Properties

Label 820.2.bg.a.681.6
Level $820$
Weight $2$
Character 820.681
Analytic conductor $6.548$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(441,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.441"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bg (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 681.6
Character \(\chi\) \(=\) 820.681
Dual form 820.2.bg.a.761.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.16454i q^{3} +(0.809017 + 0.587785i) q^{5} +(2.82962 - 0.919400i) q^{7} -7.01429 q^{9} +(1.28943 + 1.77475i) q^{11} +(-2.68837 - 0.873505i) q^{13} +(-1.86007 + 2.56016i) q^{15} +(4.70595 + 6.47718i) q^{17} +(-3.09002 + 1.00401i) q^{19} +(2.90948 + 8.95445i) q^{21} +(-0.383756 + 1.18108i) q^{23} +(0.309017 + 0.951057i) q^{25} -12.7034i q^{27} +(-4.32569 + 5.95380i) q^{29} +(0.245929 - 0.178678i) q^{31} +(-5.61626 + 4.08045i) q^{33} +(2.82962 + 0.919400i) q^{35} +(-1.66076 - 1.20661i) q^{37} +(2.76424 - 8.50745i) q^{39} +(2.77462 - 5.77074i) q^{41} +(2.95741 - 9.10197i) q^{43} +(-5.67468 - 4.12290i) q^{45} +(-2.83949 - 0.922607i) q^{47} +(1.49835 - 1.08862i) q^{49} +(-20.4973 + 14.8921i) q^{51} +(4.26794 - 5.87431i) q^{53} +2.19371i q^{55} +(-3.17722 - 9.77849i) q^{57} +(3.86765 - 11.9034i) q^{59} +(4.37888 + 13.4768i) q^{61} +(-19.8478 + 6.44894i) q^{63} +(-1.66150 - 2.28686i) q^{65} +(-3.52615 + 4.85334i) q^{67} +(-3.73757 - 1.21441i) q^{69} +(5.09654 + 7.01479i) q^{71} -3.50440 q^{73} +(-3.00965 + 0.977896i) q^{75} +(5.28031 + 3.83637i) q^{77} -2.13307i q^{79} +19.1574 q^{81} -12.6863 q^{83} +8.00624i q^{85} +(-18.8410 - 13.6888i) q^{87} +(16.8438 - 5.47290i) q^{89} -8.41018 q^{91} +(0.565432 + 0.778250i) q^{93} +(-3.09002 - 1.00401i) q^{95} +(4.51451 - 6.21368i) q^{97} +(-9.04445 - 12.4486i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{5} + 5 q^{7} - 6 q^{9} + 5 q^{11} - 5 q^{13} - 5 q^{17} - 5 q^{19} - 6 q^{21} + 10 q^{23} - 6 q^{25} - 25 q^{29} + 7 q^{31} - 12 q^{33} + 5 q^{35} - 13 q^{37} + 4 q^{39} + 6 q^{41} + 14 q^{43}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.16454i 1.82705i 0.406787 + 0.913523i \(0.366649\pi\)
−0.406787 + 0.913523i \(0.633351\pi\)
\(4\) 0 0
\(5\) 0.809017 + 0.587785i 0.361803 + 0.262866i
\(6\) 0 0
\(7\) 2.82962 0.919400i 1.06950 0.347501i 0.279205 0.960231i \(-0.409929\pi\)
0.790292 + 0.612731i \(0.209929\pi\)
\(8\) 0 0
\(9\) −7.01429 −2.33810
\(10\) 0 0
\(11\) 1.28943 + 1.77475i 0.388778 + 0.535107i 0.957883 0.287157i \(-0.0927103\pi\)
−0.569105 + 0.822265i \(0.692710\pi\)
\(12\) 0 0
\(13\) −2.68837 0.873505i −0.745620 0.242267i −0.0885244 0.996074i \(-0.528215\pi\)
−0.657095 + 0.753807i \(0.728215\pi\)
\(14\) 0 0
\(15\) −1.86007 + 2.56016i −0.480267 + 0.661031i
\(16\) 0 0
\(17\) 4.70595 + 6.47718i 1.14136 + 1.57095i 0.764431 + 0.644706i \(0.223020\pi\)
0.376930 + 0.926242i \(0.376980\pi\)
\(18\) 0 0
\(19\) −3.09002 + 1.00401i −0.708900 + 0.230335i −0.641204 0.767371i \(-0.721565\pi\)
−0.0676957 + 0.997706i \(0.521565\pi\)
\(20\) 0 0
\(21\) 2.90948 + 8.95445i 0.634900 + 1.95402i
\(22\) 0 0
\(23\) −0.383756 + 1.18108i −0.0800187 + 0.246272i −0.983061 0.183280i \(-0.941329\pi\)
0.903042 + 0.429552i \(0.141329\pi\)
\(24\) 0 0
\(25\) 0.309017 + 0.951057i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) 12.7034i 2.44477i
\(28\) 0 0
\(29\) −4.32569 + 5.95380i −0.803261 + 1.10559i 0.189068 + 0.981964i \(0.439453\pi\)
−0.992328 + 0.123630i \(0.960547\pi\)
\(30\) 0 0
\(31\) 0.245929 0.178678i 0.0441701 0.0320914i −0.565481 0.824761i \(-0.691310\pi\)
0.609651 + 0.792670i \(0.291310\pi\)
\(32\) 0 0
\(33\) −5.61626 + 4.08045i −0.977666 + 0.710316i
\(34\) 0 0
\(35\) 2.82962 + 0.919400i 0.478294 + 0.155407i
\(36\) 0 0
\(37\) −1.66076 1.20661i −0.273027 0.198366i 0.442843 0.896599i \(-0.353970\pi\)
−0.715870 + 0.698233i \(0.753970\pi\)
