Properties

Label 820.2.bg.a.761.1
Level $820$
Weight $2$
Character 820.761
Analytic conductor $6.548$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(441,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.441"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bg (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 761.1
Character \(\chi\) \(=\) 820.761
Dual form 820.2.bg.a.681.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.16454i q^{3} +(0.809017 - 0.587785i) q^{5} +(2.82962 + 0.919400i) q^{7} -7.01429 q^{9} +(1.28943 - 1.77475i) q^{11} +(-2.68837 + 0.873505i) q^{13} +(-1.86007 - 2.56016i) q^{15} +(4.70595 - 6.47718i) q^{17} +(-3.09002 - 1.00401i) q^{19} +(2.90948 - 8.95445i) q^{21} +(-0.383756 - 1.18108i) q^{23} +(0.309017 - 0.951057i) q^{25} +12.7034i q^{27} +(-4.32569 - 5.95380i) q^{29} +(0.245929 + 0.178678i) q^{31} +(-5.61626 - 4.08045i) q^{33} +(2.82962 - 0.919400i) q^{35} +(-1.66076 + 1.20661i) q^{37} +(2.76424 + 8.50745i) q^{39} +(2.77462 + 5.77074i) q^{41} +(2.95741 + 9.10197i) q^{43} +(-5.67468 + 4.12290i) q^{45} +(-2.83949 + 0.922607i) q^{47} +(1.49835 + 1.08862i) q^{49} +(-20.4973 - 14.8921i) q^{51} +(4.26794 + 5.87431i) q^{53} -2.19371i q^{55} +(-3.17722 + 9.77849i) q^{57} +(3.86765 + 11.9034i) q^{59} +(4.37888 - 13.4768i) q^{61} +(-19.8478 - 6.44894i) q^{63} +(-1.66150 + 2.28686i) q^{65} +(-3.52615 - 4.85334i) q^{67} +(-3.73757 + 1.21441i) q^{69} +(5.09654 - 7.01479i) q^{71} -3.50440 q^{73} +(-3.00965 - 0.977896i) q^{75} +(5.28031 - 3.83637i) q^{77} +2.13307i q^{79} +19.1574 q^{81} -12.6863 q^{83} -8.00624i q^{85} +(-18.8410 + 13.6888i) q^{87} +(16.8438 + 5.47290i) q^{89} -8.41018 q^{91} +(0.565432 - 0.778250i) q^{93} +(-3.09002 + 1.00401i) q^{95} +(4.51451 + 6.21368i) q^{97} +(-9.04445 + 12.4486i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{5} + 5 q^{7} - 6 q^{9} + 5 q^{11} - 5 q^{13} - 5 q^{17} - 5 q^{19} - 6 q^{21} + 10 q^{23} - 6 q^{25} - 25 q^{29} + 7 q^{31} - 12 q^{33} + 5 q^{35} - 13 q^{37} + 4 q^{39} + 6 q^{41} + 14 q^{43}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.16454i 1.82705i −0.406787 0.913523i \(-0.633351\pi\)
0.406787 0.913523i \(-0.366649\pi\)
\(4\) 0 0
\(5\) 0.809017 0.587785i 0.361803 0.262866i
\(6\) 0 0
\(7\) 2.82962 + 0.919400i 1.06950 + 0.347501i 0.790292 0.612731i \(-0.209929\pi\)
0.279205 + 0.960231i \(0.409929\pi\)
\(8\) 0 0
\(9\) −7.01429 −2.33810
\(10\) 0 0
\(11\) 1.28943 1.77475i 0.388778 0.535107i −0.569105 0.822265i \(-0.692710\pi\)
0.957883 + 0.287157i \(0.0927103\pi\)
\(12\) 0 0
\(13\) −2.68837 + 0.873505i −0.745620 + 0.242267i −0.657095 0.753807i \(-0.728215\pi\)
−0.0885244 + 0.996074i \(0.528215\pi\)
\(14\) 0 0
\(15\) −1.86007 2.56016i −0.480267 0.661031i
\(16\) 0 0
\(17\) 4.70595 6.47718i 1.14136 1.57095i 0.376930 0.926242i \(-0.376980\pi\)
0.764431 0.644706i \(-0.223020\pi\)
\(18\) 0 0
\(19\) −3.09002 1.00401i −0.708900 0.230335i −0.0676957 0.997706i \(-0.521565\pi\)
−0.641204 + 0.767371i \(0.721565\pi\)
\(20\) 0 0
\(21\) 2.90948 8.95445i 0.634900 1.95402i
\(22\) 0 0
\(23\) −0.383756 1.18108i −0.0800187 0.246272i 0.903042 0.429552i \(-0.141329\pi\)
−0.983061 + 0.183280i \(0.941329\pi\)
\(24\) 0 0
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 0 0
\(27\) 12.7034i 2.44477i
\(28\) 0 0
\(29\) −4.32569 5.95380i −0.803261 1.10559i −0.992328 0.123630i \(-0.960547\pi\)
0.189068 0.981964i \(-0.439453\pi\)
\(30\) 0 0
\(31\) 0.245929 + 0.178678i 0.0441701 + 0.0320914i 0.609651 0.792670i \(-0.291310\pi\)
−0.565481 + 0.824761i \(0.691310\pi\)
\(32\) 0 0
\(33\) −5.61626 4.08045i −0.977666 0.710316i
\(34\) 0 0
\(35\) 2.82962 0.919400i 0.478294 0.155407i
\(36\) 0 0
\(37\) −1.66076 + 1.20661i −0.273027 + 0.198366i −0.715870 0.698233i \(-0.753970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(38\) 0 0
\(39\) 2.76424 + 8.50745i 0.442632 + 1.36228i
\(40\) 0 0
\(41\) 2.77462 + 5.77074i 0.433323 + 0.901239i
\(42\) 0 0
\(43\) 2.95741 + 9.10197i 0.451001 + 1.38804i 0.875767 + 0.482734i \(0.160356\pi\)
−0.424766 + 0.905303i \(0.639644\pi\)
\(44\) 0 0
\(45\) −5.67468 + 4.12290i −0.845932 + 0.614605i
\(46\) 0 0
\(47\) −2.83949 + 0.922607i −0.414183 + 0.134576i −0.508693 0.860948i \(-0.669871\pi\)
0.0945108 + 0.995524i \(0.469871\pi\)
\(48\) 0 0
\(49\) 1.49835 + 1.08862i 0.214050 + 0.155517i
\(50\) 0 0
\(51\) −20.4973 14.8921i −2.87019 2.08532i
\(52\) 0 0
\(53\) 4.26794 + 5.87431i 0.586246 + 0.806898i 0.994363 0.106031i \(-0.0338144\pi\)
−0.408117 + 0.912930i \(0.633814\pi\)
\(54\) 0 0
\(55\) 2.19371i 0.295800i
\(56\) 0 0
\(57\) −3.17722 + 9.77849i −0.420833 + 1.29519i
\(58\) 0 0
\(59\) 3.86765 + 11.9034i 0.503526 + 1.54969i 0.803235 + 0.595662i \(0.203110\pi\)
−0.299709 + 0.954031i \(0.596890\pi\)
\(60\) 0 0
\(61\) 4.37888 13.4768i 0.560659 1.72553i −0.119852 0.992792i \(-0.538242\pi\)
0.680511 0.732738i \(-0.261758\pi\)
\(62\) 0 0
\(63\) −19.8478 6.44894i −2.50059 0.812490i
\(64\) 0 0
\(65\) −1.66150 + 2.28686i −0.206084 + 0.283651i
\(66\) 0 0
\(67\) −3.52615 4.85334i −0.430788 0.592929i 0.537346 0.843362i \(-0.319427\pi\)
−0.968134 + 0.250433i \(0.919427\pi\)
\(68\) 0 0
\(69\) −3.73757 + 1.21441i −0.449951 + 0.146198i
\(70\) 0 0
\(71\) 5.09654 7.01479i 0.604848 0.832502i −0.391293 0.920266i \(-0.627972\pi\)
0.996141 + 0.0877638i \(0.0279721\pi\)
\(72\) 0 0
