244\) 0 0
\(245\) −14.9795 + 3.80928i −0.957006 + 0.243366i
\(246\) 0 0
\(247\) 10.4663i 0.665952i
\(248\) 0 0
\(249\) −8.38505 8.38505i −0.531381 0.531381i
\(250\) 0 0
\(251\) −23.1253 + 7.51385i −1.45965 + 0.474270i −0.927964 0.372669i \(-0.878443\pi\)
−0.531690 + 0.846939i \(0.678443\pi\)
\(252\) 0 0
\(253\) 0.471297 2.97565i 0.0296302 0.187078i
\(254\) 0 0
\(255\) 4.75697 + 18.7062i 0.297893 + 1.17143i
\(256\) 0 0
\(257\) −3.15544 6.19290i −0.196831 0.386302i 0.771404 0.636346i \(-0.219555\pi\)
−0.968235 + 0.250044i \(0.919555\pi\)
\(258\) 0 0
\(259\) 0.447032 + 2.82245i 0.0277772 + 0.175378i
\(260\) 0 0
\(261\) −7.26298 3.70067i −0.449567 0.229066i
\(262\) 0 0
\(263\) −25.6443 + 13.0664i −1.58129 + 0.805709i −0.999968 0.00796322i \(-0.997465\pi\)
−0.581324 + 0.813672i \(0.697465\pi\)
\(264\) 0 0
\(265\) 15.8442 1.46086i 0.973303 0.0897398i
\(266\) 0 0
\(267\) −13.1383 + 9.54554i −0.804051 + 0.584178i
\(268\) 0 0
\(269\) −1.46737 1.06611i −0.0894673 0.0650018i 0.542152 0.840280i \(-0.317610\pi\)
−0.631620 + 0.775278i \(0.717610\pi\)
\(270\) 0 0
\(271\) 4.24101 3.08128i 0.257623 0.187174i −0.451475 0.892284i \(-0.649102\pi\)
0.709099 + 0.705109i \(0.249102\pi\)
\(272\) 0 0
\(273\) −1.43178 1.43178i −0.0866550 0.0866550i
\(274\) 0 0
\(275\) −0.210846 7.86459i −0.0127145 0.474253i
\(276\) 0 0
\(277\) −16.0008 5.19897i −0.961395 0.312376i −0.214057 0.976821i \(-0.568668\pi\)
−0.747337 + 0.664445i \(0.768668\pi\)
\(278\) 0 0
\(279\) 1.55464 + 0.505132i 0.0930736 + 0.0302414i
\(280\) 0 0
\(281\) 16.8922 2.67546i 1.00770 0.159605i 0.369304 0.929309i \(-0.379596\pi\)
0.638401 + 0.769704i \(0.279596\pi\)
\(282\) 0 0
\(283\) −17.6319 + 5.72897i −1.04811 + 0.340552i −0.781926 0.623371i \(-0.785763\pi\)
−0.266184 + 0.963922i \(0.585763\pi\)
\(284\) 0 0
\(285\) 12.0931 + 4.82029i 0.716333 + 0.285529i
\(286\) 0 0
\(287\) −1.84792 0.427505i −0.109079 0.0252348i
\(288\) 0 0
\(289\) 1.52560 2.09981i 0.0897414 0.123518i
\(290\) 0 0
\(291\) −2.84252 8.74839i −0.166632 0.512840i
\(292\) 0 0
\(293\) −1.02513 6.47241i −0.0598886 0.378122i −0.999369 0.0355192i \(-0.988692\pi\)
0.939480 0.342603i \(-0.111308\pi\)
\(294\) 0 0
\(295\) 20.6293 + 1.34566i 1.20109 + 0.0783475i
\(296\) 0 0
\(297\) 6.41276 + 2.08363i 0.372106 + 0.120905i
\(298\) 0 0
\(299\) 3.04716 5.98040i 0.176222 0.345855i
\(300\) 0 0
\(301\) 1.78176 1.78176i 0.102699 0.102699i
\(302\) 0 0
\(303\) −0.849451 1.16917i −0.0487997 0.0671670i
\(304\) 0 0
\(305\) −14.1119 5.62500i −0.808047 0.322086i
\(306\) 0 0
\(307\) 5.49138 3.98972i 0.313409 0.227705i −0.419949 0.907548i \(-0.637952\pi\)
0.733358 + 0.679843i \(0.237952\pi\)
\(308\) 0 0
\(309\) −1.64817 + 10.4061i −0.0937612 + 0.591985i
\(310\) 0 0
\(311\) 5.73879 + 11.2630i 0.325417 + 0.638667i 0.994525 0.104498i \(-0.0333237\pi\)
−0.669108 + 0.743165i \(0.733324\pi\)
\(312\) 0 0
\(313\) −9.08612 + 17.8325i −0.513578 + 1.00795i 0.477990 + 0.878365i \(0.341366\pi\)
−0.991568 + 0.129588i \(0.958634\pi\)
\(314\) 0 0
\(315\) 0.488258 0.209953i 0.0275102 0.0118295i
\(316\) 0 0
\(317\) 7.43766 + 14.5972i 0.417741 + 0.819862i 0.999977 + 0.00684242i \(0.00217803\pi\)
−0.582236 + 0.813020i \(0.697822\pi\)
\(318\) 0 0
\(319\) 15.9846i 0.894967i
\(320\) 0 0
\(321\) 19.4356 + 3.07830i 1.08479 + 0.171814i
\(322\) 0 0
\(323\) −4.08417 12.5698i −0.227249 0.699401i
\(324\) 0 0
\(325\) 4.96759 16.8088i 0.275552 0.932383i
\(326\) 0 0
\(327\) 4.17744i 0.231013i
\(328\) 0 0
\(329\) 1.74312 0.0961015
\(330\) 0 0
\(331\) −17.9626 17.9626i −0.987313 0.987313i 0.0126077 0.999921i \(-0.495987\pi\)
−0.999921 + 0.0126077i \(0.995987\pi\)
\(332\) 0 0
\(333\) 2.39205 + 7.36197i 0.131084 + 0.403434i
\(334\) 0 0
\(335\) −2.79394 30.3026i −0.152649 1.65561i
\(336\) 0 0
\(337\) 32.1929 1.75366 0.876829 0.480802i \(-0.159655\pi\)
0.876829 + 0.480802i \(0.159655\pi\)
\(338\) 0 0
\(339\) 26.8753 13.6937i 1.45967 0.743738i
