sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(820, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,0,3]))
pari:[g,chi] = znchar(Mod(701,820))
\(\chi_{820}(441,\cdot)\)
\(\chi_{820}(681,\cdot)\)
\(\chi_{820}(701,\cdot)\)
\(\chi_{820}(761,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((411,657,621)\) → \((1,1,e\left(\frac{3}{10}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 820 }(701, a) \) |
\(1\) | \(1\) | \(-1\) | \(e\left(\frac{7}{10}\right)\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)