\(73\) −3.50440 −0.410159 −0.205080 0.978745i \(-0.565745\pi\)
−0.205080 + 0.978745i \(0.565745\pi\)
\(74\) 0 0
\(75\) −3.00965 0.977896i −0.347525 0.112918i
\(76\) 0 0
\(77\) 5.28031 3.83637i 0.601747 0.437195i
\(78\) 0 0
\(79\) 2.13307i 0.239989i 0.992775 + 0.119994i \(0.0382877\pi\)
−0.992775 + 0.119994i \(0.961712\pi\)
\(80\) 0 0
\(81\) 19.1574 2.12860
\(82\) 0 0
\(83\) −12.6863 −1.39250 −0.696251 0.717798i \(-0.745150\pi\)
−0.696251 + 0.717798i \(0.745150\pi\)
\(84\) 0 0
\(85\) 8.00624i 0.868399i
\(86\) 0 0
\(87\) −18.8410 + 13.6888i −2.01997 + 1.46759i
\(88\) 0 0
\(89\) 16.8438 + 5.47290i 1.78544 + 0.580126i 0.999282 0.0378938i \(-0.0120648\pi\)
0.786163 + 0.618020i \(0.212065\pi\)
\(90\) 0 0
\(91\) −8.41018 −0.881626
\(92\) 0 0
\(93\) 0.565432 0.778250i 0.0586325 0.0807008i
\(94\) 0 0
\(95\) −3.09002 + 1.00401i −0.317029 + 0.103009i
\(96\) 0 0
\(97\) 4.51451 + 6.21368i 0.458379 + 0.630904i 0.974172 0.225809i \(-0.0725026\pi\)
−0.515793 + 0.856713i \(0.672503\pi\)
\(98\) 0 0
\(99\) −9.04445 + 12.4486i −0.909002 + 1.25113i
\(100\) 0 0
\(101\) 2.10067 + 0.682549i 0.209025 + 0.0679162i 0.411658 0.911339i \(-0.364950\pi\)
−0.202633 + 0.979255i \(0.564950\pi\)
\(102\) 0 0
\(103\) 1.99288 6.13345i 0.196364 0.604347i −0.803594 0.595178i \(-0.797081\pi\)
0.999958 0.00916862i \(-0.00291850\pi\)
\(104\) 0 0
\(105\) −2.90948 8.95445i −0.283936 0.873864i
\(106\) 0 0
\(107\) −0.436887 + 1.34460i −0.0422354 + 0.129987i −0.969951 0.243301i \(-0.921770\pi\)
0.927715 + 0.373288i \(0.121770\pi\)
\(108\) 0 0
\(109\) 17.3087i 1.65788i −0.559340 0.828938i \(-0.688945\pi\)
0.559340 0.828938i \(-0.311055\pi\)
\(110\) 0 0
\(111\) 3.81836 + 5.25553i 0.362423 + 0.498833i
\(112\) 0 0
\(113\) 9.99967 + 7.26519i 0.940690 + 0.683451i 0.948587 0.316518i \(-0.102514\pi\)
−0.00789667 + 0.999969i \(0.502514\pi\)
\(114\) 0 0
\(115\) −1.00469 0.729948i −0.0936875 0.0680680i
\(116\) 0 0
\(117\) 18.8570 6.12702i 1.74333 0.566443i
\(118\) 0 0
\(119\) 19.2712 14.0013i 1.76659 1.28350i
\(120\) 0 0
\(121\) 1.91208 + 5.88478i 0.173826 + 0.534980i
\(122\) 0 0
\(123\) 18.2617 8.78039i 1.64660 0.791701i
\(124\) 0 0
\(125\) −0.309017 0.951057i −0.0276393 0.0850651i
\(126\) 0 0
\(127\) −0.608913 + 0.442402i −0.0540323 + 0.0392568i −0.614474 0.788937i \(-0.710632\pi\)
0.560441 + 0.828194i \(0.310632\pi\)
\(128\) 0 0
\(129\) 28.8035 9.35883i 2.53601 0.823999i
\(130\) 0 0
\(131\) 9.70588 + 7.05173i 0.848006 + 0.616113i 0.924596 0.380950i \(-0.124403\pi\)
−0.0765892 + 0.997063i \(0.524403\pi\)
\(132\) 0 0
\(133\) −7.82051 5.68193i −0.678124 0.492686i
\(134\) 0 0
\(135\) 7.46686 + 10.2772i 0.642645 + 0.884525i
\(136\) 0 0
\(137\) 1.62491i 0.138825i 0.997588 + 0.0694125i \(0.0221125\pi\)
−0.997588 + 0.0694125i \(0.977888\pi\)
\(138\) 0 0
\(139\) −2.17198 + 6.68467i −0.184225 + 0.566986i −0.999934 0.0114759i \(-0.996347\pi\)
0.815709 + 0.578462i \(0.196347\pi\)
\(140\) 0 0
\(141\) 2.91962 + 8.98568i 0.245877 + 0.756731i
\(142\) 0 0
\(143\) −1.91622 + 5.89751i −0.160242 + 0.493175i
\(144\) 0 0
\(145\) −6.99912 2.27415i −0.581245 0.188858i
\(146\) 0 0
\(147\) 3.44497 4.74159i 0.284136 0.391080i
\(148\) 0 0
\(149\) −11.4895 15.8140i −0.941259 1.29553i −0.955302 0.295631i \(-0.904470\pi\)
0.0140430 0.999901i \(-0.495530\pi\)
\(150\) 0 0
\(151\) 19.0866 6.20162i 1.55325 0.504681i 0.598254 0.801307i \(-0.295861\pi\)
0.954994 + 0.296626i \(0.0958614\pi\)
\(152\) 0 0
\(153\) −33.0089 + 45.4329i −2.66861 + 3.67303i
\(154\) 0 0
\(155\) 0.303984 0.0244166
\(156\) 0 0
\(157\) −8.76077 2.84655i −0.699185 0.227179i −0.0622098 0.998063i \(-0.519815\pi\)
−0.636976 + 0.770884i \(0.719815\pi\)
\(158\) 0 0
\(159\) 18.5895 13.5060i 1.47424 1.07110i
\(160\) 0 0
\(161\) 3.69484i 0.291194i
\(162\) 0 0
\(163\) 6.19590 0.485300 0.242650 0.970114i \(-0.421983\pi\)
0.242650 + 0.970114i \(0.421983\pi\)
\(164\) 0 0
\(165\) −6.94208 −0.540440
\(166\) 0 0
\(167\) 16.2195i 1.25510i 0.778577 + 0.627550i \(0.215942\pi\)
−0.778577 + 0.627550i \(0.784058\pi\)
\(168\) 0 0
\(169\) −4.05290 + 2.94460i −0.311761 + 0.226508i
\(170\) 0 0
\(171\) 21.6743 + 7.04241i 1.65748 + 0.538547i
\(172\) 0 0
\(173\) 19.5261 1.48455 0.742273 0.670098i \(-0.233748\pi\)
0.742273 + 0.670098i \(0.233748\pi\)
\(174\) 0 0
\(175\) 1.74880 2.40702i 0.132197 0.181954i
\(176\) 0 0
\(177\) 37.6688 12.2393i 2.83136 0.919965i
\(178\) 0 0
\(179\) −8.65091 11.9070i −0.646599 0.889967i 0.352347 0.935870i \(-0.385384\pi\)
−0.998946 + 0.0459021i \(0.985384\pi\)
\(180\) 0 0
\(181\) 12.6809 17.4538i 0.942567 1.29733i −0.0121841 0.999926i \(-0.503878\pi\)
0.954751 0.297406i \(-0.0961216\pi\)
\(182\) 0 0
\(183\) −42.6479 13.8571i −3.15262 1.02435i
\(184\) 0 0
\(185\) −0.634353 + 1.95234i −0.0466385 + 0.143539i
\(186\) 0 0
\(187\) −5.42738 16.7038i −0.396890 1.22150i
\(188\) 0 0
\(189\) −11.6795 + 35.9458i −0.849558 + 2.61467i
\(190\) 0 0
\(191\) 11.0908i 0.802503i 0.915968 + 0.401251i \(0.131425\pi\)
−0.915968 + 0.401251i \(0.868575\pi\)
\(192\) 0 0
\(193\) 4.89110 + 6.73202i 0.352069 + 0.484581i 0.947918 0.318515i \(-0.103184\pi\)
−0.595849 + 0.803097i \(0.703184\pi\)
\(194\) 0 0
\(195\) 7.23687 + 5.25789i 0.518243 + 0.376525i
\(196\) 0 0
\(197\) −9.31427 6.76721i −0.663614 0.482144i 0.204267 0.978915i \(-0.434519\pi\)
−0.867882 + 0.496771i \(0.834519\pi\)
\(198\) 0 0