\(340\) 0 0
\(341\) 0.501444 + 3.16600i 0.0271547 + 0.171448i
\(342\) 0 0
\(343\) 1.87092 3.67190i 0.101020 0.198264i
\(344\) 0 0
\(345\) 5.50658 + 6.27510i 0.296464 + 0.337840i
\(346\) 0 0
\(347\) 23.1637 + 3.66877i 1.24349 + 0.196950i 0.743296 0.668962i \(-0.233261\pi\)
0.500196 + 0.865912i \(0.333261\pi\)
\(348\) 0 0
\(349\) −10.4885 14.4362i −0.561439 0.772754i 0.430070 0.902796i \(-0.358489\pi\)
−0.991509 + 0.130041i \(0.958489\pi\)
\(350\) 0 0
\(351\) 12.1530 + 8.82967i 0.648679 + 0.471293i
\(352\) 0 0
\(353\) 20.4960 + 28.2103i 1.09089 + 1.50148i 0.846936 + 0.531695i \(0.178445\pi\)
0.243954 + 0.969787i \(0.421555\pi\)
\(354\) 0 0
\(355\) 14.2048 23.8930i 0.753910 1.26811i
\(356\) 0 0
\(357\) −2.27824 1.16082i −0.120577 0.0614373i
\(358\) 0 0
\(359\) 1.02286 3.14804i 0.0539845 0.166147i −0.920429 0.390909i \(-0.872161\pi\)
0.974414 + 0.224762i \(0.0721606\pi\)
\(360\) 0 0
\(361\) 9.59210 + 3.11666i 0.504848 + 0.164035i
\(362\) 0 0
\(363\) 2.60024 + 16.4172i 0.136477 + 0.861682i
\(364\) 0 0
\(365\) −13.2462 + 8.36351i −0.693338 + 0.437766i
\(366\) 0 0
\(367\) 27.8405 + 20.2273i 1.45326 + 1.05586i 0.985055 + 0.172240i \(0.0551005\pi\)
0.468209 + 0.883618i \(0.344900\pi\)
\(368\) 0 0
\(369\) −5.12523 0.360719i −0.266809 0.0187783i
\(370\) 0 0
\(371\) −1.23895 + 1.70527i −0.0643232 + 0.0885333i
\(372\) 0 0
\(373\) 27.3609 8.89011i 1.41670 0.460312i 0.502145 0.864784i \(-0.332544\pi\)
0.914551 + 0.404471i \(0.132544\pi\)
\(374\) 0 0
\(375\) 17.1336 + 13.4811i 0.884776 + 0.696161i
\(376\) 0 0
\(377\) 11.0045 33.8685i 0.566762 1.74431i
\(378\) 0 0
\(379\) 3.50430 10.7851i 0.180004 0.553994i −0.819823 0.572617i \(-0.805928\pi\)
0.999827 + 0.0186228i \(0.00592815\pi\)
\(380\) 0 0
\(381\) 10.2142 20.0464i 0.523288 1.02701i
\(382\) 0 0
\(383\) −9.02383 9.02383i −0.461096 0.461096i 0.437918 0.899015i \(-0.355716\pi\)
−0.899015 + 0.437918i \(0.855716\pi\)
\(384\) 0 0
\(385\) 0.801509 + 0.666186i 0.0408487 + 0.0339520i
\(386\) 0 0
\(387\) 4.01203 5.52209i 0.203943 0.280704i
\(388\) 0 0
\(389\) −9.36158 12.8851i −0.474651 0.653301i 0.502815 0.864394i \(-0.332298\pi\)
−0.977466 + 0.211093i \(0.932298\pi\)
\(390\) 0 0
\(391\) 1.32590 8.37140i 0.0670537 0.423360i
\(392\) 0 0
\(393\) −24.8017 + 12.6371i −1.25108 + 0.637458i
\(394\) 0 0
\(395\) 5.97735 + 1.35058i 0.300753 + 0.0679550i
\(396\) 0 0
\(397\) −32.5611 + 5.15717i −1.63420 + 0.258831i −0.904980 0.425453i \(-0.860115\pi\)
−0.729215 + 0.684284i \(0.760115\pi\)
\(398\) 0 0
\(399\) −1.53661 + 0.782944i −0.0769269 + 0.0391962i
\(400\) 0 0
\(401\) 30.5887i 1.52752i −0.645497 0.763762i \(-0.723350\pi\)
0.645497 0.763762i \(-0.276650\pi\)
\(402\) 0 0
\(403\) −1.11715 + 7.05338i −0.0556490 + 0.351354i
\(404\) 0 0
\(405\) −20.3506 + 12.8492i −1.01123 + 0.638480i
\(406\) 0 0
\(407\) −10.7335 + 10.7335i −0.532039 + 0.532039i
\(408\) 0 0
\(409\) 25.3561 1.25378 0.626889 0.779109i \(-0.284328\pi\)
0.626889 + 0.779109i \(0.284328\pi\)
\(410\) 0 0
\(411\) 5.89020 0.290542
\(412\) 0 0
\(413\) −1.93651 + 1.93651i −0.0952892 + 0.0952892i
\(414\) 0 0
\(415\) 7.25970 + 11.4980i 0.356364 + 0.564414i
\(416\) 0 0
\(417\) 5.04091 31.8270i 0.246854 1.55858i
\(418\) 0 0
\(419\) 17.9606i 0.877433i 0.898626 + 0.438716i \(0.144567\pi\)
−0.898626 + 0.438716i \(0.855433\pi\)
\(420\) 0 0
\(421\) −0.0592811 + 0.0302052i −0.00288918 + 0.00147211i −0.455434 0.890269i \(-0.650516\pi\)
0.452545 + 0.891741i \(0.350516\pi\)
\(422\) 0 0
\(423\) 4.66369 0.738657i 0.226757 0.0359147i
\(424\) 0 0
\(425\) −0.593174 22.1255i −0.0287731 1.07324i
\(426\) 0 0
\(427\) 1.79314 0.913650i 0.0867760 0.0442146i
\(428\) 0 0
\(429\) 1.68257 10.6233i 0.0812352 0.512899i
\(430\) 0 0
\(431\) −3.84273 5.28907i −0.185098 0.254766i 0.706377 0.707836i \(-0.250329\pi\)
−0.891475 + 0.453071i \(0.850329\pi\)
\(432\) 0 0
\(433\) 11.1873 15.3979i 0.537625 0.739978i −0.450643 0.892704i \(-0.648805\pi\)
