Properties

Label 820.2.bg.a
Level $820$
Weight $2$
Character orbit 820.bg
Analytic conductor $6.548$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(441,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.441"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bg (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 6 q^{5} + 5 q^{7} - 6 q^{9} + 5 q^{11} - 5 q^{13} - 5 q^{17} - 5 q^{19} - 6 q^{21} + 10 q^{23} - 6 q^{25} - 25 q^{29} + 7 q^{31} - 12 q^{33} + 5 q^{35} - 13 q^{37} + 4 q^{39} + 6 q^{41} + 14 q^{43}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
441.1 0 2.67508i 0 −0.309017 0.951057i 0 −2.42716 3.34070i 0 −4.15606 0
441.2 0 1.67459i 0 −0.309017 0.951057i 0 1.17963 + 1.62362i 0 0.195761 0
441.3 0 0.0367361i 0 −0.309017 0.951057i 0 −0.212825 0.292928i 0 2.99865 0
441.4 0 1.54157i 0 −0.309017 0.951057i 0 0.545675 + 0.751057i 0 0.623556 0
441.5 0 1.69546i 0 −0.309017 0.951057i 0 2.14281 + 2.94933i 0 0.125430 0
441.6 0 2.32495i 0 −0.309017 0.951057i 0 −1.65518 2.27816i 0 −2.40537 0
681.1 0 2.07903i 0 0.809017 + 0.587785i 0 0.0731487 0.0237674i 0 −1.32238 0
681.2 0 1.12175i 0 0.809017 + 0.587785i 0 −3.16195 + 1.02738i 0 1.74169 0
681.3 0 0.163494i 0 0.809017 + 0.587785i 0 4.59987 1.49459i 0 2.97327 0
681.4 0 0.525875i 0 0.809017 + 0.587785i 0 −3.06532 + 0.995983i 0 2.72346 0
681.5 0 1.57598i 0 0.809017 + 0.587785i 0 1.65168 0.536663i 0 0.516299 0
681.6 0 3.16454i 0 0.809017 + 0.587785i 0 2.82962 0.919400i 0 −7.01429 0
701.1 0 2.32495i 0 −0.309017 + 0.951057i 0 −1.65518 + 2.27816i 0 −2.40537 0
701.2 0 1.69546i 0 −0.309017 + 0.951057i 0 2.14281 2.94933i 0 0.125430 0
701.3 0 1.54157i 0 −0.309017 + 0.951057i 0 0.545675 0.751057i 0 0.623556 0
701.4 0 0.0367361i 0 −0.309017 + 0.951057i 0 −0.212825 + 0.292928i 0 2.99865 0
701.5 0 1.67459i 0 −0.309017 + 0.951057i 0 1.17963 1.62362i 0 0.195761 0
701.6 0 2.67508i 0 −0.309017 + 0.951057i 0 −2.42716 + 3.34070i 0 −4.15606 0
761.1 0 3.16454i 0 0.809017 0.587785i 0 2.82962 + 0.919400i 0 −7.01429 0
761.2 0 1.57598i 0 0.809017 0.587785i 0 1.65168 + 0.536663i 0 0.516299 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 441.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
41.f even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 820.2.bg.a 24
41.f even 10 1 inner 820.2.bg.a 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
820.2.bg.a 24 1.a even 1 1 trivial
820.2.bg.a 24 41.f even 10 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{24} + 39 T_{3}^{22} + 646 T_{3}^{20} + 5983 T_{3}^{18} + 34268 T_{3}^{16} + 126467 T_{3}^{14} + \cdots + 1 \) acting on \(S_{2}^{\mathrm{new}}(820, [\chi])\). Copy content Toggle raw display