\(199\) −6.22505 + 2.02264i −0.441282 + 0.143381i −0.521227 0.853418i \(-0.674525\pi\)
0.0799452 + 0.996799i \(0.474525\pi\)
\(200\) 0 0
\(201\) −15.3586 + 11.1586i −1.08331 + 0.787070i
\(202\) 0 0
\(203\) −6.76615 20.8241i −0.474891 1.46156i
\(204\) 0 0
\(205\) 5.63667 + 3.03775i 0.393682 + 0.212166i
\(206\) 0 0
\(207\) 2.69178 + 8.28444i 0.187091 + 0.575808i
\(208\) 0 0
\(209\) −5.76624 + 4.18942i −0.398859 + 0.289788i
\(210\) 0 0
\(211\) 17.5034 5.68720i 1.20498 0.391523i 0.363391 0.931637i \(-0.381619\pi\)
0.841592 + 0.540114i \(0.181619\pi\)
\(212\) 0 0
\(213\) −22.1986 16.1282i −1.52102 1.10509i
\(214\) 0 0
\(215\) 7.74260 + 5.62533i 0.528041 + 0.383644i
\(216\) 0 0
\(217\) 0.531609 + 0.731697i 0.0360880 + 0.0496708i
\(218\) 0 0
\(219\) 11.0898i 0.749380i
\(220\) 0 0
\(221\) −6.99349 + 21.5237i −0.470433 + 1.44784i
\(222\) 0 0
\(223\) 1.06319 + 3.27216i 0.0711964 + 0.219120i 0.980323 0.197400i \(-0.0632497\pi\)
−0.909127 + 0.416520i \(0.863250\pi\)
\(224\) 0 0
\(225\) −2.16754 + 6.67099i −0.144502 + 0.444733i
\(226\) 0 0
\(227\) 8.45819 + 2.74823i 0.561390 + 0.182407i 0.575946 0.817488i \(-0.304634\pi\)
−0.0145567 + 0.999894i \(0.504634\pi\)
\(228\) 0 0
\(229\) −2.89652 + 3.98672i −0.191408 + 0.263450i −0.893925 0.448217i \(-0.852059\pi\)
0.702517 + 0.711667i \(0.252059\pi\)
\(230\) 0 0
\(231\) −12.1403 16.7097i −0.798776 1.09942i
\(232\) 0 0
\(233\) 13.3328 4.33208i 0.873459 0.283804i 0.162220 0.986755i \(-0.448135\pi\)
0.711239 + 0.702951i \(0.248135\pi\)
\(234\) 0 0
\(235\) −1.75490 + 2.41542i −0.114477 + 0.157564i
\(236\) 0 0
\(237\) 6.75017 0.438471
\(238\) 0 0
\(239\) 8.66332 + 2.81488i 0.560384 + 0.182080i 0.575494 0.817806i \(-0.304810\pi\)
−0.0151102 + 0.999886i \(0.504810\pi\)
\(240\) 0 0
\(241\) −11.6975 + 8.49873i −0.753502 + 0.547451i −0.896910 0.442212i \(-0.854194\pi\)
0.143408 + 0.989664i \(0.454194\pi\)
\(242\) 0 0
\(243\) 22.5142i 1.44429i
\(244\) 0 0
\(245\) 1.85206 0.118324
\(246\) 0 0
\(247\) 9.18413 0.584372
\(248\) 0 0
\(249\) 40.1463i 2.54417i
\(250\) 0 0
\(251\) −14.1964 + 10.3143i −0.896071 + 0.651034i −0.937454 0.348110i \(-0.886824\pi\)
0.0413828 + 0.999143i \(0.486824\pi\)
\(252\) 0 0
\(253\) −2.59095 0.841851i −0.162892 0.0529267i
\(254\) 0 0
\(255\) −25.3360 −1.58660
\(256\) 0 0
\(257\) 12.9028 17.7591i 0.804853 1.10778i −0.187245 0.982313i \(-0.559956\pi\)
0.992097 0.125471i \(-0.0400443\pi\)
\(258\) 0 0
\(259\) −5.80867 + 1.88735i −0.360933 + 0.117274i
\(260\) 0 0
\(261\) 30.3417 + 41.7617i 1.87810 + 2.58499i
\(262\) 0 0
\(263\) −0.0309160 + 0.0425523i −0.00190636 + 0.00262389i −0.809969 0.586473i \(-0.800516\pi\)
0.808063 + 0.589096i \(0.200516\pi\)
\(264\) 0 0
\(265\) 6.90566 + 2.24379i 0.424212 + 0.137835i
\(266\) 0 0
\(267\) 17.3192 53.3030i 1.05992 3.26209i
\(268\) 0 0
\(269\) −5.49344 16.9071i −0.334941 1.03084i −0.966751 0.255719i \(-0.917688\pi\)
0.631810 0.775123i \(-0.282312\pi\)
\(270\) 0 0
\(271\) −9.79827 + 30.1560i −0.595203 + 1.83185i −0.0414874 + 0.999139i \(0.513210\pi\)
−0.553715 + 0.832706i \(0.686790\pi\)
\(272\) 0 0
\(273\) 26.6143i 1.61077i
\(274\) 0 0
\(275\) −1.28943 1.77475i −0.0777557 0.107021i
\(276\) 0 0
\(277\) 18.8854 + 13.7211i 1.13472 + 0.824419i 0.986374 0.164517i \(-0.0526067\pi\)
0.148341 + 0.988936i \(0.452607\pi\)
\(278\) 0 0
\(279\) −1.72501 1.25330i −0.103274 0.0750329i
\(280\) 0 0
\(281\) 9.31241 3.02579i 0.555532 0.180503i −0.0177779 0.999842i \(-0.505659\pi\)
0.573310 + 0.819339i \(0.305659\pi\)
\(282\) 0 0
\(283\) −20.4311 + 14.8440i −1.21450 + 0.882386i −0.995632 0.0933682i \(-0.970237\pi\)
−0.218869 + 0.975754i \(0.570237\pi\)
\(284\) 0 0
\(285\) 3.17722 + 9.77849i 0.188202 + 0.579228i
\(286\) 0 0
\(287\) 2.54550 + 18.8800i 0.150256 + 1.11445i
\(288\) 0 0
\(289\) −14.5547 44.7946i −0.856157 2.63498i
\(290\) 0 0
\(291\) 19.6634 14.2863i 1.15269 0.837479i
\(292\) 0 0
\(293\) 3.88808 1.26331i 0.227144 0.0738035i −0.193234 0.981153i \(-0.561898\pi\)
0.420378 + 0.907349i \(0.361898\pi\)
\(294\) 0 0
\(295\) 10.1256 + 7.35671i 0.589538 + 0.428325i
\(296\) 0 0
\(297\) 22.5453 + 16.3801i 1.30821 + 0.950472i
\(298\) 0 0
\(299\) 2.06336 + 2.83997i 0.119327 + 0.164240i
\(300\) 0 0
\(301\) 28.4742i 1.64122i
\(302\) 0 0
\(303\) 2.15995 6.64765i 0.124086 0.381898i
\(304\) 0 0
\(305\) −4.37888 13.4768i −0.250734 0.771680i
\(306\) 0 0
\(307\) −2.11189 + 6.49972i −0.120532 + 0.370958i −0.993061 0.117604i \(-0.962479\pi\)
0.872529 + 0.488563i \(0.162479\pi\)
\(308\) 0 0
\(309\) −19.4095 6.30654i −1.10417 0.358766i
\(310\) 0 0
\(311\) −5.58443 + 7.68631i −0.316664 + 0.435851i −0.937445 0.348133i \(-0.886816\pi\)
0.620781 + 0.783984i \(0.286816\pi\)
\(312\) 0 0
\(313\) −0.791125 1.08889i −0.0447170 0.0615477i 0.786073 0.618134i \(-0.212111\pi\)
−0.830790 + 0.556586i \(0.812111\pi\)
\(314\) 0 0
\(315\) −19.8478 + 6.44894i −1.11830 + 0.363357i
\(316\) 0 0
\(317\) −8.35924 + 11.5055i −0.469501 + 0.646213i −0.976445 0.215766i \(-0.930775\pi\)
0.506944 + 0.861979i \(0.330775\pi\)
\(318\) 0 0
\(319\) −16.1442 −0.903902
\(320\) 0 0
\(321\) 4.25503 + 1.38254i 0.237493 + 0.0771661i
\(322\) 0 0
\(323\) −21.0446 + 15.2898i −1.17095 + 0.850748i
\(324\) 0 0
\(325\) 2.82672i 0.156798i
\(326\) 0 0
\(327\) −54.7742 −3.02902
\(328\) 0 0
\(329\) −8.88294 −0.489732
\(330\) 0 0