0.988269 + 0.152726i \(0.0488053\pi\)
\(434\) 0 0
\(435\) 34.0646 + 28.3133i 1.63327 + 1.35752i
\(436\) 0 0
\(437\) −4.04229 4.04229i −0.193369 0.193369i
\(438\) 0 0
\(439\) −13.6078 + 26.7068i −0.649465 + 1.27465i 0.297932 + 0.954587i \(0.403703\pi\)
−0.947397 + 0.320060i \(0.896297\pi\)
\(440\) 0 0
\(441\) 1.71394 5.27497i 0.0816163 0.251189i
\(442\) 0 0
\(443\) 7.93182 24.4116i 0.376852 1.15983i −0.565368 0.824839i \(-0.691266\pi\)
0.942220 0.334994i \(-0.108734\pi\)
\(444\) 0 0
\(445\) 17.1079 7.35644i 0.810991 0.348729i
\(446\) 0 0
\(447\) 4.25043 1.38105i 0.201039 0.0653214i
\(448\) 0 0
\(449\) −2.60909 + 3.59111i −0.123131 + 0.169475i −0.866132 0.499815i \(-0.833401\pi\)
0.743002 + 0.669290i \(0.233401\pi\)
\(450\) 0 0
\(451\) −3.93250 9.27606i −0.185174 0.436792i
\(452\) 0 0
\(453\) 5.36680 + 3.89921i 0.252154 + 0.183201i
\(454\) 0 0
\(455\) 1.23962 + 1.96332i 0.0581142 + 0.0920418i
\(456\) 0 0
\(457\) −0.373752 2.35978i −0.0174834 0.110386i 0.977403 0.211383i \(-0.0677967\pi\)
−0.994887 + 0.100997i \(0.967797\pi\)
\(458\) 0 0
\(459\) 18.0410 + 5.86189i 0.842083 + 0.273609i
\(460\) 0 0
\(461\) 4.68644 14.4234i 0.218269 0.671763i −0.780636 0.624986i \(-0.785105\pi\)
0.998905 0.0467775i \(-0.0148952\pi\)
\(462\) 0 0
\(463\) 3.72998 + 1.90052i 0.173347 + 0.0883246i 0.538511 0.842619i \(-0.318987\pi\)
−0.365164 + 0.930943i \(0.618987\pi\)
\(464\) 0 0
\(465\) −7.63522 4.53926i −0.354075 0.210503i
\(466\) 0 0
\(467\) 1.25860 + 1.73232i 0.0582412 + 0.0801621i 0.837144 0.546982i \(-0.184224\pi\)
−0.778903 + 0.627145i \(0.784224\pi\)
\(468\) 0 0
\(469\) 3.26138 + 2.36953i 0.150597 + 0.109415i
\(470\) 0 0
\(471\) 16.3070 + 22.4447i 0.751389 + 1.03420i
\(472\) 0 0
\(473\) 13.2201 + 2.09385i 0.607859 + 0.0962755i
\(474\) 0 0
\(475\) −12.3081 8.44786i −0.564736 0.387614i
\(476\) 0 0
\(477\) −2.59218 + 5.08744i −0.118688 + 0.232938i
\(478\) 0 0
\(479\) −0.976152 6.16318i −0.0446015 0.281603i 0.955300 0.295638i \(-0.0955323\pi\)
−0.999901 + 0.0140353i \(0.995532\pi\)
\(480\) 0 0
\(481\) −30.1317 + 15.3529i −1.37389 + 0.700031i
\(482\) 0 0
\(483\) −1.10596 −0.0503231
\(484\) 0 0
\(485\) 0.968449 + 10.5036i 0.0439750 + 0.476945i
\(486\) 0 0
\(487\) 8.18513 + 25.1913i 0.370904 + 1.14152i 0.946201 + 0.323580i \(0.104886\pi\)
−0.575297 + 0.817945i \(0.695114\pi\)
\(488\) 0 0
\(489\) −14.2008 14.2008i −0.642183 0.642183i
\(490\) 0 0
\(491\) −7.71268 −0.348068 −0.174034 0.984740i \(-0.555680\pi\)
−0.174034 + 0.984740i \(0.555680\pi\)
\(492\) 0 0
\(493\) 44.9695i 2.02533i
\(494\) 0 0
\(495\) 2.42672 + 1.44272i 0.109073 + 0.0648457i
\(496\) 0 0
\(497\) 1.13789 + 3.50207i 0.0510414 + 0.157089i
\(498\) 0 0
\(499\) 10.8473 + 1.71805i 0.485593 + 0.0769103i 0.394431 0.918926i \(-0.370942\pi\)
0.0911621 + 0.995836i \(0.470942\pi\)
\(500\) 0 0
\(501\) 21.6527i 0.967371i
\(502\) 0 0
\(503\) 0.807477 + 1.58476i 0.0360036 + 0.0706611i 0.908308 0.418303i \(-0.137375\pi\)
−0.872304 + 0.488964i \(0.837375\pi\)
\(504\) 0 0
\(505\) 0.654645 + 1.52242i 0.0291313 + 0.0677467i
\(506\) 0 0
\(507\) −0.629895 + 1.23624i −0.0279746 + 0.0549033i
\(508\) 0 0
\(509\) −15.1790 29.7904i −0.672796 1.32044i −0.934733 0.355352i \(-0.884361\pi\)
0.261937 0.965085i \(-0.415639\pi\)
\(510\) 0 0
\(511\) 0.324643 2.04971i 0.0143613 0.0906740i
\(512\) 0 0
\(513\) 10.3509 7.52035i 0.457002 0.332032i
\(514\) 0 0
\(515\) 4.47344 11.2229i 0.197123 0.494541i
\(516\) 0 0
\(517\) 5.44248 + 7.49093i 0.239360 + 0.329451i
\(518\) 0 0
\(519\) 0.900867 0.900867i 0.0395437 0.0395437i
\(520\) 0 0
\(521\) 5.93523 11.6485i 0.260027 0.510332i −0.723674 0.690142i \(-0.757548\pi\)
0.983701 + 0.179810i \(0.0575481\pi\)
\(522\) 0 0
\(523\) −24.3643 7.91643i −1.06537 0.346161i −0.276690 0.960959i \(-0.589238\pi\)
−0.788685 + 0.614798i \(0.789238\pi\)
\(524\) 0 0
\(525\) −2.83940 + 0.528083i −0.123922 + 0.0230474i
\(526\) 0 0
