L(s) = 1 | + 1.67i·3-s + (−0.309 + 0.951i)5-s + (1.17 − 1.62i)7-s + 0.195·9-s + (5.72 − 1.85i)11-s + (−1.32 − 1.82i)13-s + (−1.59 − 0.517i)15-s + (3.45 − 1.12i)17-s + (0.272 − 0.374i)19-s + (2.71 + 1.97i)21-s + (0.446 − 0.324i)23-s + (−0.809 − 0.587i)25-s + 5.35i·27-s + (−2.29 − 0.746i)29-s + (0.721 + 2.22i)31-s + ⋯ |
L(s) = 1 | + 0.966i·3-s + (−0.138 + 0.425i)5-s + (0.445 − 0.613i)7-s + 0.0652·9-s + (1.72 − 0.560i)11-s + (−0.367 − 0.506i)13-s + (−0.411 − 0.133i)15-s + (0.838 − 0.272i)17-s + (0.0624 − 0.0859i)19-s + (0.593 + 0.431i)21-s + (0.0930 − 0.0675i)23-s + (−0.161 − 0.117i)25-s + 1.02i·27-s + (−0.426 − 0.138i)29-s + (0.129 + 0.399i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.755 - 0.655i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.755 - 0.655i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.69982 + 0.634798i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69982 + 0.634798i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.309 - 0.951i)T \) |
| 41 | \( 1 + (-5.69 - 2.92i)T \) |
good | 3 | \( 1 - 1.67iT - 3T^{2} \) |
| 7 | \( 1 + (-1.17 + 1.62i)T + (-2.16 - 6.65i)T^{2} \) |
| 11 | \( 1 + (-5.72 + 1.85i)T + (8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (1.32 + 1.82i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-3.45 + 1.12i)T + (13.7 - 9.99i)T^{2} \) |
| 19 | \( 1 + (-0.272 + 0.374i)T + (-5.87 - 18.0i)T^{2} \) |
| 23 | \( 1 + (-0.446 + 0.324i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (2.29 + 0.746i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.721 - 2.22i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-0.487 + 1.50i)T + (-29.9 - 21.7i)T^{2} \) |
| 43 | \( 1 + (5.16 - 3.75i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (1.55 + 2.14i)T + (-14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (5.24 + 1.70i)T + (42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (1.95 - 1.42i)T + (18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-9.95 - 7.23i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (9.54 + 3.10i)T + (54.2 + 39.3i)T^{2} \) |
| 71 | \( 1 + (9.70 - 3.15i)T + (57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 - 14.1T + 73T^{2} \) |
| 79 | \( 1 + 2.67iT - 79T^{2} \) |
| 83 | \( 1 + 12.8T + 83T^{2} \) |
| 89 | \( 1 + (-2.25 + 3.10i)T + (-27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (-3.11 - 1.01i)T + (78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24788367702321138654000641126, −9.638836094244891890041108526453, −8.822435096666277897373309000321, −7.72680288662446861211558292446, −6.93847330556554754339790064138, −5.89195485776264819703931887217, −4.74702909543713699449120987244, −3.94834278607379831900060887141, −3.16552941630428175973025812903, −1.24752722564846521303677261653,
1.26204822235554430455985154052, 2.06496462268166051169596189240, 3.76954134355441086771330607533, 4.73781904423502522692895489639, 5.90549476533501558331137657058, 6.76948718947408520508661723545, 7.50223874756280377914930038511, 8.380422220117845268596766377337, 9.245922710384347059773909090829, 9.905614006854783769748220299555