\(331\) 9.29054i 0.510654i −0.966855 0.255327i \(-0.917817\pi\)
0.966855 0.255327i \(-0.0821832\pi\)
\(332\) 0 0
\(333\) 11.6490 8.46352i 0.638363 0.463798i
\(334\) 0 0
\(335\) −5.70544 1.85381i −0.311721 0.101284i
\(336\) 0 0
\(337\) −3.55075 −0.193421 −0.0967107 0.995313i \(-0.530832\pi\)
−0.0967107 + 0.995313i \(0.530832\pi\)
\(338\) 0 0
\(339\) 22.9909 31.6443i 1.24870 1.71868i
\(340\) 0 0
\(341\) 0.634216 0.206069i 0.0343447 0.0111593i
\(342\) 0 0
\(343\) −9.00273 12.3912i −0.486102 0.669061i
\(344\) 0 0
\(345\) −2.30995 + 3.17937i −0.124363 + 0.171171i
\(346\) 0 0
\(347\) 12.1916 + 3.96128i 0.654477 + 0.212653i 0.617387 0.786659i \(-0.288191\pi\)
0.0370900 + 0.999312i \(0.488191\pi\)
\(348\) 0 0
\(349\) 2.63267 8.10253i 0.140924 0.433718i −0.855541 0.517736i \(-0.826775\pi\)
0.996464 + 0.0840172i \(0.0267751\pi\)
\(350\) 0 0
\(351\) −11.0965 34.1514i −0.592285 1.82287i
\(352\) 0 0
\(353\) −1.75156 + 5.39076i −0.0932263 + 0.286921i −0.986787 0.162021i \(-0.948199\pi\)
0.893561 + 0.448942i \(0.148199\pi\)
\(354\) 0 0
\(355\) 8.67076i 0.460196i
\(356\) 0 0
\(357\) −44.3077 60.9844i −2.34501 3.22764i
\(358\) 0 0
\(359\) 20.5526 + 14.9324i 1.08473 + 0.788100i 0.978501 0.206242i \(-0.0661233\pi\)
0.106226 + 0.994342i \(0.466123\pi\)
\(360\) 0 0
\(361\) −6.83112 4.96310i −0.359533 0.261216i
\(362\) 0 0
\(363\) 18.6226 6.05085i 0.977433 0.317587i
\(364\) 0 0
\(365\) −2.83512 + 2.05984i −0.148397 + 0.107817i
\(366\) 0 0
\(367\) −3.80008 11.6954i −0.198362 0.610497i −0.999921 0.0125802i \(-0.995995\pi\)
0.801558 0.597916i \(-0.204005\pi\)
\(368\) 0 0
\(369\) −19.4620 40.4777i −1.01315 2.10718i
\(370\) 0 0
\(371\) 6.67581 + 20.5460i 0.346591 + 1.06670i
\(372\) 0 0
\(373\) 8.88129 6.45264i 0.459856 0.334105i −0.333619 0.942708i \(-0.608270\pi\)
0.793475 + 0.608603i \(0.208270\pi\)
\(374\) 0 0
\(375\) −3.00965 + 0.977896i −0.155418 + 0.0504983i
\(376\) 0 0
\(377\) 16.8297 + 12.2275i 0.866775 + 0.629749i
\(378\) 0 0
\(379\) −15.1818 11.0302i −0.779837 0.566585i 0.125093 0.992145i \(-0.460077\pi\)
−0.904930 + 0.425560i \(0.860077\pi\)
\(380\) 0 0
\(381\) 1.40000 + 1.92693i 0.0717240 + 0.0987196i
\(382\) 0 0
\(383\) 3.03691i 0.155179i 0.996985 + 0.0775895i \(0.0247224\pi\)
−0.996985 + 0.0775895i \(0.975278\pi\)
\(384\) 0 0
\(385\) 2.01690 6.20738i 0.102791 0.316357i
\(386\) 0 0
\(387\) −20.7441 63.8439i −1.05448 3.24537i
\(388\) 0 0
\(389\) 4.60916 14.1856i 0.233694 0.719236i −0.763598 0.645692i \(-0.776569\pi\)
0.997292 0.0735441i \(-0.0234310\pi\)
\(390\) 0 0
\(391\) −9.45601 3.07244i −0.478211 0.155380i
\(392\) 0 0
\(393\) 22.3155 30.7146i 1.12567 1.54935i
\(394\) 0 0
\(395\) 1.25379 + 1.72569i 0.0630848 + 0.0868288i
\(396\) 0 0
\(397\) −5.45496 + 1.77242i −0.273776 + 0.0889553i −0.442688 0.896676i \(-0.645975\pi\)
0.168911 + 0.985631i \(0.445975\pi\)
\(398\) 0 0
\(399\) −17.9807 + 24.7483i −0.900160 + 1.23896i
\(400\) 0 0
\(401\) −7.07000 −0.353059 −0.176530 0.984295i \(-0.556487\pi\)
−0.176530 + 0.984295i \(0.556487\pi\)
\(402\) 0 0
\(403\) −0.817223 0.265532i −0.0407088 0.0132271i
\(404\) 0 0
\(405\) 15.4987 11.2604i 0.770136 0.559536i
\(406\) 0 0
\(407\) 4.50327i 0.223219i
\(408\) 0 0
\(409\) −20.2276 −1.00019 −0.500095 0.865971i \(-0.666702\pi\)
−0.500095 + 0.865971i \(0.666702\pi\)
\(410\) 0 0
\(411\) 5.14207 0.253640
\(412\) 0 0
\(413\) 37.2381i 1.83237i
\(414\) 0 0
\(415\) −10.2634 + 7.45682i −0.503812 + 0.366041i
\(416\) 0 0
\(417\) 21.1539 + 6.87332i 1.03591 + 0.336588i
\(418\) 0 0
\(419\) 32.5460 1.58998 0.794988 0.606625i \(-0.207477\pi\)
0.794988 + 0.606625i \(0.207477\pi\)
\(420\) 0 0
\(421\) 3.23010 4.44585i 0.157425 0.216677i −0.723017 0.690830i \(-0.757245\pi\)
0.880443 + 0.474152i \(0.157245\pi\)
\(422\) 0 0
\(423\) 19.9170 6.47144i 0.968399 0.314652i
\(424\) 0 0
\(425\) −4.70595 6.47718i −0.228272 0.314190i
\(426\) 0 0
\(427\) 24.7812 34.1084i 1.19925 1.65062i
\(428\) 0 0
\(429\) 18.6629 + 6.06394i 0.901053 + 0.292770i
\(430\) 0 0
\(431\) 6.71019 20.6518i 0.323218 0.994764i −0.649020 0.760771i \(-0.724821\pi\)
0.972238 0.233992i \(-0.0751791\pi\)
\(432\) 0 0
\(433\) 10.7893 + 33.2060i 0.518499 + 1.59578i 0.776823 + 0.629719i \(0.216830\pi\)
−0.258324 + 0.966058i \(0.583170\pi\)
\(434\) 0 0
\(435\) −7.19663 + 22.1490i −0.345052 + 1.06196i
\(436\) 0 0
\(437\) 4.03486i 0.193013i
\(438\) 0 0
\(439\) −1.05527 1.45245i −0.0503652 0.0693217i 0.783092 0.621906i \(-0.213642\pi\)
−0.833457 + 0.552585i \(0.813642\pi\)
\(440\) 0 0
\(441\) −10.5099 7.63587i −0.500470 0.363613i
\(442\) 0 0
\(443\) 27.6807 + 20.1112i 1.31515 + 0.955511i 0.999979 + 0.00647578i \(0.00206132\pi\)
0.315169 + 0.949035i \(0.397939\pi\)
\(444\) 0 0
\(445\) 16.8438 5.47290i 0.798475 0.259440i
\(446\) 0 0
\(447\) −50.0439 + 36.3590i −2.36700 + 1.71972i
\(448\) 0 0
\(449\) 1.73946 + 5.35350i 0.0820901 + 0.252647i 0.983675 0.179955i \(-0.0575953\pi\)
−0.901585 + 0.432603i \(0.857595\pi\)
\(450\) 0 0
\(451\) 13.8193 + 2.51672i 0.650726 + 0.118508i
\(452\) 0 0
\(453\) −19.6253 60.4003i −0.922075 2.83785i
\(454\) 0 0
\(455\) −6.80398 + 4.94338i −0.318975 + 0.231749i
\(456\) 0 0
\(457\) −18.6130 + 6.04772i −0.870678 + 0.282900i −0.710081 0.704120i \(-0.751342\pi\)
−0.160597 + 0.987020i \(0.551342\pi\)
\(458\) 0 0
\(459\) 82.2821 + 59.7814i 3.84060 + 2.79036i
\(460\) 0 0
