Newspace parameters
Level: | \( N \) | \(=\) | \( 820 = 2^{2} \cdot 5 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 820.bg (of order \(10\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.54773296574\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
441.1 | 0 | − | 2.67508i | 0 | −0.309017 | − | 0.951057i | 0 | −2.42716 | − | 3.34070i | 0 | −4.15606 | 0 | |||||||||||||
441.2 | 0 | − | 1.67459i | 0 | −0.309017 | − | 0.951057i | 0 | 1.17963 | + | 1.62362i | 0 | 0.195761 | 0 | |||||||||||||
441.3 | 0 | − | 0.0367361i | 0 | −0.309017 | − | 0.951057i | 0 | −0.212825 | − | 0.292928i | 0 | 2.99865 | 0 | |||||||||||||
441.4 | 0 | 1.54157i | 0 | −0.309017 | − | 0.951057i | 0 | 0.545675 | + | 0.751057i | 0 | 0.623556 | 0 | ||||||||||||||
441.5 | 0 | 1.69546i | 0 | −0.309017 | − | 0.951057i | 0 | 2.14281 | + | 2.94933i | 0 | 0.125430 | 0 | ||||||||||||||
441.6 | 0 | 2.32495i | 0 | −0.309017 | − | 0.951057i | 0 | −1.65518 | − | 2.27816i | 0 | −2.40537 | 0 | ||||||||||||||
681.1 | 0 | − | 2.07903i | 0 | 0.809017 | + | 0.587785i | 0 | 0.0731487 | − | 0.0237674i | 0 | −1.32238 | 0 | |||||||||||||
681.2 | 0 | − | 1.12175i | 0 | 0.809017 | + | 0.587785i | 0 | −3.16195 | + | 1.02738i | 0 | 1.74169 | 0 | |||||||||||||
681.3 | 0 | − | 0.163494i | 0 | 0.809017 | + | 0.587785i | 0 | 4.59987 | − | 1.49459i | 0 | 2.97327 | 0 | |||||||||||||
681.4 | 0 | 0.525875i | 0 | 0.809017 | + | 0.587785i | 0 | −3.06532 | + | 0.995983i | 0 | 2.72346 | 0 | ||||||||||||||
681.5 | 0 | 1.57598i | 0 | 0.809017 | + | 0.587785i | 0 | 1.65168 | − | 0.536663i | 0 | 0.516299 | 0 | ||||||||||||||
681.6 | 0 | 3.16454i | 0 | 0.809017 | + | 0.587785i | 0 | 2.82962 | − | 0.919400i | 0 | −7.01429 | 0 | ||||||||||||||
701.1 | 0 | − | 2.32495i | 0 | −0.309017 | + | 0.951057i | 0 | −1.65518 | + | 2.27816i | 0 | −2.40537 | 0 | |||||||||||||
701.2 | 0 | − | 1.69546i | 0 | −0.309017 | + | 0.951057i | 0 | 2.14281 | − | 2.94933i | 0 | 0.125430 | 0 | |||||||||||||
701.3 | 0 | − | 1.54157i | 0 | −0.309017 | + | 0.951057i | 0 | 0.545675 | − | 0.751057i | 0 | 0.623556 | 0 | |||||||||||||
701.4 | 0 | 0.0367361i | 0 | −0.309017 | + | 0.951057i | 0 | −0.212825 | + | 0.292928i | 0 | 2.99865 | 0 | ||||||||||||||
701.5 | 0 | 1.67459i | 0 | −0.309017 | + | 0.951057i | 0 | 1.17963 | − | 1.62362i | 0 | 0.195761 | 0 | ||||||||||||||
701.6 | 0 | 2.67508i | 0 | −0.309017 | + | 0.951057i | 0 | −2.42716 | + | 3.34070i | 0 | −4.15606 | 0 | ||||||||||||||
761.1 | 0 | − | 3.16454i | 0 | 0.809017 | − | 0.587785i | 0 | 2.82962 | + | 0.919400i | 0 | −7.01429 | 0 | |||||||||||||
761.2 | 0 | − | 1.57598i | 0 | 0.809017 | − | 0.587785i | 0 | 1.65168 | + | 0.536663i | 0 | 0.516299 | 0 | |||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
41.f | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 820.2.bg.a | ✓ | 24 |
41.f | even | 10 | 1 | inner | 820.2.bg.a | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
820.2.bg.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
820.2.bg.a | ✓ | 24 | 41.f | even | 10 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{24} + 39 T_{3}^{22} + 646 T_{3}^{20} + 5983 T_{3}^{18} + 34268 T_{3}^{16} + 126467 T_{3}^{14} + \cdots + 1 \)
acting on \(S_{2}^{\mathrm{new}}(820, [\chi])\).