\(38\) 0 0
\(39\) 2.76424 8.50745i 0.442632 1.36228i
\(40\) 0 0
\(41\) 2.77462 5.77074i 0.433323 0.901239i
\(42\) 0 0
\(43\) 2.95741 9.10197i 0.451001 1.38804i −0.424766 0.905303i \(-0.639644\pi\)
0.875767 0.482734i \(-0.160356\pi\)
\(44\) 0 0
\(45\) −5.67468 4.12290i −0.845932 0.614605i
\(46\) 0 0
\(47\) −2.83949 0.922607i −0.414183 0.134576i 0.0945108 0.995524i \(-0.469871\pi\)
−0.508693 + 0.860948i \(0.669871\pi\)
\(48\) 0 0
\(49\) 1.49835 1.08862i 0.214050 0.155517i
\(50\) 0 0
\(51\) −20.4973 + 14.8921i −2.87019 + 2.08532i
\(52\) 0 0
\(53\) 4.26794 5.87431i 0.586246 0.806898i −0.408117 0.912930i \(-0.633814\pi\)
0.994363 + 0.106031i \(0.0338144\pi\)
\(54\) 0 0
\(55\) 2.19371i 0.295800i
\(56\) 0 0
\(57\) −3.17722 9.77849i −0.420833 1.29519i
\(58\) 0 0
\(59\) 3.86765 11.9034i 0.503526 1.54969i −0.299709 0.954031i \(-0.596890\pi\)
0.803235 0.595662i \(-0.203110\pi\)
\(60\) 0 0
\(61\) 4.37888 + 13.4768i 0.560659 + 1.72553i 0.680511 + 0.732738i \(0.261758\pi\)
−0.119852 + 0.992792i \(0.538242\pi\)
\(62\) 0 0
\(63\) −19.8478 + 6.44894i −2.50059 + 0.812490i
\(64\) 0 0
\(65\) −1.66150 2.28686i −0.206084 0.283651i
\(66\) 0 0
\(67\) −3.52615 + 4.85334i −0.430788 + 0.592929i −0.968134 0.250433i \(-0.919427\pi\)
0.537346 + 0.843362i \(0.319427\pi\)
\(68\) 0 0
\(69\) −3.73757 1.21441i −0.449951 0.146198i
\(70\) 0 0
\(71\) 5.09654 + 7.01479i 0.604848 + 0.832502i 0.996141 0.0877638i \(-0.0279721\pi\)
−0.391293 + 0.920266i \(0.627972\pi\)
\(72\) 0 0
\(73\) −3.50440 −0.410159 −0.205080 0.978745i \(-0.565745\pi\)
−0.205080 + 0.978745i \(0.565745\pi\)
\(74\) 0 0
\(75\) −3.00965 + 0.977896i −0.347525 + 0.112918i
\(76\) 0 0
\(77\) 5.28031 + 3.83637i 0.601747 + 0.437195i
\(78\) 0 0
\(79\) 2.13307i 0.239989i −0.992775 0.119994i \(-0.961712\pi\)
0.992775 0.119994i \(-0.0382877\pi\)
\(80\) 0 0
\(81\) 19.1574 2.12860
\(82\) 0 0
\(83\) −12.6863 −1.39250 −0.696251 0.717798i \(-0.745150\pi\)
−0.696251 + 0.717798i \(0.745150\pi\)
\(84\) 0 0
\(85\) 8.00624i 0.868399i
\(86\) 0 0
\(87\) −18.8410 13.6888i −2.01997 1.46759i
\(88\) 0 0
\(89\) 16.8438 5.47290i 1.78544 0.580126i 0.786163 0.618020i \(-0.212065\pi\)
0.999282 + 0.0378938i \(0.0120648\pi\)
\(90\) 0 0
\(91\) −8.41018 −0.881626
\(92\) 0 0
\(93\) 0.565432 + 0.778250i 0.0586325 + 0.0807008i
\(94\) 0 0
\(95\) −3.09002 1.00401i −0.317029 0.103009i
\(96\) 0 0
\(97\) 4.51451 6.21368i 0.458379 0.630904i −0.515793 0.856713i \(-0.672503\pi\)
0.974172 + 0.225809i \(0.0725026\pi\)
\(98\) 0 0
\(99\) −9.04445 12.4486i −0.909002 1.25113i
\(100\) 0 0
\(101\) 2.10067 0.682549i 0.209025 0.0679162i −0.202633 0.979255i \(-0.564950\pi\)
0.411658 + 0.911339i \(0.364950\pi\)
\(102\) 0 0
\(103\) 1.99288 + 6.13345i 0.196364 + 0.604347i 0.999958 + 0.00916862i \(0.00291850\pi\)
−0.803594 + 0.595178i \(0.797081\pi\)
\(104\) 0 0
\(105\) −2.90948 + 8.95445i −0.283936 + 0.873864i
\(106\) 0 0
\(107\) −0.436887 1.34460i −0.0422354 0.129987i 0.927715 0.373288i \(-0.121770\pi\)
−0.969951 + 0.243301i \(0.921770\pi\)
\(108\) 0 0
\(109\) 17.3087i 1.65788i 0.559340 + 0.828938i \(0.311055\pi\)
−0.559340 + 0.828938i \(0.688945\pi\)
\(110\) 0 0
\(111\) 3.81836 5.25553i 0.362423 0.498833i
\(112\) 0 0
\(113\) 9.99967 7.26519i 0.940690 0.683451i −0.00789667 0.999969i \(-0.502514\pi\)
0.948587 + 0.316518i \(0.102514\pi\)
\(114\) 0 0
\(115\) −1.00469 + 0.729948i −0.0936875 + 0.0680680i
\(116\) 0 0
\(117\) 18.8570 + 6.12702i 1.74333 + 0.566443i
\(118\) 0 0
\(119\) 19.2712 + 14.0013i 1.76659 + 1.28350i
\(120\) 0 0
\(121\) 1.91208 5.88478i 0.173826 0.534980i
\(122\) 0 0
\(123\) 18.2617 + 8.78039i 1.64660 + 0.791701i
\(124\) 0 0
\(125\) −0.309017 + 0.951057i −0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) −0.608913 0.442402i −0.0540323 0.0392568i 0.560441 0.828194i \(-0.310632\pi\)
−0.614474 + 0.788937i \(0.710632\pi\)
\(128\) 0 0