\(527\) 1.41071 + 8.90690i 0.0614517 + 0.387991i
\(528\) 0 0
\(529\) 5.97451 + 18.3877i 0.259762 + 0.799464i
\(530\) 0 0
\(531\) −4.36048 + 6.00169i −0.189229 + 0.260451i
\(532\) 0 0
\(533\) −1.94620 22.3616i −0.0842992 0.968587i
\(534\) 0 0
\(535\) −20.9611 8.35508i −0.906229 0.361222i
\(536\) 0 0
\(537\) −42.3590 + 13.7633i −1.82793 + 0.593930i
\(538\) 0 0
\(539\) 10.7424 1.70143i 0.462708 0.0732858i
\(540\) 0 0
\(541\) 21.8517 + 7.10005i 0.939478 + 0.305255i 0.738433 0.674327i \(-0.235566\pi\)
0.201045 + 0.979582i \(0.435566\pi\)
\(542\) 0 0
\(543\) 11.2720 + 3.66250i 0.483728 + 0.157173i
\(544\) 0 0
\(545\) −1.05576 + 4.67255i −0.0452238 + 0.200150i
\(546\) 0 0
\(547\) −3.13537 3.13537i −0.134059 0.134059i 0.636893 0.770952i \(-0.280219\pi\)
−0.770952 + 0.636893i \(0.780219\pi\)
\(548\) 0 0
\(549\) 4.41035 3.20430i 0.188229 0.136756i
\(550\) 0 0
\(551\) −24.5381 17.8280i −1.04536 0.759496i
\(552\) 0 0
\(553\) −0.656759 + 0.477163i −0.0279282 + 0.0202910i
\(554\) 0 0
\(555\) −3.86195 41.8861i −0.163931 1.77797i
\(556\) 0 0
\(557\) −12.0564 + 6.14306i −0.510847 + 0.260290i −0.690360 0.723466i \(-0.742548\pi\)
0.179513 + 0.983756i \(0.442548\pi\)
\(558\) 0 0
\(559\) 26.5694 + 13.5378i 1.12377 + 0.572587i
\(560\) 0 0
\(561\) −2.12472 13.4150i −0.0897058 0.566380i
\(562\) 0 0
\(563\) 21.1809 + 41.5699i 0.892669 + 1.75196i 0.609278 + 0.792956i \(0.291459\pi\)
0.283390 + 0.959005i \(0.408541\pi\)
\(564\) 0 0
\(565\) −33.5213 + 8.52446i −1.41025 + 0.358627i
\(566\) 0 0
\(567\) 0.498761 3.14905i 0.0209460 0.132248i
\(568\) 0 0
\(569\) −21.6384 + 7.03073i −0.907128 + 0.294744i −0.725176 0.688564i \(-0.758242\pi\)
−0.181952 + 0.983307i \(0.558242\pi\)
\(570\) 0 0
\(571\) −18.2775 18.2775i −0.764891 0.764891i 0.212311 0.977202i \(-0.431901\pi\)
−0.977202 + 0.212311i \(0.931901\pi\)
\(572\) 0 0
\(573\) 26.1173i 1.09107i
\(574\) 0 0
\(575\) −4.57331 8.41049i −0.190720 0.350742i
\(576\) 0 0
\(577\) −19.6049 + 19.6049i −0.816163 + 0.816163i −0.985550 0.169387i \(-0.945821\pi\)
0.169387 + 0.985550i \(0.445821\pi\)
\(578\) 0 0
\(579\) −26.2427 + 8.52676i −1.09061 + 0.354360i
\(580\) 0 0
\(581\) −1.77919 0.281797i −0.0738134 0.0116909i
\(582\) 0 0
\(583\) −11.1966 −0.463716
\(584\) 0 0
\(585\) 4.14854 + 4.72753i 0.171521 + 0.195459i
\(586\) 0 0
\(587\) −26.9234 + 4.26425i −1.11125 + 0.176004i −0.684958 0.728583i \(-0.740179\pi\)
−0.426289 + 0.904587i \(0.640179\pi\)
\(588\) 0 0
\(589\) 5.41941 + 2.76133i 0.223303 + 0.113778i
\(590\) 0 0
\(591\) −9.10275 17.8651i −0.374437 0.734874i
\(592\) 0 0
\(593\) −5.99460 0.949451i −0.246169 0.0389893i 0.0321306 0.999484i \(-0.489771\pi\)
−0.278299 + 0.960494i \(0.589771\pi\)
\(594\) 0 0
\(595\) 2.25489 + 1.87418i 0.0924413 + 0.0768339i
\(596\) 0 0
\(597\) 0.420794 0.579173i 0.0172219 0.0237040i
\(598\) 0 0
\(599\) 30.8534 22.4163i 1.26064 0.915906i 0.261848 0.965109i \(-0.415668\pi\)
0.998789 + 0.0492029i \(0.0156681\pi\)
\(600\) 0 0
\(601\) 6.64339 6.64339i 0.270989 0.270989i −0.558509 0.829498i \(-0.688626\pi\)
0.829498 + 0.558509i \(0.188626\pi\)
\(602\) 0 0
\(603\) 9.72988 + 4.95762i 0.396231 + 0.201890i
\(604\) 0 0
\(605\) 1.24070 19.0202i 0.0504414 0.773279i
\(606\) 0 0
\(607\) −0.163156 + 0.502141i −0.00662228 + 0.0203813i −0.954313 0.298809i \(-0.903411\pi\)
0.947691 + 0.319190i \(0.103411\pi\)
\(608\) 0 0
\(609\) −5.79564 + 0.917939i −0.234851 + 0.0371967i
\(610\) 0 0
\(611\) 6.37452 + 19.6187i 0.257885 + 0.793690i
\(612\) 0 0
\(613\) −20.6035 14.9693i −0.832169 0.604606i 0.0880030 0.996120i \(-0.471951\pi\)
−0.920172 + 0.391514i \(0.871951\pi\)
\(614\) 0 0
\(615\) 26.7337 + 8.05002i 1.07801 + 0.324608i
\(616\) 0 0
\(617\) 5.33859 + 3.87871i 0.214924 + 0.156151i 0.690039 0.723773i \(-0.257594\pi\)
−0.475115 + 0.879924i \(0.657594\pi\)
\(618\) 0 0
\(619\) 14.5396 + 44.7482i 0.584395 + 1.79858i 0.601687 + 0.798732i \(0.294495\pi\)
−0.0172922 + 0.999850i \(0.505505\pi\)
