L(s) = 1 | + (−1.37 − 1.37i)3-s + (−2.23 − 0.145i)5-s + (−0.0463 − 0.292i)7-s + 0.802i·9-s + (1.40 + 0.714i)11-s + (−3.46 − 0.548i)13-s + (2.87 + 3.27i)15-s + (−3.94 − 2.00i)17-s + (0.467 + 2.94i)19-s + (−0.339 + 0.467i)21-s + (−1.12 − 1.54i)23-s + (4.95 + 0.649i)25-s + (−3.03 + 3.03i)27-s + (4.61 + 9.05i)29-s + (−0.629 − 1.93i)31-s + ⋯ |
L(s) = 1 | + (−0.796 − 0.796i)3-s + (−0.997 − 0.0650i)5-s + (−0.0175 − 0.110i)7-s + 0.267i·9-s + (0.422 + 0.215i)11-s + (−0.960 − 0.152i)13-s + (0.742 + 0.846i)15-s + (−0.956 − 0.487i)17-s + (0.107 + 0.676i)19-s + (−0.0740 + 0.101i)21-s + (−0.234 − 0.322i)23-s + (0.991 + 0.129i)25-s + (−0.583 + 0.583i)27-s + (0.856 + 1.68i)29-s + (−0.113 − 0.347i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.262 - 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.262 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.296763 + 0.226926i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.296763 + 0.226926i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.23 + 0.145i)T \) |
| 41 | \( 1 + (-0.449 - 6.38i)T \) |
good | 3 | \( 1 + (1.37 + 1.37i)T + 3iT^{2} \) |
| 7 | \( 1 + (0.0463 + 0.292i)T + (-6.65 + 2.16i)T^{2} \) |
| 11 | \( 1 + (-1.40 - 0.714i)T + (6.46 + 8.89i)T^{2} \) |
| 13 | \( 1 + (3.46 + 0.548i)T + (12.3 + 4.01i)T^{2} \) |
| 17 | \( 1 + (3.94 + 2.00i)T + (9.99 + 13.7i)T^{2} \) |
| 19 | \( 1 + (-0.467 - 2.94i)T + (-18.0 + 5.87i)T^{2} \) |
| 23 | \( 1 + (1.12 + 1.54i)T + (-7.10 + 21.8i)T^{2} \) |
| 29 | \( 1 + (-4.61 - 9.05i)T + (-17.0 + 23.4i)T^{2} \) |
| 31 | \( 1 + (0.629 + 1.93i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-9.17 - 2.98i)T + (29.9 + 21.7i)T^{2} \) |
| 43 | \( 1 + (6.88 - 5.00i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (0.920 - 5.81i)T + (-44.6 - 14.5i)T^{2} \) |
| 53 | \( 1 + (-6.34 + 3.23i)T + (31.1 - 42.8i)T^{2} \) |
| 59 | \( 1 + (7.47 - 5.43i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-3.99 + 5.49i)T + (-18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (-6.17 - 12.1i)T + (-39.3 + 54.2i)T^{2} \) |
| 71 | \( 1 + (11.0 + 5.64i)T + (41.7 + 57.4i)T^{2} \) |
| 73 | \( 1 + 7.00T + 73T^{2} \) |
| 79 | \( 1 + (1.93 - 1.93i)T - 79iT^{2} \) |
| 83 | \( 1 + 6.08iT - 83T^{2} \) |
| 89 | \( 1 + (8.22 - 1.30i)T + (84.6 - 27.5i)T^{2} \) |
| 97 | \( 1 + (2.14 + 4.20i)T + (-57.0 + 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59729009077305637465106020508, −9.585112985480382705530074282249, −8.573653065366210770739072611002, −7.62259575337628759524670577831, −6.97254432083437571812326088944, −6.27657638735373726087728383549, −5.03668369620743783386709812724, −4.21004973217940068082035296195, −2.85656249427210279954207466750, −1.18504565252135379551766118216,
0.23125823506153667716519966031, 2.49227671068392649746736325612, 3.99898928511753519433038318107, 4.49801841694759313745056991164, 5.49286121091213986482089371497, 6.54701080858682771340527790961, 7.44832618122505030264594014232, 8.405673358777475804642034194476, 9.311536908322566320728514092422, 10.22431976609819562223974809595