\(129\) 28.8035 + 9.35883i 2.53601 + 0.823999i
\(130\) 0 0
\(131\) 9.70588 7.05173i 0.848006 0.616113i −0.0765892 0.997063i \(-0.524403\pi\)
0.924596 + 0.380950i \(0.124403\pi\)
\(132\) 0 0
\(133\) −7.82051 + 5.68193i −0.678124 + 0.492686i
\(134\) 0 0
\(135\) 7.46686 10.2772i 0.642645 0.884525i
\(136\) 0 0
\(137\) 1.62491i 0.138825i −0.997588 0.0694125i \(-0.977888\pi\)
0.997588 0.0694125i \(-0.0221125\pi\)
\(138\) 0 0
\(139\) −2.17198 6.68467i −0.184225 0.566986i 0.815709 0.578462i \(-0.196347\pi\)
−0.999934 + 0.0114759i \(0.996347\pi\)
\(140\) 0 0
\(141\) 2.91962 8.98568i 0.245877 0.756731i
\(142\) 0 0
\(143\) −1.91622 5.89751i −0.160242 0.493175i
\(144\) 0 0
\(145\) −6.99912 + 2.27415i −0.581245 + 0.188858i
\(146\) 0 0
\(147\) 3.44497 + 4.74159i 0.284136 + 0.391080i
\(148\) 0 0
\(149\) −11.4895 + 15.8140i −0.941259 + 1.29553i 0.0140430 + 0.999901i \(0.495530\pi\)
−0.955302 + 0.295631i \(0.904470\pi\)
\(150\) 0 0
\(151\) 19.0866 + 6.20162i 1.55325 + 0.504681i 0.954994 0.296626i \(-0.0958614\pi\)
0.598254 + 0.801307i \(0.295861\pi\)
\(152\) 0 0
\(153\) −33.0089 45.4329i −2.66861 3.67303i
\(154\) 0 0
\(155\) 0.303984 0.0244166
\(156\) 0 0
\(157\) −8.76077 + 2.84655i −0.699185 + 0.227179i −0.636976 0.770884i \(-0.719815\pi\)
−0.0622098 + 0.998063i \(0.519815\pi\)
\(158\) 0 0
\(159\) 18.5895 + 13.5060i 1.47424 + 1.07110i
\(160\) 0 0
\(161\) 3.69484i 0.291194i
\(162\) 0 0
\(163\) 6.19590 0.485300 0.242650 0.970114i \(-0.421983\pi\)
0.242650 + 0.970114i \(0.421983\pi\)
\(164\) 0 0
\(165\) −6.94208 −0.540440
\(166\) 0 0
\(167\) 16.2195i 1.25510i −0.778577 0.627550i \(-0.784058\pi\)
0.778577 0.627550i \(-0.215942\pi\)
\(168\) 0 0
\(169\) −4.05290 2.94460i −0.311761 0.226508i
\(170\) 0 0
\(171\) 21.6743 7.04241i 1.65748 0.538547i
\(172\) 0 0
\(173\) 19.5261 1.48455 0.742273 0.670098i \(-0.233748\pi\)
0.742273 + 0.670098i \(0.233748\pi\)
\(174\) 0 0
\(175\) 1.74880 + 2.40702i 0.132197 + 0.181954i
\(176\) 0 0
\(177\) 37.6688 + 12.2393i 2.83136 + 0.919965i
\(178\) 0 0
\(179\) −8.65091 + 11.9070i −0.646599 + 0.889967i −0.998946 0.0459021i \(-0.985384\pi\)
0.352347 + 0.935870i \(0.385384\pi\)
\(180\) 0 0
\(181\) 12.6809 + 17.4538i 0.942567 + 1.29733i 0.954751 + 0.297406i \(0.0961216\pi\)
−0.0121841 + 0.999926i \(0.503878\pi\)
\(182\) 0 0
\(183\) −42.6479 + 13.8571i −3.15262 + 1.02435i
\(184\) 0 0
\(185\) −0.634353 1.95234i −0.0466385 0.143539i
\(186\) 0 0
\(187\) −5.42738 + 16.7038i −0.396890 + 1.22150i
\(188\) 0 0
\(189\) −11.6795 35.9458i −0.849558 2.61467i
\(190\) 0 0
\(191\) 11.0908i 0.802503i −0.915968 0.401251i \(-0.868575\pi\)
0.915968 0.401251i \(-0.131425\pi\)
\(192\) 0 0
\(193\) 4.89110 6.73202i 0.352069 0.484581i −0.595849 0.803097i \(-0.703184\pi\)
0.947918 + 0.318515i \(0.103184\pi\)
\(194\) 0 0
\(195\) 7.23687 5.25789i 0.518243 0.376525i
\(196\) 0 0
\(197\) −9.31427 + 6.76721i −0.663614 + 0.482144i −0.867882 0.496771i \(-0.834519\pi\)
0.204267 + 0.978915i \(0.434519\pi\)
\(198\) 0 0
\(199\) −6.22505 2.02264i −0.441282 0.143381i 0.0799452 0.996799i \(-0.474525\pi\)
−0.521227 + 0.853418i \(0.674525\pi\)
\(200\) 0 0
\(201\) −15.3586 11.1586i −1.08331 0.787070i
\(202\) 0 0
\(203\) −6.76615 + 20.8241i −0.474891 + 1.46156i
\(204\) 0 0
\(205\) 5.63667 3.03775i 0.393682 0.212166i
\(206\) 0 0
\(207\) 2.69178 8.28444i 0.187091 0.575808i
\(208\) 0 0
\(209\) −5.76624 4.18942i −0.398859 0.289788i
\(210\) 0 0
\(211\) 17.5034 + 5.68720i 1.20498 + 0.391523i 0.841592 0.540114i \(-0.181619\pi\)
0.363391 + 0.931637i \(0.381619\pi\)
\(212\) 0 0
\(213\) −22.1986 + 16.1282i −1.52102 + 1.10509i
\(214\) 0 0
\(215\) 7.74260 5.62533i 0.528041 0.383644i
\(216\) 0 0
\(217\) 0.531609 0.731697i 0.0360880 0.0496708i
\(218\) 0 0
\(219\) 11.0898i 0.749380i
\(220\) 0 0
\(221\) −6.99349 21.5237i −0.470433 1.44784i
\(222\) 0 0