\(620\) 0 0
\(621\) 8.10395 1.28354i 0.325200 0.0515067i
\(622\) 0 0
\(623\) −0.762337 + 2.34623i −0.0305424 + 0.0939998i
\(624\) 0 0
\(625\) −15.7572 19.4090i −0.630289 0.776361i
\(626\) 0 0
\(627\) −8.16235 4.15892i −0.325973 0.166091i
\(628\) 0 0
\(629\) −30.1965 + 30.1965i −1.20401 + 1.20401i
\(630\) 0 0
\(631\) 9.73371 7.07195i 0.387493 0.281530i −0.376935 0.926240i \(-0.623022\pi\)
0.764427 + 0.644710i \(0.223022\pi\)
\(632\) 0 0
\(633\) −3.01253 + 4.14639i −0.119737 + 0.164804i
\(634\) 0 0
\(635\) −16.4911 + 19.8409i −0.654427 + 0.787362i
\(636\) 0 0
\(637\) 23.9325 + 3.79054i 0.948241 + 0.150187i
\(638\) 0 0
\(639\) 4.52843 + 8.88754i 0.179142 + 0.351586i
\(640\) 0 0
\(641\) 30.2660 + 15.4213i 1.19543 + 0.609105i 0.934400 0.356225i \(-0.115936\pi\)
0.261035 + 0.965329i \(0.415936\pi\)
\(642\) 0 0
\(643\) 41.4158 6.55961i 1.63328 0.258686i 0.728650 0.684887i \(-0.240148\pi\)
0.904629 + 0.426201i \(0.140148\pi\)
\(644\) 0 0
\(645\) −27.8787 + 24.4643i −1.09772 + 0.963282i
\(646\) 0 0
\(647\) −5.43559 −0.213695 −0.106847 0.994275i \(-0.534076\pi\)
−0.106847 + 0.994275i \(0.534076\pi\)
\(648\) 0 0
\(649\) −14.3683 2.27571i −0.564003 0.0893293i
\(650\) 0 0
\(651\) 1.11912 0.363623i 0.0438617 0.0142515i
\(652\) 0 0
\(653\) 24.6719 24.6719i 0.965486 0.965486i −0.0339379 0.999424i \(-0.510805\pi\)
0.999424 + 0.0339379i \(0.0108048\pi\)
\(654\) 0 0
\(655\) 30.9350 7.86675i 1.20873 0.307379i
\(656\) 0 0
\(657\) 5.62154i 0.219317i
\(658\) 0 0
\(659\) −23.4890 23.4890i −0.915002 0.915002i 0.0816582 0.996660i \(-0.473978\pi\)
−0.996660 + 0.0816582i \(0.973978\pi\)
\(660\) 0 0
\(661\) −1.20546 + 0.391678i −0.0468870 + 0.0152345i −0.332367 0.943150i \(-0.607847\pi\)
0.285480 + 0.958385i \(0.407847\pi\)
\(662\) 0 0
\(663\) 4.73357 29.8866i 0.183837 1.16070i
\(664\) 0 0
\(665\) 1.91660 0.487391i 0.0743227 0.0189002i
\(666\) 0 0
\(667\) −8.83053 17.3309i −0.341920 0.671055i
\(668\) 0 0
\(669\) 5.57295 + 35.1862i 0.215463 + 1.36038i
\(670\) 0 0
\(671\) 9.52498 + 4.85322i 0.367708 + 0.187356i
\(672\) 0 0
\(673\) −20.6627 + 10.5282i −0.796489 + 0.405831i −0.804363 0.594138i \(-0.797493\pi\)
0.00787448 + 0.999969i \(0.497493\pi\)
\(674\) 0 0
\(675\) 20.1928 7.16482i 0.777223 0.275774i
\(676\) 0 0
\(677\) 32.3842 23.5285i 1.24462 0.904272i 0.246727 0.969085i \(-0.420645\pi\)
0.997897 + 0.0648127i \(0.0206450\pi\)
\(678\) 0 0
\(679\) −1.13048 0.821340i −0.0433838 0.0315201i
\(680\) 0 0
\(681\) 10.2346 7.43590i 0.392192 0.284944i
\(682\) 0 0
\(683\) 2.23439 + 2.23439i 0.0854966 + 0.0854966i 0.748562 0.663065i \(-0.230745\pi\)
−0.663065 + 0.748562i \(0.730745\pi\)
\(684\) 0 0
\(685\) −6.58830 1.48862i −0.251726 0.0568774i
\(686\) 0 0
\(687\) −1.75990 0.571826i −0.0671443 0.0218165i
\(688\) 0 0
\(689\) −23.7235 7.70824i −0.903795 0.293661i
\(690\) 0 0
\(691\) −32.4411 + 5.13817i −1.23412 + 0.195465i −0.739207 0.673479i \(-0.764799\pi\)
−0.494911 + 0.868944i \(0.664799\pi\)
\(692\) 0 0
\(693\) −0.355692 + 0.115571i −0.0135116 + 0.00439019i
\(694\) 0 0
\(695\) −13.6820 + 34.3252i −0.518986 + 1.30203i
\(696\) 0 0
\(697\) −11.0633 26.0963i −0.419053 0.988469i
\(698\) 0 0
\(699\) −18.7587 + 25.8192i −0.709520 + 0.976571i
\(700\) 0 0
\(701\) 5.53530 + 17.0359i 0.209065 + 0.643437i 0.999522 + 0.0309187i \(0.00984331\pi\)
−0.790457 + 0.612518i \(0.790157\pi\)
\(702\) 0 0
\(703\) 4.50577 + 28.4483i 0.169938 + 1.07295i
\(704\) 0 0
\(705\) −25.6040 1.67016i −0.964303 0.0629020i
\(706\) 0 0
\(707\) −0.208789 0.0678398i −0.00785234 0.00255138i
\(708\) 0 0
\(709\) 3.40113 6.67510i 0.127732 0.250688i −0.818280 0.574820i \(-0.805072\pi\)
0.946012 + 0.324132i \(0.105072\pi\)
\(710\) 0 0
\(711\) −1.55495 + 1.55495i −0.0583150 + 0.0583150i
\(712\) 0 0
\(713\) 2.29270 + 3.15563i 0.0858622 + 0.118179i
\(714\) 0 0
\(715\) −4.56680 + 11.4572i −0.170789 + 0.428473i
\(716\) 0 0
\(717\) 10.0117 7.27396i 0.373895 0.271651i