\(461\) −21.8628 15.8843i −1.01825 0.739804i −0.0523284 0.998630i \(-0.516664\pi\)
−0.965924 + 0.258826i \(0.916664\pi\)
\(462\) 0 0
\(463\) −4.48519 6.17334i −0.208445 0.286899i 0.691975 0.721921i \(-0.256741\pi\)
−0.900420 + 0.435022i \(0.856741\pi\)
\(464\) 0 0
\(465\) 0.961970i 0.0446103i
\(466\) 0 0
\(467\) 2.35319 7.24238i 0.108893 0.335138i −0.881732 0.471751i \(-0.843622\pi\)
0.990624 + 0.136614i \(0.0436220\pi\)
\(468\) 0 0
\(469\) −5.51553 16.9751i −0.254684 0.783835i
\(470\) 0 0
\(471\) −9.00800 + 27.7238i −0.415067 + 1.27744i
\(472\) 0 0
\(473\) 19.9671 + 6.48771i 0.918088 + 0.298305i
\(474\) 0 0
\(475\) −1.90974 + 2.62853i −0.0876248 + 0.120605i
\(476\) 0 0
\(477\) −29.9365 41.2041i −1.37070 1.88661i
\(478\) 0 0
\(479\) 15.1632 4.92682i 0.692825 0.225112i 0.0586231 0.998280i \(-0.481329\pi\)
0.634201 + 0.773168i \(0.281329\pi\)
\(480\) 0 0
\(481\) 3.41075 4.69450i 0.155517 0.214051i
\(482\) 0 0
\(483\) −11.6924 −0.532025
\(484\) 0 0
\(485\) 7.30462 + 2.37342i 0.331686 + 0.107771i
\(486\) 0 0
\(487\) −31.6657 + 23.0065i −1.43491 + 1.04252i −0.445835 + 0.895115i \(0.647093\pi\)
−0.989076 + 0.147409i \(0.952907\pi\)
\(488\) 0 0
\(489\) 19.6071i 0.886666i
\(490\) 0 0
\(491\) 19.7081 0.889415 0.444707 0.895676i \(-0.353308\pi\)
0.444707 + 0.895676i \(0.353308\pi\)
\(492\) 0 0
\(493\) −58.9204 −2.65364
\(494\) 0 0
\(495\) 15.3873i 0.691609i
\(496\) 0 0
\(497\) 20.8707 15.1634i 0.936179 0.680174i
\(498\) 0 0
\(499\) 6.05429 + 1.96716i 0.271027 + 0.0880621i 0.441378 0.897321i \(-0.354490\pi\)
−0.170350 + 0.985384i \(0.554490\pi\)
\(500\) 0 0
\(501\) 51.3271 2.29312
\(502\) 0 0
\(503\) −12.0351 + 16.5648i −0.536616 + 0.738589i −0.988121 0.153680i \(-0.950888\pi\)
0.451504 + 0.892269i \(0.350888\pi\)
\(504\) 0 0
\(505\) 2.10067 0.682549i 0.0934786 0.0303731i
\(506\) 0 0
\(507\) 9.31830 + 12.8255i 0.413840 + 0.569602i
\(508\) 0 0
\(509\) −21.3304 + 29.3587i −0.945452 + 1.30130i 0.00806615 + 0.999967i \(0.497432\pi\)
−0.953518 + 0.301336i \(0.902568\pi\)
\(510\) 0 0
\(511\) −9.91613 3.22195i −0.438664 0.142531i
\(512\) 0 0
\(513\) 12.7543 39.2537i 0.563116 1.73309i
\(514\) 0 0
\(515\) −1.99288 6.13345i −0.0878167 0.270272i
\(516\) 0 0
\(517\) −2.02393 + 6.22903i −0.0890126 + 0.273952i
\(518\) 0 0
\(519\) 61.7912i 2.71233i
\(520\) 0 0
\(521\) 3.90055 + 5.36865i 0.170886 + 0.235205i 0.885867 0.463940i \(-0.153565\pi\)
−0.714981 + 0.699144i \(0.753565\pi\)
\(522\) 0 0
\(523\) −4.45967 3.24014i −0.195008 0.141681i 0.485997 0.873961i \(-0.338457\pi\)
−0.681005 + 0.732279i \(0.738457\pi\)
\(524\) 0 0
\(525\) −7.61711 5.53415i −0.332438 0.241530i
\(526\) 0 0
\(527\) 2.31465 0.752077i 0.100828 0.0327610i
\(528\) 0 0
\(529\) 17.3597 12.6126i 0.754770 0.548373i
\(530\) 0 0
\(531\) −27.1289 83.4940i −1.17729 3.62333i
\(532\) 0 0
\(533\) −12.5000 13.0903i −0.541434 0.567002i
\(534\) 0 0
\(535\) 0.436887 + 1.34460i 0.0188883 + 0.0581321i
\(536\) 0 0
\(537\) −37.6800 + 27.3761i −1.62601 + 1.18137i
\(538\) 0 0
\(539\) 3.86404 1.25550i 0.166436 0.0540784i
\(540\) 0 0
\(541\) −36.3956 26.4429i −1.56477 1.13687i −0.931959 0.362563i \(-0.881902\pi\)
−0.632809 0.774308i \(-0.718098\pi\)
\(542\) 0 0
\(543\) −55.2332 40.1293i −2.37029 1.72211i
\(544\) 0 0
\(545\) −10.1738 14.0031i −0.435799 0.599826i
\(546\) 0 0
\(547\) 37.8555i 1.61858i 0.587407 + 0.809292i \(0.300149\pi\)
−0.587407 + 0.809292i \(0.699851\pi\)
\(548\) 0 0
\(549\) −30.7148 + 94.5303i −1.31087 + 4.03446i
\(550\) 0 0
\(551\) 7.38881 + 22.7404i 0.314774 + 0.968774i
\(552\) 0 0
\(553\) −1.96114 + 6.03578i −0.0833963 + 0.256667i
\(554\) 0 0
\(555\) 6.17824 + 2.00743i 0.262252 + 0.0852108i
\(556\) 0 0
\(557\) −26.1370 + 35.9745i −1.10746 + 1.52429i −0.282351 + 0.959311i \(0.591114\pi\)
−0.825108 + 0.564976i \(0.808886\pi\)
\(558\) 0 0
\(559\) −15.9012 21.8862i −0.672550 0.925686i
\(560\) 0 0
\(561\) −52.8597 + 17.1752i −2.23174 + 0.725136i
\(562\) 0 0
\(563\) −7.07584 + 9.73906i −0.298211 + 0.410453i −0.931660 0.363332i \(-0.881639\pi\)
0.633448 + 0.773785i \(0.281639\pi\)
\(564\) 0 0
\(565\) 12.3603 0.520001
\(566\) 0 0
\(567\) 54.2083 + 17.6133i 2.27653 + 0.739691i
\(568\) 0 0
\(569\) 3.96836 2.88318i 0.166362 0.120869i −0.501489 0.865164i \(-0.667214\pi\)
0.667851 + 0.744295i \(0.267214\pi\)
\(570\) 0 0
\(571\) 42.6054i 1.78298i 0.453038 + 0.891491i \(0.350340\pi\)
−0.453038 + 0.891491i \(0.649660\pi\)
\(572\) 0 0
\(573\) 35.0973 1.46621
\(574\) 0 0
\(575\) −1.24186 −0.0517892
\(576\) 0 0
\(577\) 37.9464i 1.57973i −0.613280 0.789866i \(-0.710150\pi\)
0.613280 0.789866i \(-0.289850\pi\)
\(578\) 0 0
\(579\) 21.3037 15.4781i 0.885352 0.643246i
\(580\) 0 0
\(581\) −35.8975 11.6638i −1.48928 0.483896i
\(582\) 0 0
\(583\) 15.9286 0.659697
\(584\) 0 0
\(585\) 11.6543 16.0407i 0.481845 0.663203i
\(586\) 0 0
\(587\) −43.9893 + 14.2930i −1.81563 + 0.589935i −0.815699 + 0.578477i \(0.803647\pi\)
−0.999934 + 0.0114576i \(0.996353\pi\)
\(588\) 0 0
\(589\) −0.580531 0.799032i −0.0239204 0.0329235i
\(590\) 0 0
\(591\) −21.4151 + 29.4753i −0.880899 + 1.21245i
\(592\) 0 0
\(593\) −22.3816 7.27221i −0.919101 0.298634i −0.189003 0.981976i \(-0.560526\pi\)
−0.730098 + 0.683342i \(0.760526\pi\)
\(594\) 0 0
\(595\) 7.36094 22.6546i 0.301769 0.928750i
\(596\) 0 0
\(597\) 6.40072 + 19.6994i 0.261964 + 0.806242i
\(598\) 0 0