\(223\) 1.06319 3.27216i 0.0711964 0.219120i −0.909127 0.416520i \(-0.863250\pi\)
0.980323 + 0.197400i \(0.0632497\pi\)
\(224\) 0 0
\(225\) −2.16754 6.67099i −0.144502 0.444733i
\(226\) 0 0
\(227\) 8.45819 2.74823i 0.561390 0.182407i −0.0145567 0.999894i \(-0.504634\pi\)
0.575946 + 0.817488i \(0.304634\pi\)
\(228\) 0 0
\(229\) −2.89652 3.98672i −0.191408 0.263450i 0.702517 0.711667i \(-0.252059\pi\)
−0.893925 + 0.448217i \(0.852059\pi\)
\(230\) 0 0
\(231\) −12.1403 + 16.7097i −0.798776 + 1.09942i
\(232\) 0 0
\(233\) 13.3328 + 4.33208i 0.873459 + 0.283804i 0.711239 0.702951i \(-0.248135\pi\)
0.162220 + 0.986755i \(0.448135\pi\)
\(234\) 0 0
\(235\) −1.75490 2.41542i −0.114477 0.157564i
\(236\) 0 0
\(237\) 6.75017 0.438471
\(238\) 0 0
\(239\) 8.66332 2.81488i 0.560384 0.182080i −0.0151102 0.999886i \(-0.504810\pi\)
0.575494 + 0.817806i \(0.304810\pi\)
\(240\) 0 0
\(241\) −11.6975 8.49873i −0.753502 0.547451i 0.143408 0.989664i \(-0.454194\pi\)
−0.896910 + 0.442212i \(0.854194\pi\)
\(242\) 0 0
\(243\) 22.5142i 1.44429i
\(244\) 0 0
\(245\) 1.85206 0.118324
\(246\) 0 0
\(247\) 9.18413 0.584372
\(248\) 0 0
\(249\) 40.1463i 2.54417i
\(250\) 0 0
\(251\) −14.1964 10.3143i −0.896071 0.651034i 0.0413828 0.999143i \(-0.486824\pi\)
−0.937454 + 0.348110i \(0.886824\pi\)
\(252\) 0 0
\(253\) −2.59095 + 0.841851i −0.162892 + 0.0529267i
\(254\) 0 0
\(255\) −25.3360 −1.58660
\(256\) 0 0
\(257\) 12.9028 + 17.7591i 0.804853 + 1.10778i 0.992097 + 0.125471i \(0.0400443\pi\)
−0.187245 + 0.982313i \(0.559956\pi\)
\(258\) 0 0
\(259\) −5.80867 1.88735i −0.360933 0.117274i
\(260\) 0 0
\(261\) 30.3417 41.7617i 1.87810 2.58499i
\(262\) 0 0
\(263\) −0.0309160 0.0425523i −0.00190636 0.00262389i 0.808063 0.589096i \(-0.200516\pi\)
−0.809969 + 0.586473i \(0.800516\pi\)
\(264\) 0 0
\(265\) 6.90566 2.24379i 0.424212 0.137835i
\(266\) 0 0
\(267\) 17.3192 + 53.3030i 1.05992 + 3.26209i
\(268\) 0 0
\(269\) −5.49344 + 16.9071i −0.334941 + 1.03084i 0.631810 + 0.775123i \(0.282312\pi\)
−0.966751 + 0.255719i \(0.917688\pi\)
\(270\) 0 0
\(271\) −9.79827 30.1560i −0.595203 1.83185i −0.553715 0.832706i \(-0.686790\pi\)
−0.0414874 0.999139i \(-0.513210\pi\)
\(272\) 0 0
\(273\) 26.6143i 1.61077i
\(274\) 0 0
\(275\) −1.28943 + 1.77475i −0.0777557 + 0.107021i
\(276\) 0 0
\(277\) 18.8854 13.7211i 1.13472 0.824419i 0.148341 0.988936i \(-0.452607\pi\)
0.986374 + 0.164517i \(0.0526067\pi\)
\(278\) 0 0
\(279\) −1.72501 + 1.25330i −0.103274 + 0.0750329i
\(280\) 0 0
\(281\) 9.31241 + 3.02579i 0.555532 + 0.180503i 0.573310 0.819339i \(-0.305659\pi\)
−0.0177779 + 0.999842i \(0.505659\pi\)
\(282\) 0 0
\(283\) −20.4311 14.8440i −1.21450 0.882386i −0.218869 0.975754i \(-0.570237\pi\)
−0.995632 + 0.0933682i \(0.970237\pi\)
\(284\) 0 0
\(285\) 3.17722 9.77849i 0.188202 0.579228i
\(286\) 0 0
\(287\) 2.54550 18.8800i 0.150256 1.11445i
\(288\) 0 0
\(289\) −14.5547 + 44.7946i −0.856157 + 2.63498i
\(290\) 0 0
\(291\) 19.6634 + 14.2863i 1.15269 + 0.837479i
\(292\) 0 0
\(293\) 3.88808 + 1.26331i 0.227144 + 0.0738035i 0.420378 0.907349i \(-0.361898\pi\)
−0.193234 + 0.981153i \(0.561898\pi\)
\(294\) 0 0
\(295\) 10.1256 7.35671i 0.589538 0.428325i
\(296\) 0 0
\(297\) 22.5453 16.3801i 1.30821 0.950472i
\(298\) 0 0
\(299\) 2.06336 2.83997i 0.119327 0.164240i
\(300\) 0 0
\(301\) 28.4742i 1.64122i
\(302\) 0 0
\(303\) 2.15995 + 6.64765i 0.124086 + 0.381898i
\(304\) 0 0
\(305\) −4.37888 + 13.4768i −0.250734 + 0.771680i
\(306\) 0 0
\(307\) −2.11189 6.49972i −0.120532 0.370958i 0.872529 0.488563i \(-0.162479\pi\)
−0.993061 + 0.117604i \(0.962479\pi\)
\(308\) 0 0
\(309\) −19.4095 + 6.30654i −1.10417 + 0.358766i
\(310\) 0 0
\(311\) −5.58443 7.68631i −0.316664 0.435851i 0.620781 0.783984i \(-0.286816\pi\)
−0.937445 + 0.348133i \(0.886816\pi\)
\(312\) 0 0
\(313\) −0.791125 + 1.08889i −0.0447170 + 0.0615477i −0.830790 0.556586i \(-0.812111\pi\)