\(718\) 0 0
\(719\) −6.26414 + 39.5502i −0.233613 + 1.47497i 0.540188 + 0.841544i \(0.318353\pi\)
−0.773801 + 0.633429i \(0.781647\pi\)
\(720\) 0 0
\(721\) 0.726606 + 1.42605i 0.0270602 + 0.0531087i
\(722\) 0 0
\(723\) −13.0163 + 25.5460i −0.484083 + 0.950067i
\(724\) 0 0
\(725\) −30.9464 40.2781i −1.14932 1.49589i
\(726\) 0 0
\(727\) −8.57435 16.8281i −0.318005 0.624120i 0.675570 0.737296i \(-0.263898\pi\)
−0.993575 + 0.113176i \(0.963898\pi\)
\(728\) 0 0
\(729\) 16.4319i 0.608587i
\(730\) 0 0
\(731\) 37.1920 + 5.89064i 1.37560 + 0.217873i
\(732\) 0 0
\(733\) −1.60113 4.92778i −0.0591391 0.182012i 0.917123 0.398605i \(-0.130505\pi\)
−0.976262 + 0.216593i \(0.930505\pi\)
\(734\) 0 0
\(735\) −15.4020 + 25.9068i −0.568110 + 0.955585i
\(736\) 0 0
\(737\) 21.4138i 0.788789i
\(738\) 0 0
\(739\) 13.8728 0.510318 0.255159 0.966899i \(-0.417872\pi\)
0.255159 + 0.966899i \(0.417872\pi\)
\(740\) 0 0
\(741\) −14.4313 14.4313i −0.530148 0.530148i
\(742\) 0 0
\(743\) −14.1618 43.5855i −0.519546 1.59900i −0.774855 0.632139i \(-0.782177\pi\)
0.255309 0.966859i \(-0.417823\pi\)
\(744\) 0 0
\(745\) −5.10322 + 0.470524i −0.186968 + 0.0172387i
\(746\) 0 0
\(747\) −4.87961 −0.178536
\(748\) 0 0
\(749\) 2.66344 1.35709i 0.0973198 0.0495869i
\(750\) 0 0
\(751\) 2.27831 + 14.3847i 0.0831367 + 0.524904i 0.993749 + 0.111642i \(0.0356109\pi\)
−0.910612 + 0.413263i \(0.864389\pi\)
\(752\) 0 0
\(753\) −21.5257 + 42.2465i −0.784439 + 1.53955i
\(754\) 0 0
\(755\) −5.01743 5.71768i −0.182603 0.208088i
\(756\) 0 0
\(757\) 45.8347 + 7.25951i 1.66589 + 0.263851i 0.917013 0.398857i \(-0.130593\pi\)
0.748878 + 0.662708i \(0.230593\pi\)
\(758\) 0 0
\(759\) −3.45311 4.75279i −0.125340 0.172516i
\(760\) 0 0
\(761\) 10.4251 + 7.57428i 0.377910 + 0.274567i 0.760483 0.649358i \(-0.224962\pi\)
−0.382574 + 0.923925i \(0.624962\pi\)
\(762\) 0 0
\(763\) −0.373003 0.513394i −0.0135036 0.0185861i
\(764\) 0 0
\(765\) 6.82710 + 4.05882i 0.246834 + 0.146747i
\(766\) 0 0
\(767\) −28.8770 14.7136i −1.04269 0.531276i
\(768\) 0 0
\(769\) −10.5422 + 32.4456i −0.380162 + 1.17002i 0.559768 + 0.828650i \(0.310890\pi\)
−0.939930 + 0.341368i \(0.889110\pi\)
\(770\) 0 0
\(771\) −12.8899 4.18817i −0.464217 0.150833i
\(772\) 0 0
\(773\) −8.15973 51.5185i −0.293485 1.85299i −0.488992 0.872288i \(-0.662635\pi\)
0.195507 0.980702i \(-0.437365\pi\)
\(774\) 0 0
\(775\) 7.39294 + 7.00689i 0.265562 + 0.251695i
\(776\) 0 0
\(777\) 4.50809 + 3.27532i 0.161727 + 0.117501i
\(778\) 0 0
\(779\) −18.6257 4.30896i −0.667336 0.154384i
\(780\) 0 0
\(781\) −11.4971 + 15.8244i −0.411398 + 0.566240i
\(782\) 0 0
\(783\) 41.4022 13.4524i 1.47959 0.480749i
\(784\) 0 0
\(785\) −12.5673 29.2261i −0.448547 1.04312i
\(786\) 0 0
\(787\) −14.8657 + 45.7520i −0.529906 + 1.63088i 0.224498 + 0.974474i \(0.427926\pi\)
−0.754405 + 0.656410i \(0.772074\pi\)
\(788\) 0 0
\(789\) −17.3429 + 53.3758i −0.617422 + 1.90023i
\(790\) 0 0
\(791\) 2.08019 4.08260i 0.0739629 0.145160i
\(792\) 0 0
\(793\) 16.8405 + 16.8405i 0.598024 + 0.598024i
\(794\) 0 0
\(795\) 19.8324 23.8610i 0.703382 0.846261i
\(796\) 0 0
\(797\) −1.13056 + 1.55608i −0.0400463 + 0.0551190i −0.828571 0.559885i \(-0.810845\pi\)
0.788524 + 0.615004i \(0.210845\pi\)
\(798\) 0 0
\(799\) 15.3113 + 21.0742i 0.541676 + 0.745553i
\(800\) 0 0
\(801\) −1.04539 + 6.60034i −0.0369371 + 0.233212i
\(802\) 0 0
\(803\) 9.82210 5.00461i 0.346614 0.176609i
\(804\) 0 0
\(805\) 1.23704 + 0.279509i 0.0436000 + 0.00985140i
\(806\) 0 0
\(807\) −3.49327 + 0.553279i −0.122969 + 0.0194763i
\(808\) 0 0
\(809\) −6.90702 + 3.51930i −0.242838 + 0.123732i −0.571174 0.820829i \(-0.693512\pi\)
0.328336 + 0.944561i \(0.393512\pi\)
\(810\) 0 0
\(811\) 5.55756i 0.195152i −0.995228 0.0975762i \(-0.968891\pi\)
0.995228 0.0975762i \(-0.0311090\pi\)
\(812\) 0 0
\(813\) 1.59909 10.0963i 0.0560826 0.354092i
\(814\) 0 0
\(815\) 12.2949 + 19.4728i 0.430672 + 0.682104i
