L(s) = 1 | − 2.07i·3-s + (0.809 + 0.587i)5-s + (0.0731 − 0.0237i)7-s − 1.32·9-s + (1.84 + 2.53i)11-s + (3.95 + 1.28i)13-s + (1.22 − 1.68i)15-s + (−0.197 − 0.271i)17-s + (4.57 − 1.48i)19-s + (−0.0494 − 0.152i)21-s + (0.630 − 1.93i)23-s + (0.309 + 0.951i)25-s − 3.48i·27-s + (0.397 − 0.547i)29-s + (0.131 − 0.0952i)31-s + ⋯ |
L(s) = 1 | − 1.20i·3-s + (0.361 + 0.262i)5-s + (0.0276 − 0.00898i)7-s − 0.440·9-s + (0.555 + 0.764i)11-s + (1.09 + 0.356i)13-s + (0.315 − 0.434i)15-s + (−0.0479 − 0.0659i)17-s + (1.04 − 0.341i)19-s + (−0.0107 − 0.0331i)21-s + (0.131 − 0.404i)23-s + (0.0618 + 0.190i)25-s − 0.671i·27-s + (0.0738 − 0.101i)29-s + (0.0235 − 0.0171i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.606 + 0.794i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.606 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.65011 - 0.816305i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.65011 - 0.816305i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 41 | \( 1 + (4.29 - 4.75i)T \) |
good | 3 | \( 1 + 2.07iT - 3T^{2} \) |
| 7 | \( 1 + (-0.0731 + 0.0237i)T + (5.66 - 4.11i)T^{2} \) |
| 11 | \( 1 + (-1.84 - 2.53i)T + (-3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (-3.95 - 1.28i)T + (10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (0.197 + 0.271i)T + (-5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-4.57 + 1.48i)T + (15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (-0.630 + 1.93i)T + (-18.6 - 13.5i)T^{2} \) |
| 29 | \( 1 + (-0.397 + 0.547i)T + (-8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-0.131 + 0.0952i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (3.30 + 2.39i)T + (11.4 + 35.1i)T^{2} \) |
| 43 | \( 1 + (-1.63 + 5.01i)T + (-34.7 - 25.2i)T^{2} \) |
| 47 | \( 1 + (3.32 + 1.07i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (0.511 - 0.704i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-1.88 + 5.79i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-2.43 - 7.48i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + (-4.20 + 5.78i)T + (-20.7 - 63.7i)T^{2} \) |
| 71 | \( 1 + (1.33 + 1.83i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 - 4.33T + 73T^{2} \) |
| 79 | \( 1 + 5.37iT - 79T^{2} \) |
| 83 | \( 1 - 3.17T + 83T^{2} \) |
| 89 | \( 1 + (-1.00 + 0.327i)T + (72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (-2.76 + 3.81i)T + (-29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04905744125649659821335099274, −9.227347953879929932170652615594, −8.303593068766552484964000603065, −7.34161771555900634093121600413, −6.72883883407564143562920021768, −6.03818428081007362665915209824, −4.79320660709282631369252351021, −3.50057702432581997737591590788, −2.14260548756669466010102869996, −1.18991326358689518730581491407,
1.32553996393154636595918798371, 3.23794150688236200002109641225, 3.86625699306680506610518104796, 5.04728366458291345032405776050, 5.73708677302308270237327021646, 6.74937898459031123335556606103, 8.091274416740656873128577271869, 8.845053941881673103121455524278, 9.567418522887018335825250929799, 10.25529360910197841713292347288