0.786073 + 0.618134i \(0.212111\pi\)
\(314\) 0 0
\(315\) −19.8478 6.44894i −1.11830 0.363357i
\(316\) 0 0
\(317\) −8.35924 11.5055i −0.469501 0.646213i 0.506944 0.861979i \(-0.330775\pi\)
−0.976445 + 0.215766i \(0.930775\pi\)
\(318\) 0 0
\(319\) −16.1442 −0.903902
\(320\) 0 0
\(321\) 4.25503 1.38254i 0.237493 0.0771661i
\(322\) 0 0
\(323\) −21.0446 15.2898i −1.17095 0.850748i
\(324\) 0 0
\(325\) 2.82672i 0.156798i
\(326\) 0 0
\(327\) −54.7742 −3.02902
\(328\) 0 0
\(329\) −8.88294 −0.489732
\(330\) 0 0
\(331\) 9.29054i 0.510654i 0.966855 + 0.255327i \(0.0821832\pi\)
−0.966855 + 0.255327i \(0.917817\pi\)
\(332\) 0 0
\(333\) 11.6490 + 8.46352i 0.638363 + 0.463798i
\(334\) 0 0
\(335\) −5.70544 + 1.85381i −0.311721 + 0.101284i
\(336\) 0 0
\(337\) −3.55075 −0.193421 −0.0967107 0.995313i \(-0.530832\pi\)
−0.0967107 + 0.995313i \(0.530832\pi\)
\(338\) 0 0
\(339\) 22.9909 + 31.6443i 1.24870 + 1.71868i
\(340\) 0 0
\(341\) 0.634216 + 0.206069i 0.0343447 + 0.0111593i
\(342\) 0 0
\(343\) −9.00273 + 12.3912i −0.486102 + 0.669061i
\(344\) 0 0
\(345\) −2.30995 3.17937i −0.124363 0.171171i
\(346\) 0 0
\(347\) 12.1916 3.96128i 0.654477 0.212653i 0.0370900 0.999312i \(-0.488191\pi\)
0.617387 + 0.786659i \(0.288191\pi\)
\(348\) 0 0
\(349\) 2.63267 + 8.10253i 0.140924 + 0.433718i 0.996464 0.0840172i \(-0.0267751\pi\)
−0.855541 + 0.517736i \(0.826775\pi\)
\(350\) 0 0
\(351\) −11.0965 + 34.1514i −0.592285 + 1.82287i
\(352\) 0 0
\(353\) −1.75156 5.39076i −0.0932263 0.286921i 0.893561 0.448942i \(-0.148199\pi\)
−0.986787 + 0.162021i \(0.948199\pi\)
\(354\) 0 0
\(355\) 8.67076i 0.460196i
\(356\) 0 0
\(357\) −44.3077 + 60.9844i −2.34501 + 3.22764i
\(358\) 0 0
\(359\) 20.5526 14.9324i 1.08473 0.788100i 0.106226 0.994342i \(-0.466123\pi\)
0.978501 + 0.206242i \(0.0661233\pi\)
\(360\) 0 0
\(361\) −6.83112 + 4.96310i −0.359533 + 0.261216i
\(362\) 0 0
\(363\) 18.6226 + 6.05085i 0.977433 + 0.317587i
\(364\) 0 0
\(365\) −2.83512 2.05984i −0.148397 0.107817i
\(366\) 0 0
\(367\) −3.80008 + 11.6954i −0.198362 + 0.610497i 0.801558 + 0.597916i \(0.204005\pi\)
−0.999921 + 0.0125802i \(0.995995\pi\)
\(368\) 0 0
\(369\) −19.4620 + 40.4777i −1.01315 + 2.10718i
\(370\) 0 0
\(371\) 6.67581 20.5460i 0.346591 1.06670i
\(372\) 0 0
\(373\) 8.88129 + 6.45264i 0.459856 + 0.334105i 0.793475 0.608603i \(-0.208270\pi\)
−0.333619 + 0.942708i \(0.608270\pi\)
\(374\) 0 0
\(375\) −3.00965 0.977896i −0.155418 0.0504983i
\(376\) 0 0
\(377\) 16.8297 12.2275i 0.866775 0.629749i
\(378\) 0 0
\(379\) −15.1818 + 11.0302i −0.779837 + 0.566585i −0.904930 0.425560i \(-0.860077\pi\)
0.125093 + 0.992145i \(0.460077\pi\)
\(380\) 0 0
\(381\) 1.40000 1.92693i 0.0717240 0.0987196i
\(382\) 0 0
\(383\) 3.03691i 0.155179i −0.996985 0.0775895i \(-0.975278\pi\)
0.996985 0.0775895i \(-0.0247224\pi\)
\(384\) 0 0
\(385\) 2.01690 + 6.20738i 0.102791 + 0.316357i
\(386\) 0 0
\(387\) −20.7441 + 63.8439i −1.05448 + 3.24537i
\(388\) 0 0
\(389\) 4.60916 + 14.1856i 0.233694 + 0.719236i 0.997292 + 0.0735441i \(0.0234310\pi\)
−0.763598 + 0.645692i \(0.776569\pi\)
\(390\) 0 0
\(391\) −9.45601 + 3.07244i −0.478211 + 0.155380i
\(392\) 0 0
\(393\) 22.3155 + 30.7146i 1.12567 + 1.54935i
\(394\) 0 0
\(395\) 1.25379 1.72569i 0.0630848 0.0868288i
\(396\) 0 0
\(397\) −5.45496 1.77242i −0.273776 0.0889553i 0.168911 0.985631i \(-0.445975\pi\)
−0.442688 + 0.896676i \(0.645975\pi\)
\(398\) 0 0
\(399\) −17.9807 24.7483i −0.900160 1.23896i
\(400\) 0 0
\(401\) −7.07000 −0.353059 −0.176530 0.984295i \(-0.556487\pi\)
−0.176530 + 0.984295i \(0.556487\pi\)
\(402\) 0 0
\(403\) −0.817223 + 0.265532i −0.0407088 + 0.0132271i
\(404\) 0 0
\(405\) 15.4987 + 11.2604i 0.770136 + 0.559536i
\(406\) 0 0
\(407\) 4.50327i 0.223219i
\(408\) 0 0
\(409\) −20.2276 −1.00019 −0.500095 0.865971i \(-0.666702\pi\)