\(599\) 13.1055 40.3345i 0.535475 1.64802i −0.207146 0.978310i \(-0.566418\pi\)
0.742621 0.669712i \(-0.233582\pi\)
\(600\) 0 0
\(601\) 1.73427i 0.0707424i 0.999374 + 0.0353712i \(0.0112613\pi\)
−0.999374 + 0.0353712i \(0.988739\pi\)
\(602\) 0 0
\(603\) 24.7335 + 34.0427i 1.00723 + 1.38633i
\(604\) 0 0
\(605\) 5.00589 + 3.63700i 0.203519 + 0.147865i
\(606\) 0 0
\(607\) 30.9392 + 22.4786i 1.25578 + 0.912380i 0.998543 0.0539680i \(-0.0171869\pi\)
0.257240 + 0.966348i \(0.417187\pi\)
\(608\) 0 0
\(609\) −65.8985 + 21.4117i −2.67034 + 0.867647i
\(610\) 0 0
\(611\) 6.82771 4.96062i 0.276219 0.200685i
\(612\) 0 0
\(613\) 10.3961 + 31.9960i 0.419896 + 1.29231i 0.907798 + 0.419407i \(0.137762\pi\)
−0.487903 + 0.872898i \(0.662238\pi\)
\(614\) 0 0
\(615\) 9.61307 17.8375i 0.387636 0.719276i
\(616\) 0 0
\(617\) 6.05776 + 18.6439i 0.243876 + 0.750574i 0.995819 + 0.0913457i \(0.0291168\pi\)
−0.751943 + 0.659228i \(0.770883\pi\)
\(618\) 0 0
\(619\) −9.16339 + 6.65759i −0.368308 + 0.267591i −0.756509 0.653983i \(-0.773097\pi\)
0.388201 + 0.921575i \(0.373097\pi\)
\(620\) 0 0
\(621\) 15.0037 4.87500i 0.602078 0.195627i
\(622\) 0 0
\(623\) 42.6300 + 30.9725i 1.70793 + 1.24089i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 0 0
\(627\) 13.2576 + 18.2475i 0.529456 + 0.728734i
\(628\) 0 0
\(629\) 16.4353i 0.655317i
\(630\) 0 0
\(631\) −7.37426 + 22.6956i −0.293564 + 0.903499i 0.690135 + 0.723680i \(0.257551\pi\)
−0.983700 + 0.179818i \(0.942449\pi\)
\(632\) 0 0
\(633\) −17.9973 55.3901i −0.715330 2.20156i
\(634\) 0 0
\(635\) −0.232584 + 0.715821i −0.00922982 + 0.0284065i
\(636\) 0 0
\(637\) −4.97903 1.61779i −0.197277 0.0640990i
\(638\) 0 0
\(639\) −35.7486 + 49.2038i −1.41419 + 1.94647i
\(640\) 0 0
\(641\) −4.32237 5.94923i −0.170723 0.234980i 0.715079 0.699044i \(-0.246391\pi\)
−0.885802 + 0.464064i \(0.846391\pi\)
\(642\) 0 0
\(643\) −45.2700 + 14.7091i −1.78527 + 0.580070i −0.999272 0.0381547i \(-0.987852\pi\)
−0.786001 + 0.618225i \(0.787852\pi\)
\(644\) 0 0
\(645\) 17.8016 24.5017i 0.700935 0.964755i
\(646\) 0 0
\(647\) 36.1774 1.42228 0.711140 0.703050i \(-0.248179\pi\)
0.711140 + 0.703050i \(0.248179\pi\)
\(648\) 0 0
\(649\) 26.1127 + 8.48452i 1.02501 + 0.333047i
\(650\) 0 0
\(651\) 2.31548 1.68230i 0.0907509 0.0659344i
\(652\) 0 0
\(653\) 34.7924i 1.36153i 0.732500 + 0.680767i \(0.238353\pi\)
−0.732500 + 0.680767i \(0.761647\pi\)
\(654\) 0 0
\(655\) 11.9971 0.468766
\(656\) 0 0
\(657\) 24.5809 0.958992
\(658\) 0 0
\(659\) 28.6866i 1.11747i 0.829346 + 0.558736i \(0.188713\pi\)
−0.829346 + 0.558736i \(0.811287\pi\)
\(660\) 0 0
\(661\) 5.06027 3.67650i 0.196822 0.142999i −0.485009 0.874509i \(-0.661184\pi\)
0.681831 + 0.731509i \(0.261184\pi\)
\(662\) 0 0
\(663\) 68.1127 + 22.1311i 2.64528 + 0.859502i
\(664\) 0 0
\(665\) −9.66668 −0.374858
\(666\) 0 0
\(667\) −5.37191 + 7.39380i −0.208001 + 0.286289i
\(668\) 0 0
\(669\) 10.3549 3.36450i 0.400342 0.130079i
\(670\) 0 0
\(671\) −18.2717 25.1489i −0.705372 0.970861i
\(672\) 0 0
\(673\) −6.14804 + 8.46205i −0.236989 + 0.326188i −0.910902 0.412623i \(-0.864613\pi\)
0.673912 + 0.738811i \(0.264613\pi\)
\(674\) 0 0
\(675\) 12.0816 + 3.92556i 0.465022 + 0.151095i
\(676\) 0 0
\(677\) −3.56548 + 10.9734i −0.137032 + 0.421743i −0.995901 0.0904542i \(-0.971168\pi\)
0.858868 + 0.512197i \(0.171168\pi\)
\(678\) 0 0
\(679\) 7.06149 + 21.7330i 0.270995 + 0.834037i
\(680\) 0 0
\(681\) 8.69688 26.7662i 0.333265 1.02568i
\(682\) 0 0
\(683\) 5.51994i 0.211215i 0.994408 + 0.105607i \(0.0336787\pi\)
−0.994408 + 0.105607i \(0.966321\pi\)
\(684\) 0 0
\(685\) 0.955096 + 1.31458i 0.0364923 + 0.0502274i
\(686\) 0 0
\(687\) 12.6161 + 9.16615i 0.481335 + 0.349710i
\(688\) 0 0
\(689\) −16.6050 12.0643i −0.632601 0.459612i
\(690\) 0 0
\(691\) −14.9586 + 4.86034i −0.569052 + 0.184896i −0.579390 0.815050i \(-0.696709\pi\)
0.0103382 + 0.999947i \(0.496709\pi\)
\(692\) 0 0
\(693\) −37.0377 + 26.9094i −1.40694 + 1.02220i
\(694\) 0 0
\(695\) 2.17198 + 6.68467i 0.0823880 + 0.253564i
\(696\) 0 0
\(697\) 50.4354 + 9.18511i 1.91038 + 0.347911i
\(698\) 0 0
\(699\) −13.7090 42.1920i −0.518523 1.59585i
\(700\) 0 0
\(701\) 38.0569 27.6500i 1.43739 1.04433i 0.448811 0.893627i \(-0.351848\pi\)
0.988580 0.150699i \(-0.0481525\pi\)
\(702\) 0 0
\(703\) 6.34322 2.06104i 0.239239 0.0777335i
\(704\) 0 0
\(705\) 7.64368 + 5.55346i 0.287877 + 0.209155i
\(706\) 0 0
\(707\) 5.31657 + 3.86272i 0.199950 + 0.145272i
\(708\) 0 0
\(709\) 15.0123 + 20.6627i 0.563800 + 0.776005i 0.991803 0.127773i \(-0.0407828\pi\)
−0.428003 + 0.903777i \(0.640783\pi\)
\(710\) 0 0
\(711\) 14.9620i 0.561117i
\(712\) 0 0
\(713\) 0.116656 0.359030i 0.00436880 0.0134458i
\(714\) 0 0
\(715\) 1.91622 + 5.89751i 0.0716625 + 0.220554i
\(716\) 0 0
\(717\) 8.90780 27.4154i 0.332668 1.02385i
\(718\) 0 0
\(719\) 9.82347 + 3.19184i 0.366353 + 0.119035i 0.486408 0.873732i \(-0.338307\pi\)
−0.120054 + 0.992767i \(0.538307\pi\)
\(720\) 0 0
\(721\) 11.2782 15.5231i 0.420022 0.578110i
\(722\) 0 0
\(723\) 26.8945 + 37.0172i 1.00022 + 1.37668i
\(724\) 0 0
\(725\) −6.99912 + 2.27415i −0.259941 + 0.0844598i
\(726\) 0 0
\(727\) −10.7748 + 14.8302i −0.399613 + 0.550021i −0.960647 0.277772i \(-0.910404\pi\)
0.561034 + 0.827793i \(0.310404\pi\)
\(728\) 0 0
\(729\) −13.7749 −0.510180
\(730\) 0 0