\(816\) 0 0
\(817\) 17.9589 17.9589i 0.628302 0.628302i
\(818\) 0 0
\(819\) −0.833211 −0.0291147
\(820\) 0 0
\(821\) −12.6761 −0.442400 −0.221200 0.975228i \(-0.570997\pi\)
−0.221200 + 0.975228i \(0.570997\pi\)
\(822\) 0 0
\(823\) −11.6812 + 11.6812i −0.407181 + 0.407181i −0.880754 0.473573i \(-0.842964\pi\)
0.473573 + 0.880754i \(0.342964\pi\)
\(824\) 0 0
\(825\) −11.1347 10.5533i −0.387662 0.367419i
\(826\) 0 0
\(827\) 4.68495 29.5796i 0.162912 1.02858i −0.761772 0.647846i \(-0.775670\pi\)
0.924683 0.380738i \(-0.124330\pi\)
\(828\) 0 0
\(829\) 49.0999i 1.70531i 0.522473 + 0.852656i \(0.325009\pi\)
−0.522473 + 0.852656i \(0.674991\pi\)
\(830\) 0 0
\(831\) −29.2311 + 14.8940i −1.01402 + 0.516667i
\(832\) 0 0
\(833\) 30.2216 4.78664i 1.04712 0.165847i
\(834\) 0 0
\(835\) 5.47226 24.2189i 0.189375 0.838131i
\(836\) 0 0
\(837\) −7.77832 + 3.96325i −0.268858 + 0.136990i
\(838\) 0 0
\(839\) −7.43431 + 46.9384i −0.256661 + 1.62049i 0.436496 + 0.899706i \(0.356219\pi\)
−0.693157 + 0.720787i \(0.743781\pi\)
\(840\) 0 0
\(841\) −43.6137 60.0292i −1.50392 2.06997i
\(842\) 0 0
\(843\) 19.6026 26.9807i 0.675150 0.929265i
\(844\) 0 0
\(845\) 1.01698 1.22356i 0.0349853 0.0420919i
\(846\) 0 0
\(847\) 1.78545 + 1.78545i 0.0613488 + 0.0613488i
\(848\) 0 0
\(849\) −16.4123 + 32.2110i −0.563269 + 1.10548i
\(850\) 0 0
\(851\) −5.70790 + 17.5671i −0.195664 + 0.602193i
\(852\) 0 0
\(853\) 13.2385 40.7438i 0.453276 1.39504i −0.419871 0.907584i \(-0.637925\pi\)
0.873147 0.487456i \(-0.162075\pi\)
\(854\) 0 0
\(855\) 4.92131 2.11618i 0.168305 0.0723717i
\(856\) 0 0
\(857\) −28.6940 + 9.32326i −0.980170 + 0.318476i −0.754914 0.655823i \(-0.772322\pi\)
−0.225255 + 0.974300i \(0.572322\pi\)
\(858\) 0 0
\(859\) 16.3269 22.4720i 0.557067 0.766736i −0.433883 0.900969i \(-0.642857\pi\)
0.990950 + 0.134233i \(0.0428570\pi\)
\(860\) 0 0
\(861\) −3.13745 + 1.95852i −0.106924 + 0.0667462i
\(862\) 0 0
\(863\) 21.1117 + 15.3386i 0.718651 + 0.522131i 0.885953 0.463775i \(-0.153505\pi\)
−0.167302 + 0.985906i \(0.553505\pi\)
\(864\) 0 0
\(865\) −1.23531 + 0.779962i −0.0420019 + 0.0265195i
\(866\) 0 0
\(867\) −0.791744 4.99887i −0.0268890 0.169771i
\(868\) 0 0
\(869\) −4.10114 1.33254i −0.139122 0.0452034i
\(870\) 0 0
\(871\) −14.7423 + 45.3720i −0.499522 + 1.53737i
\(872\) 0 0
\(873\) −3.37262 1.71844i −0.114146 0.0581603i
\(874\) 0 0
\(875\) 3.30939 + 0.126928i 0.111878 + 0.00429095i
\(876\) 0 0
\(877\) 12.1600 + 16.7369i 0.410615 + 0.565163i 0.963368 0.268182i \(-0.0864228\pi\)
−0.552753 + 0.833345i \(0.686423\pi\)
\(878\) 0 0
\(879\) −10.3379 7.51093i −0.348689 0.253337i
\(880\) 0 0
\(881\) −12.1871 16.7742i −0.410595 0.565136i 0.552768 0.833335i \(-0.313571\pi\)
−0.963363 + 0.268199i \(0.913571\pi\)
\(882\) 0 0
\(883\) 25.3334 + 4.01242i 0.852537 + 0.135029i 0.567384 0.823453i \(-0.307956\pi\)
0.285153 + 0.958482i \(0.407956\pi\)
\(884\) 0 0
\(885\) 30.3000 26.5891i 1.01852 0.893783i
\(886\) 0 0
\(887\) −4.70911 + 9.24214i −0.158116 + 0.310321i −0.956451 0.291894i \(-0.905715\pi\)
0.798335 + 0.602214i \(0.205715\pi\)
\(888\) 0 0
\(889\) −0.534652 3.37566i −0.0179317 0.113216i
\(890\) 0 0
\(891\) 15.0901 7.68877i 0.505536 0.257583i
\(892\) 0 0
\(893\) 17.5695 0.587940
\(894\) 0 0
\(895\) 50.8578 4.68915i 1.69999 0.156741i
\(896\) 0 0
\(897\) −4.04446 12.4476i −0.135041 0.415612i
\(898\) 0 0
\(899\) 14.6337 + 14.6337i 0.488060 + 0.488060i
\(900\) 0 0
\(901\) −31.4994 −1.04940
\(902\) 0 0
\(903\) 4.91352i 0.163512i
\(904\) 0 0
\(905\) −11.6823 6.94534i −0.388334 0.230871i
\(906\) 0 0
\(907\) −3.30509 10.1720i −0.109744 0.337757i 0.881071 0.472985i \(-0.156823\pi\)
−0.990815 + 0.135228i \(0.956823\pi\)
\(908\) 0 0
\(909\) −0.587360 0.0930287i −0.0194815 0.00308557i
\(910\) 0 0
\(911\) 44.8426i 1.48570i 0.669457 + 0.742850i \(0.266527\pi\)
−0.669457 + 0.742850i \(0.733473\pi\)
\(912\) 0 0