−0.500095 + 0.865971i \(0.666702\pi\)
\(410\) 0 0
\(411\) 5.14207 0.253640
\(412\) 0 0
\(413\) 37.2381i 1.83237i
\(414\) 0 0
\(415\) −10.2634 7.45682i −0.503812 0.366041i
\(416\) 0 0
\(417\) 21.1539 6.87332i 1.03591 0.336588i
\(418\) 0 0
\(419\) 32.5460 1.58998 0.794988 0.606625i \(-0.207477\pi\)
0.794988 + 0.606625i \(0.207477\pi\)
\(420\) 0 0
\(421\) 3.23010 + 4.44585i 0.157425 + 0.216677i 0.880443 0.474152i \(-0.157245\pi\)
−0.723017 + 0.690830i \(0.757245\pi\)
\(422\) 0 0
\(423\) 19.9170 + 6.47144i 0.968399 + 0.314652i
\(424\) 0 0
\(425\) −4.70595 + 6.47718i −0.228272 + 0.314190i
\(426\) 0 0
\(427\) 24.7812 + 34.1084i 1.19925 + 1.65062i
\(428\) 0 0
\(429\) 18.6629 6.06394i 0.901053 0.292770i
\(430\) 0 0
\(431\) 6.71019 + 20.6518i 0.323218 + 0.994764i 0.972238 + 0.233992i \(0.0751791\pi\)
−0.649020 + 0.760771i \(0.724821\pi\)
\(432\) 0 0
\(433\) 10.7893 33.2060i 0.518499 1.59578i −0.258324 0.966058i \(-0.583170\pi\)
0.776823 0.629719i \(-0.216830\pi\)
\(434\) 0 0
\(435\) −7.19663 22.1490i −0.345052 1.06196i
\(436\) 0 0
\(437\) 4.03486i 0.193013i
\(438\) 0 0
\(439\) −1.05527 + 1.45245i −0.0503652 + 0.0693217i −0.833457 0.552585i \(-0.813642\pi\)
0.783092 + 0.621906i \(0.213642\pi\)
\(440\) 0 0
\(441\) −10.5099 + 7.63587i −0.500470 + 0.363613i
\(442\) 0 0
\(443\) 27.6807 20.1112i 1.31515 0.955511i 0.315169 0.949035i \(-0.397939\pi\)
0.999979 0.00647578i \(-0.00206132\pi\)
\(444\) 0 0
\(445\) 16.8438 + 5.47290i 0.798475 + 0.259440i
\(446\) 0 0
\(447\) −50.0439 36.3590i −2.36700 1.71972i
\(448\) 0 0
\(449\) 1.73946 5.35350i 0.0820901 0.252647i −0.901585 0.432603i \(-0.857595\pi\)
0.983675 + 0.179955i \(0.0575953\pi\)
\(450\) 0 0
\(451\) 13.8193 2.51672i 0.650726 0.118508i
\(452\) 0 0
\(453\) −19.6253 + 60.4003i −0.922075 + 2.83785i
\(454\) 0 0
\(455\) −6.80398 4.94338i −0.318975 0.231749i
\(456\) 0 0
\(457\) −18.6130 6.04772i −0.870678 0.282900i −0.160597 0.987020i \(-0.551342\pi\)
−0.710081 + 0.704120i \(0.751342\pi\)
\(458\) 0 0
\(459\) 82.2821 59.7814i 3.84060 2.79036i
\(460\) 0 0
\(461\) −21.8628 + 15.8843i −1.01825 + 0.739804i −0.965924 0.258826i \(-0.916664\pi\)
−0.0523284 + 0.998630i \(0.516664\pi\)
\(462\) 0 0
\(463\) −4.48519 + 6.17334i −0.208445 + 0.286899i −0.900420 0.435022i \(-0.856741\pi\)
0.691975 + 0.721921i \(0.256741\pi\)
\(464\) 0 0
\(465\) 0.961970i 0.0446103i
\(466\) 0 0
\(467\) 2.35319 + 7.24238i 0.108893 + 0.335138i 0.990624 0.136614i \(-0.0436220\pi\)
−0.881732 + 0.471751i \(0.843622\pi\)
\(468\) 0 0
\(469\) −5.51553 + 16.9751i −0.254684 + 0.783835i
\(470\) 0 0
\(471\) −9.00800 27.7238i −0.415067 1.27744i
\(472\) 0 0
\(473\) 19.9671 6.48771i 0.918088 0.298305i
\(474\) 0 0
\(475\) −1.90974 2.62853i −0.0876248 0.120605i
\(476\) 0 0
\(477\) −29.9365 + 41.2041i −1.37070 + 1.88661i
\(478\) 0 0
\(479\) 15.1632 + 4.92682i 0.692825 + 0.225112i 0.634201 0.773168i \(-0.281329\pi\)
0.0586231 + 0.998280i \(0.481329\pi\)
\(480\) 0 0
\(481\) 3.41075 + 4.69450i 0.155517 + 0.214051i
\(482\) 0 0
\(483\) −11.6924 −0.532025
\(484\) 0 0
\(485\) 7.30462 2.37342i 0.331686 0.107771i
\(486\) 0 0
\(487\) −31.6657 23.0065i −1.43491 1.04252i −0.989076 0.147409i \(-0.952907\pi\)
−0.445835 0.895115i \(-0.647093\pi\)
\(488\) 0 0
\(489\) 19.6071i 0.886666i
\(490\) 0 0
\(491\) 19.7081 0.889415 0.444707 0.895676i \(-0.353308\pi\)
0.444707 + 0.895676i \(0.353308\pi\)
\(492\) 0 0
\(493\) −58.9204 −2.65364
\(494\) 0 0
\(495\) 15.3873i 0.691609i
\(496\) 0 0
\(497\) 20.8707 + 15.1634i 0.936179 + 0.680174i
\(498\) 0 0
\(499\) 6.05429 1.96716i 0.271027 0.0880621i −0.170350 0.985384i \(-0.554490\pi\)
0.441378 + 0.897321i \(0.354490\pi\)
\(500\) 0 0
\(501\) 51.3271 2.29312
\(502\) 0 0
\(503\) −12.0351 16.5648i −0.536616 0.738589i 0.451504 0.892269i \(-0.350888\pi\)
−0.988121 + 0.153680i \(0.950888\pi\)
\(504\) 0 0
\(505\) 2.10067 + 0.682549i 0.0934786 + 0.0303731i