\(731\) 72.8726 + 23.6777i 2.69529 + 0.875752i
\(732\) 0 0
\(733\) 24.4671 17.7764i 0.903712 0.656585i −0.0357047 0.999362i \(-0.511368\pi\)
0.939417 + 0.342777i \(0.111368\pi\)
\(734\) 0 0
\(735\) 5.86093i 0.216183i
\(736\) 0 0
\(737\) −13.1602 −0.484762
\(738\) 0 0
\(739\) −41.5903 −1.52992 −0.764962 0.644076i \(-0.777242\pi\)
−0.764962 + 0.644076i \(0.777242\pi\)
\(740\) 0 0
\(741\) 29.0635i 1.06767i
\(742\) 0 0
\(743\) 25.1654 18.2837i 0.923229 0.670765i −0.0210968 0.999777i \(-0.506716\pi\)
0.944326 + 0.329012i \(0.106716\pi\)
\(744\) 0 0
\(745\) −18.5905 6.04041i −0.681102 0.221303i
\(746\) 0 0
\(747\) 88.9855 3.25581
\(748\) 0 0
\(749\) −2.47245 + 3.40304i −0.0903414 + 0.124344i
\(750\) 0 0
\(751\) −24.4640 + 7.94885i −0.892706 + 0.290058i −0.719223 0.694779i \(-0.755502\pi\)
−0.173483 + 0.984837i \(0.555502\pi\)
\(752\) 0 0
\(753\) 32.6400 + 44.9251i 1.18947 + 1.63716i
\(754\) 0 0
\(755\) 11.7962 16.2361i 0.429307 0.590890i
\(756\) 0 0
\(757\) 14.5464 + 4.72641i 0.528698 + 0.171784i 0.561189 0.827688i \(-0.310344\pi\)
−0.0324911 + 0.999472i \(0.510344\pi\)
\(758\) 0 0
\(759\) −2.66407 + 8.19915i −0.0966995 + 0.297610i
\(760\) 0 0
\(761\) −13.3501 41.0873i −0.483940 1.48941i −0.833511 0.552504i \(-0.813673\pi\)
0.349571 0.936910i \(-0.386327\pi\)
\(762\) 0 0
\(763\) 15.9137 48.9772i 0.576113 1.77309i
\(764\) 0 0
\(765\) 56.1581i 2.03040i
\(766\) 0 0
\(767\) −20.7954 28.6224i −0.750877 1.03349i
\(768\) 0 0
\(769\) −9.60956 6.98176i −0.346530 0.251769i 0.400882 0.916130i \(-0.368704\pi\)
−0.747412 + 0.664361i \(0.768704\pi\)
\(770\) 0 0
\(771\) −56.1994 40.8313i −2.02397 1.47050i
\(772\) 0 0
\(773\) 3.03975 0.987675i 0.109332 0.0355242i −0.253840 0.967246i \(-0.581694\pi\)
0.363172 + 0.931722i \(0.381694\pi\)
\(774\) 0 0
\(775\) 0.245929 0.178678i 0.00883402 0.00641829i
\(776\) 0 0
\(777\) 5.97260 + 18.3818i 0.214266 + 0.659442i
\(778\) 0 0
\(779\) −2.77976 20.6175i −0.0995951 0.738697i
\(780\) 0 0
\(781\) −5.87786 18.0902i −0.210326 0.647318i
\(782\) 0 0
\(783\) 75.6334 54.9509i 2.70292 1.96378i
\(784\) 0 0
\(785\) −8.76077 + 2.84655i −0.312685 + 0.101598i
\(786\) 0 0
\(787\) 35.3175 + 25.6596i 1.25893 + 0.914667i 0.998705 0.0508800i \(-0.0162026\pi\)
0.260227 + 0.965547i \(0.416203\pi\)
\(788\) 0 0
\(789\) 0.134658 + 0.0978349i 0.00479396 + 0.00348302i
\(790\) 0 0
\(791\) 21.6157 + 29.7514i 0.768565 + 1.05784i
\(792\) 0 0
\(793\) 40.0557i 1.42242i
\(794\) 0 0
\(795\) 7.10054 21.8532i 0.251830 0.775054i
\(796\) 0 0
\(797\) −8.95729 27.5677i −0.317284 0.976498i −0.974804 0.223062i \(-0.928395\pi\)
0.657521 0.753436i \(-0.271605\pi\)
\(798\) 0 0
\(799\) −7.38661 + 22.7337i −0.261320 + 0.804259i
\(800\) 0 0
\(801\) −118.148 38.3885i −4.17454 1.35639i
\(802\) 0 0
\(803\) −4.51869 + 6.21944i −0.159461 + 0.219479i
\(804\) 0 0
\(805\) −2.17177 2.98919i −0.0765448 0.105355i
\(806\) 0 0
\(807\) −53.5030 + 17.3842i −1.88340 + 0.611952i
\(808\) 0 0
\(809\) 19.4093 26.7147i 0.682396 0.939237i −0.317564 0.948237i \(-0.602865\pi\)
0.999960 + 0.00899957i \(0.00286469\pi\)
\(810\) 0 0
\(811\) −35.2643 −1.23830 −0.619149 0.785273i \(-0.712522\pi\)
−0.619149 + 0.785273i \(0.712522\pi\)
\(812\) 0 0
\(813\) 95.4297 + 31.0070i 3.34687 + 1.08746i
\(814\) 0 0
\(815\) 5.01259 3.64186i 0.175583 0.127569i
\(816\) 0 0
\(817\) 31.0945i 1.08786i
\(818\) 0 0
\(819\) 58.9914 2.06133
\(820\) 0 0
\(821\) −22.0569 −0.769791 −0.384896 0.922960i \(-0.625763\pi\)
−0.384896 + 0.922960i \(0.625763\pi\)
\(822\) 0 0
\(823\) 0.685749i 0.0239037i 0.999929 + 0.0119518i \(0.00380448\pi\)
−0.999929 + 0.0119518i \(0.996196\pi\)
\(824\) 0 0
\(825\) −5.61626 + 4.08045i −0.195533 + 0.142063i
\(826\) 0 0
\(827\) −40.2411 13.0751i −1.39932 0.454666i −0.490349 0.871526i \(-0.663131\pi\)
−0.908971 + 0.416860i \(0.863131\pi\)
\(828\) 0 0
\(829\) −12.7449 −0.442648 −0.221324 0.975200i \(-0.571038\pi\)
−0.221324 + 0.975200i \(0.571038\pi\)
\(830\) 0 0
\(831\) 43.4208 59.7636i 1.50625 2.07318i
\(832\) 0 0
\(833\) 14.1023 4.58213i 0.488617 0.158761i
\(834\) 0 0
\(835\) 9.53356 + 13.1218i 0.329922 + 0.454099i
\(836\) 0 0
\(837\) −2.26981 + 3.12412i −0.0784561 + 0.107985i
\(838\) 0 0
\(839\) −12.9553 4.20944i −0.447268 0.145326i 0.0767185 0.997053i \(-0.475556\pi\)
−0.523986 + 0.851727i \(0.675556\pi\)
\(840\) 0 0
\(841\) −7.77468 + 23.9280i −0.268092 + 0.825103i
\(842\) 0 0
\(843\) −9.57521 29.4695i −0.329788 1.01498i
\(844\) 0 0
\(845\) −1.54807 + 4.76446i −0.0532552 + 0.163903i
\(846\) 0 0
\(847\) 18.4097i 0.632564i
\(848\) 0 0
\(849\) 46.9745 + 64.6548i 1.61216 + 2.21895i
\(850\) 0 0
\(851\) 2.06243 + 1.49844i 0.0706992 + 0.0513659i
\(852\) 0 0
\(853\) −34.7614 25.2556i −1.19021 0.864735i −0.196920 0.980420i \(-0.563094\pi\)
−0.993286 + 0.115684i \(0.963094\pi\)
\(854\) 0 0
\(855\) 21.6743 7.04241i 0.741246 0.240845i
\(856\) 0 0
\(857\) −36.0701 + 26.2065i −1.23213 + 0.895196i −0.997048 0.0767796i \(-0.975536\pi\)
−0.235083 + 0.971975i \(0.575536\pi\)
\(858\) 0 0
\(859\) −15.7800 48.5658i −0.538406 1.65704i −0.736172 0.676794i \(-0.763369\pi\)
0.197766 0.980249i \(-0.436631\pi\)
\(860\) 0 0
\(861\) 59.7465 8.05534i 2.03616 0.274525i
\(862\) 0 0
\(863\) −5.05231 15.5494i −0.171983 0.529308i 0.827500 0.561466i \(-0.189762\pi\)
−0.999483 + 0.0321571i \(0.989762\pi\)
\(864\) 0 0
\(865\) 15.7970 11.4772i 0.537114 0.390236i