\(913\) −4.34410 8.52579i −0.143769 0.282162i
\(914\) 0 0
\(915\) −27.2141 + 11.7021i −0.899670 + 0.386861i
\(916\) 0 0
\(917\) −1.91969 + 3.76760i −0.0633937 + 0.124417i
\(918\) 0 0
\(919\) −11.3492 22.2740i −0.374375 0.734752i 0.624556 0.780980i \(-0.285280\pi\)
−0.998931 + 0.0462282i \(0.985280\pi\)
\(920\) 0 0
\(921\) 2.07055 13.0729i 0.0682269 0.430768i
\(922\) 0 0
\(923\) −35.2544 + 25.6138i −1.16041 + 0.843089i
\(924\) 0 0
\(925\) −6.26615 + 47.8264i −0.206030 + 1.57252i
\(926\) 0 0
\(927\) 2.54832 + 3.50746i 0.0836977 + 0.115200i
\(928\) 0 0
\(929\) 11.5532 11.5532i 0.379049 0.379049i −0.491710 0.870759i \(-0.663628\pi\)
0.870759 + 0.491710i \(0.163628\pi\)
\(930\) 0 0
\(931\) 9.36935 18.3884i 0.307068 0.602655i
\(932\) 0 0
\(933\) 23.4428 + 7.61702i 0.767482 + 0.249370i
\(934\) 0 0
\(935\) −1.01380 + 15.5419i −0.0331550 + 0.508274i
\(936\) 0 0
\(937\) 7.34460 + 46.3720i 0.239938 + 1.51491i 0.753840 + 0.657058i \(0.228199\pi\)
−0.513902 + 0.857849i \(0.671801\pi\)
\(938\) 0 0
\(939\) 12.0599 + 37.1165i 0.393560 + 1.21125i
\(940\) 0 0
\(941\) 22.8327 31.4265i 0.744324 1.02447i −0.254034 0.967195i \(-0.581758\pi\)
0.998358 0.0572790i \(-0.0182425\pi\)
\(942\) 0 0
\(943\) −9.38817 7.88485i −0.305721 0.256766i
\(944\) 0 0
\(945\) −1.05097 + 2.63666i −0.0341880 + 0.0857706i
\(946\) 0 0
\(947\) 19.4193 6.30973i 0.631044 0.205039i 0.0240063 0.999712i \(-0.492358\pi\)
0.607037 + 0.794673i \(0.292358\pi\)
\(948\) 0 0
\(949\) 24.2566 3.84187i 0.787403 0.124712i
\(950\) 0 0
\(951\) 30.3826 + 9.87191i 0.985224 + 0.320119i
\(952\) 0 0
\(953\) −20.1690 6.55332i −0.653339 0.212283i −0.0364532 0.999335i \(-0.511606\pi\)
−0.616886 + 0.787053i \(0.711606\pi\)
\(954\) 0 0
\(955\) 6.60060 29.2128i 0.213590 0.945302i
\(956\) 0 0
\(957\) −22.0402 22.0402i −0.712460 0.712460i
\(958\) 0 0
\(959\) 0.723887 0.525934i 0.0233755 0.0169833i
\(960\) 0 0
\(961\) 21.7220 + 15.7820i 0.700711 + 0.509096i
\(962\) 0 0
\(963\) 6.55090 4.75951i 0.211100 0.153373i
\(964\) 0 0
\(965\) 31.5079 2.90507i 1.01428 0.0935175i
\(966\) 0 0
\(967\) −17.9657 + 9.15397i −0.577738 + 0.294372i −0.718338 0.695694i \(-0.755097\pi\)
0.140600 + 0.990066i \(0.455097\pi\)
\(968\) 0 0
\(969\) −22.9631 11.7003i −0.737682 0.375868i
\(970\) 0 0
\(971\) −0.697362 4.40297i −0.0223794 0.141298i 0.973969 0.226683i \(-0.0727881\pi\)
−0.996348 + 0.0853847i \(0.972788\pi\)
\(972\) 0 0
\(973\) −2.22231 4.36154i −0.0712441 0.139825i
\(974\) 0 0
\(975\) −16.3271 30.0261i −0.522886 0.961606i
\(976\) 0 0
\(977\) −7.87632 + 49.7291i −0.251986 + 1.59098i 0.459436 + 0.888211i \(0.348051\pi\)
−0.711422 + 0.702765i \(0.751949\pi\)
\(978\) 0 0
\(979\) −12.4630 + 4.04946i −0.398318 + 0.129421i
\(980\) 0 0
\(981\) −1.21552 1.21552i −0.0388084 0.0388084i
\(982\) 0 0
\(983\) 34.6761i 1.10600i −0.833183 0.552998i \(-0.813484\pi\)
0.833183 0.552998i \(-0.186516\pi\)
\(984\) 0 0
\(985\) 5.66656 + 22.2830i 0.180552 + 0.709996i
\(986\) 0 0
\(987\) 2.40349 2.40349i 0.0765039 0.0765039i
\(988\) 0 0
\(989\) 15.4902 5.03308i 0.492561 0.160043i
\(990\) 0 0
\(991\) −43.1288 6.83093i −1.37003 0.216992i −0.572319 0.820031i \(-0.693956\pi\)
−0.797711 + 0.603039i \(0.793956\pi\)
\(992\) 0 0
\(993\) −49.5351 −1.57195
\(994\) 0 0
\(995\) −0.617040 + 0.541469i −0.0195615 + 0.0171657i
\(996\) 0 0
\(997\) 26.5331 4.20244i 0.840313 0.133092i 0.278582 0.960412i \(-0.410136\pi\)
0.561731 + 0.827320i \(0.310136\pi\)
\(998\) 0 0
\(999\) −36.8342 18.7680i −1.16538 0.593792i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bq.a.49.17 yes 176
5.4 even 2 inner 820.2.bq.a.49.6 176
41.36 even 20 inner 820.2.bq.a.569.6 yes 176
205.159 even 20 inner 820.2.bq.a.569.17 yes 176
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bq.a.49.6 176 5.4 even 2 inner
820.2.bq.a.49.17 yes 176 1.1 even 1 trivial
820.2.bq.a.569.6 yes 176 41.36 even 20 inner
820.2.bq.a.569.17 yes 176 205.159 even 20 inner