\(506\) 0 0
\(507\) 9.31830 12.8255i 0.413840 0.569602i
\(508\) 0 0
\(509\) −21.3304 29.3587i −0.945452 1.30130i −0.953518 0.301336i \(-0.902568\pi\)
0.00806615 0.999967i \(-0.497432\pi\)
\(510\) 0 0
\(511\) −9.91613 + 3.22195i −0.438664 + 0.142531i
\(512\) 0 0
\(513\) 12.7543 + 39.2537i 0.563116 + 1.73309i
\(514\) 0 0
\(515\) −1.99288 + 6.13345i −0.0878167 + 0.270272i
\(516\) 0 0
\(517\) −2.02393 6.22903i −0.0890126 0.273952i
\(518\) 0 0
\(519\) 61.7912i 2.71233i
\(520\) 0 0
\(521\) 3.90055 5.36865i 0.170886 0.235205i −0.714981 0.699144i \(-0.753565\pi\)
0.885867 + 0.463940i \(0.153565\pi\)
\(522\) 0 0
\(523\) −4.45967 + 3.24014i −0.195008 + 0.141681i −0.681005 0.732279i \(-0.738457\pi\)
0.485997 + 0.873961i \(0.338457\pi\)
\(524\) 0 0
\(525\) −7.61711 + 5.53415i −0.332438 + 0.241530i
\(526\) 0 0
\(527\) 2.31465 + 0.752077i 0.100828 + 0.0327610i
\(528\) 0 0
\(529\) 17.3597 + 12.6126i 0.754770 + 0.548373i
\(530\) 0 0
\(531\) −27.1289 + 83.4940i −1.17729 + 3.62333i
\(532\) 0 0
\(533\) −12.5000 + 13.0903i −0.541434 + 0.567002i
\(534\) 0 0
\(535\) 0.436887 1.34460i 0.0188883 0.0581321i
\(536\) 0 0
\(537\) −37.6800 27.3761i −1.62601 1.18137i
\(538\) 0 0
\(539\) 3.86404 + 1.25550i 0.166436 + 0.0540784i
\(540\) 0 0
\(541\) −36.3956 + 26.4429i −1.56477 + 1.13687i −0.632809 + 0.774308i \(0.718098\pi\)
−0.931959 + 0.362563i \(0.881902\pi\)
\(542\) 0 0
\(543\) −55.2332 + 40.1293i −2.37029 + 1.72211i
\(544\) 0 0
\(545\) −10.1738 + 14.0031i −0.435799 + 0.599826i
\(546\) 0 0
\(547\) 37.8555i 1.61858i −0.587407 0.809292i \(-0.699851\pi\)
0.587407 0.809292i \(-0.300149\pi\)
\(548\) 0 0
\(549\) −30.7148 94.5303i −1.31087 4.03446i
\(550\) 0 0
\(551\) 7.38881 22.7404i 0.314774 0.968774i
\(552\) 0 0
\(553\) −1.96114 6.03578i −0.0833963 0.256667i
\(554\) 0 0
\(555\) 6.17824 2.00743i 0.262252 0.0852108i
\(556\) 0 0
\(557\) −26.1370 35.9745i −1.10746 1.52429i −0.825108 0.564976i \(-0.808886\pi\)
−0.282351 0.959311i \(-0.591114\pi\)
\(558\) 0 0
\(559\) −15.9012 + 21.8862i −0.672550 + 0.925686i
\(560\) 0 0
\(561\) −52.8597 17.1752i −2.23174 0.725136i
\(562\) 0 0
\(563\) −7.07584 9.73906i −0.298211 0.410453i 0.633448 0.773785i \(-0.281639\pi\)
−0.931660 + 0.363332i \(0.881639\pi\)
\(564\) 0 0
\(565\) 12.3603 0.520001
\(566\) 0 0
\(567\) 54.2083 17.6133i 2.27653 0.739691i
\(568\) 0 0
\(569\) 3.96836 + 2.88318i 0.166362 + 0.120869i 0.667851 0.744295i \(-0.267214\pi\)
−0.501489 + 0.865164i \(0.667214\pi\)
\(570\) 0 0
\(571\) 42.6054i 1.78298i −0.453038 0.891491i \(-0.649660\pi\)
0.453038 0.891491i \(-0.350340\pi\)
\(572\) 0 0
\(573\) 35.0973 1.46621
\(574\) 0 0
\(575\) −1.24186 −0.0517892
\(576\) 0 0
\(577\) 37.9464i 1.57973i 0.613280 + 0.789866i \(0.289850\pi\)
−0.613280 + 0.789866i \(0.710150\pi\)
\(578\) 0 0
\(579\) 21.3037 + 15.4781i 0.885352 + 0.643246i
\(580\) 0 0
\(581\) −35.8975 + 11.6638i −1.48928 + 0.483896i
\(582\) 0 0
\(583\) 15.9286 0.659697
\(584\) 0 0
\(585\) 11.6543 + 16.0407i 0.481845 + 0.663203i
\(586\) 0 0
\(587\) −43.9893 14.2930i −1.81563 0.589935i −0.999934 0.0114576i \(-0.996353\pi\)
−0.815699 0.578477i \(-0.803647\pi\)
\(588\) 0 0
\(589\) −0.580531 + 0.799032i −0.0239204 + 0.0329235i
\(590\) 0 0
\(591\) −21.4151 29.4753i −0.880899 1.21245i
\(592\) 0 0
\(593\) −22.3816 + 7.27221i −0.919101 + 0.298634i −0.730098 0.683342i \(-0.760526\pi\)
−0.189003 + 0.981976i \(0.560526\pi\)
\(594\) 0 0
\(595\) 7.36094 + 22.6546i 0.301769 + 0.928750i
\(596\) 0 0
\(597\) 6.40072 19.6994i 0.261964 0.806242i
\(598\) 0 0
\(599\) 13.1055 + 40.3345i 0.535475 + 1.64802i 0.742621 + 0.669712i \(0.233582\pi\)
−0.207146 + 0.978310i \(0.566418\pi\)
\(600\) 0 0
\(601\) 1.73427i 0.0707424i −0.999374 0.0353712i \(-0.988739\pi\)
0.999374 0.0353712i \(-0.0112613\pi\)
\(602\) 0 0
\(603\) 24.7335 34.0427i 1.00723 1.38633i
\(604\) 0 0