\(866\) 0 0
\(867\) −141.754 + 46.0588i −4.81423 + 1.56424i
\(868\) 0 0
\(869\) 3.78566 + 2.75045i 0.128420 + 0.0933025i
\(870\) 0 0
\(871\) 13.7190 + 9.96745i 0.464851 + 0.337734i
\(872\) 0 0
\(873\) −31.6661 43.5846i −1.07173 1.47512i
\(874\) 0 0
\(875\) 2.97524i 0.100582i
\(876\) 0 0
\(877\) 5.81522 17.8974i 0.196366 0.604352i −0.803592 0.595181i \(-0.797081\pi\)
0.999958 0.00917171i \(-0.00291949\pi\)
\(878\) 0 0
\(879\) −3.99780 12.3040i −0.134842 0.415002i
\(880\) 0 0
\(881\) −9.99386 + 30.7580i −0.336702 + 1.03626i 0.629176 + 0.777263i \(0.283393\pi\)
−0.965878 + 0.258999i \(0.916607\pi\)
\(882\) 0 0
\(883\) 17.7169 + 5.75656i 0.596220 + 0.193724i 0.591554 0.806266i \(-0.298515\pi\)
0.00466609 + 0.999989i \(0.498515\pi\)
\(884\) 0 0
\(885\) 23.2806 32.0430i 0.782569 1.07711i
\(886\) 0 0
\(887\) −17.1712 23.6342i −0.576553 0.793557i 0.416759 0.909017i \(-0.363166\pi\)
−0.993312 + 0.115460i \(0.963166\pi\)
\(888\) 0 0
\(889\) −2.12974 + 0.691994i −0.0714292 + 0.0232087i
\(890\) 0 0
\(891\) 24.7022 33.9996i 0.827554 1.13903i
\(892\) 0 0
\(893\) 9.70040 0.324612
\(894\) 0 0
\(895\) −13.9975 4.54805i −0.467884 0.152025i
\(896\) 0 0
\(897\) 8.98718 6.52957i 0.300073 0.218016i
\(898\) 0 0
\(899\) 2.23711i 0.0746119i
\(900\) 0 0
\(901\) 58.1337 1.93671
\(902\) 0 0
\(903\) 90.1076 2.99859
\(904\) 0 0
\(905\) 21.5741i 0.717148i
\(906\) 0 0
\(907\) 38.8020 28.1913i 1.28840 0.936076i 0.288627 0.957442i \(-0.406801\pi\)
0.999772 + 0.0213656i \(0.00680141\pi\)
\(908\) 0 0
\(909\) −14.7347 4.78760i −0.488720 0.158795i
\(910\) 0 0
\(911\) −31.4179 −1.04092 −0.520460 0.853886i \(-0.674239\pi\)
−0.520460 + 0.853886i \(0.674239\pi\)
\(912\) 0 0
\(913\) −16.3581 + 22.5150i −0.541375 + 0.745139i
\(914\) 0 0
\(915\) −42.6479 + 13.8571i −1.40990 + 0.458103i
\(916\) 0 0
\(917\) 20.9806 + 28.8773i 0.692841 + 0.953614i
\(918\) 0 0
\(919\) −3.38412 + 4.65784i −0.111632 + 0.153648i −0.861177 0.508305i \(-0.830272\pi\)
0.749545 + 0.661953i \(0.230272\pi\)
\(920\) 0 0
\(921\) 20.5686 + 6.68314i 0.677758 + 0.220217i
\(922\) 0 0
\(923\) −7.57395 + 23.3102i −0.249299 + 0.767265i
\(924\) 0 0
\(925\) 0.634353 + 1.95234i 0.0208574 + 0.0641924i
\(926\) 0 0
\(927\) −13.9786 + 43.0218i −0.459119 + 1.41302i
\(928\) 0 0
\(929\) 27.2914i 0.895402i 0.894183 + 0.447701i \(0.147757\pi\)
−0.894183 + 0.447701i \(0.852243\pi\)
\(930\) 0 0
\(931\) −3.53696 4.86820i −0.115919 0.159549i
\(932\) 0 0
\(933\) 24.3236 + 17.6721i 0.796319 + 0.578560i
\(934\) 0 0
\(935\) −14.2091 10.3235i −0.464687 0.337615i
\(936\) 0 0
\(937\) 35.7966 11.6310i 1.16942 0.379969i 0.340996 0.940065i \(-0.389236\pi\)
0.828428 + 0.560096i \(0.189236\pi\)
\(938\) 0 0
\(939\) −3.44583 + 2.50354i −0.112451 + 0.0817001i
\(940\) 0 0
\(941\) 8.39656 + 25.8420i 0.273720 + 0.842424i 0.989555 + 0.144154i \(0.0460462\pi\)
−0.715835 + 0.698269i \(0.753954\pi\)
\(942\) 0 0
\(943\) 5.75093 5.49161i 0.187276 0.178831i
\(944\) 0 0
\(945\) 11.6795 + 35.9458i 0.379934 + 1.16932i
\(946\) 0 0
\(947\) −12.7537 + 9.26614i −0.414441 + 0.301109i −0.775397 0.631474i \(-0.782450\pi\)
0.360956 + 0.932583i \(0.382450\pi\)
\(948\) 0 0
\(949\) 9.42113 3.06111i 0.305823 0.0993678i
\(950\) 0 0
\(951\) 36.4096 + 26.4531i 1.18066 + 0.857801i
\(952\) 0 0
\(953\) −9.45357 6.86842i −0.306231 0.222490i 0.424047 0.905640i \(-0.360609\pi\)
−0.730278 + 0.683150i \(0.760609\pi\)
\(954\) 0 0
\(955\) 6.51902 + 8.97265i 0.210950 + 0.290348i
\(956\) 0 0
\(957\) 51.0889i 1.65147i
\(958\) 0 0
\(959\) −1.49394 + 4.59787i −0.0482418 + 0.148473i
\(960\) 0 0
\(961\) −9.55097 29.3949i −0.308096 0.948222i
\(962\) 0 0
\(963\) 3.06445 9.43141i 0.0987506 0.303923i
\(964\) 0 0
\(965\) 7.91396 + 2.57140i 0.254759 + 0.0827763i
\(966\) 0 0
\(967\) −6.61976 + 9.11132i −0.212877 + 0.293000i −0.902081 0.431568i \(-0.857961\pi\)
0.689203 + 0.724568i \(0.257961\pi\)
\(968\) 0 0
\(969\) 48.3852 + 66.5965i 1.55436 + 2.13939i
\(970\) 0 0
\(971\) −29.9278 + 9.72413i −0.960429 + 0.312062i −0.746946 0.664884i \(-0.768481\pi\)
−0.213483 + 0.976947i \(0.568481\pi\)
\(972\) 0 0
\(973\) −12.2918 + 16.9182i −0.394056 + 0.542372i
\(974\) 0 0
\(975\) 8.94526 0.286478
\(976\) 0 0
\(977\) −30.9923 10.0700i −0.991530 0.322168i −0.232054 0.972703i \(-0.574545\pi\)
−0.759476 + 0.650535i \(0.774545\pi\)
\(978\) 0 0
\(979\) 31.4320 22.8367i 1.00457 0.729864i
\(980\) 0 0
\(981\) 121.409i 3.87628i
\(982\) 0 0
\(983\) 5.38234 0.171670 0.0858350 0.996309i \(-0.472644\pi\)
0.0858350 + 0.996309i \(0.472644\pi\)
\(984\) 0 0
\(985\) −11.5131 −0.366837
\(986\) 0 0
\(987\) 28.1104i 0.894764i
\(988\) 0 0
\(989\) 9.61523 6.98587i 0.305747 0.222138i
\(990\) 0 0
\(991\) −5.15949 1.67642i −0.163897 0.0532533i 0.225919 0.974146i \(-0.427461\pi\)
−0.389816 + 0.920893i \(0.627461\pi\)
\(992\) 0 0
\(993\) −29.4003 −0.932989
\(994\) 0 0
\(995\) −3.84729 + 5.29534i −0.121967 + 0.167874i
\(996\) 0 0
\(997\) 8.50629 2.76386i 0.269397 0.0875324i −0.171204 0.985236i \(-0.554766\pi\)
0.440600 + 0.897703i \(0.354766\pi\)
\(998\) 0 0
\(999\) −15.3280 21.0972i −0.484957 0.667487i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bg.a.761.1 yes 24
41.25 even 10 inner 820.2.bg.a.681.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bg.a.681.6 24 41.25 even 10 inner
820.2.bg.a.761.1 yes 24 1.1 even 1 trivial