\(605\) 5.00589 3.63700i 0.203519 0.147865i
\(606\) 0 0
\(607\) 30.9392 22.4786i 1.25578 0.912380i 0.257240 0.966348i \(-0.417187\pi\)
0.998543 + 0.0539680i \(0.0171869\pi\)
\(608\) 0 0
\(609\) −65.8985 21.4117i −2.67034 0.867647i
\(610\) 0 0
\(611\) 6.82771 + 4.96062i 0.276219 + 0.200685i
\(612\) 0 0
\(613\) 10.3961 31.9960i 0.419896 1.29231i −0.487903 0.872898i \(-0.662238\pi\)
0.907798 0.419407i \(-0.137762\pi\)
\(614\) 0 0
\(615\) 9.61307 + 17.8375i 0.387636 + 0.719276i
\(616\) 0 0
\(617\) 6.05776 18.6439i 0.243876 0.750574i −0.751943 0.659228i \(-0.770883\pi\)
0.995819 0.0913457i \(-0.0291168\pi\)
\(618\) 0 0
\(619\) −9.16339 6.65759i −0.368308 0.267591i 0.388201 0.921575i \(-0.373097\pi\)
−0.756509 + 0.653983i \(0.773097\pi\)
\(620\) 0 0
\(621\) 15.0037 + 4.87500i 0.602078 + 0.195627i
\(622\) 0 0
\(623\) 42.6300 30.9725i 1.70793 1.24089i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) 13.2576 18.2475i 0.529456 0.728734i
\(628\) 0 0
\(629\) 16.4353i 0.655317i
\(630\) 0 0
\(631\) −7.37426 22.6956i −0.293564 0.903499i −0.983700 0.179818i \(-0.942449\pi\)
0.690135 0.723680i \(-0.257551\pi\)
\(632\) 0 0
\(633\) −17.9973 + 55.3901i −0.715330 + 2.20156i
\(634\) 0 0
\(635\) −0.232584 0.715821i −0.00922982 0.0284065i
\(636\) 0 0
\(637\) −4.97903 + 1.61779i −0.197277 + 0.0640990i
\(638\) 0 0
\(639\) −35.7486 49.2038i −1.41419 1.94647i
\(640\) 0 0
\(641\) −4.32237 + 5.94923i −0.170723 + 0.234980i −0.885802 0.464064i \(-0.846391\pi\)
0.715079 + 0.699044i \(0.246391\pi\)
\(642\) 0 0
\(643\) −45.2700 14.7091i −1.78527 0.580070i −0.786001 0.618225i \(-0.787852\pi\)
−0.999272 + 0.0381547i \(0.987852\pi\)
\(644\) 0 0
\(645\) 17.8016 + 24.5017i 0.700935 + 0.964755i
\(646\) 0 0
\(647\) 36.1774 1.42228 0.711140 0.703050i \(-0.248179\pi\)
0.711140 + 0.703050i \(0.248179\pi\)
\(648\) 0 0
\(649\) 26.1127 8.48452i 1.02501 0.333047i
\(650\) 0 0
\(651\) 2.31548 + 1.68230i 0.0907509 + 0.0659344i
\(652\) 0 0
\(653\) 34.7924i 1.36153i −0.732500 0.680767i \(-0.761647\pi\)
0.732500 0.680767i \(-0.238353\pi\)
\(654\) 0 0
\(655\) 11.9971 0.468766
\(656\) 0 0
\(657\) 24.5809 0.958992
\(658\) 0 0
\(659\) 28.6866i 1.11747i −0.829346 0.558736i \(-0.811287\pi\)
0.829346 0.558736i \(-0.188713\pi\)
\(660\) 0 0
\(661\) 5.06027 + 3.67650i 0.196822 + 0.142999i 0.681831 0.731509i \(-0.261184\pi\)
−0.485009 + 0.874509i \(0.661184\pi\)
\(662\) 0 0
\(663\) 68.1127 22.1311i 2.64528 0.859502i
\(664\) 0 0
\(665\) −9.66668 −0.374858
\(666\) 0 0
\(667\) −5.37191 7.39380i −0.208001 0.286289i
\(668\) 0 0
\(669\) 10.3549 + 3.36450i 0.400342 + 0.130079i
\(670\) 0 0
\(671\) −18.2717 + 25.1489i −0.705372 + 0.970861i
\(672\) 0 0
\(673\) −6.14804 8.46205i −0.236989 0.326188i 0.673912 0.738811i \(-0.264613\pi\)
−0.910902 + 0.412623i \(0.864613\pi\)
\(674\) 0 0
\(675\) 12.0816 3.92556i 0.465022 0.151095i
\(676\) 0 0
\(677\) −3.56548 10.9734i −0.137032 0.421743i 0.858868 0.512197i \(-0.171168\pi\)
−0.995901 + 0.0904542i \(0.971168\pi\)
\(678\) 0 0
\(679\) 7.06149 21.7330i 0.270995 0.834037i
\(680\) 0 0
\(681\) 8.69688 + 26.7662i 0.333265 + 1.02568i
\(682\) 0 0
\(683\) 5.51994i 0.211215i −0.994408 0.105607i \(-0.966321\pi\)
0.994408 0.105607i \(-0.0336787\pi\)
\(684\) 0 0
\(685\) 0.955096 1.31458i 0.0364923 0.0502274i
\(686\) 0 0
\(687\) 12.6161 9.16615i 0.481335 0.349710i
\(688\) 0 0
\(689\) −16.6050 + 12.0643i −0.632601 + 0.459612i
\(690\) 0 0
\(691\) −14.9586 4.86034i −0.569052 0.184896i 0.0103382 0.999947i \(-0.496709\pi\)
−0.579390 + 0.815050i \(0.696709\pi\)
\(692\) 0 0
\(693\) −37.0377 26.9094i −1.40694 1.02220i
\(694\) 0 0
\(695\) 2.17198 6.68467i 0.0823880 0.253564i
\(696\) 0 0
\(697\) 50.4354 9.18511i 1.91038 0.347911i
\(698\) 0 0
\(699\) −13.7090 + 42.1920i −0.518523 + 1.59585i
\(700\) 0 0
\(701\) 38.0569 + 27.6500i 1.43739 + 1.04433i 0.988580 + 0.150699i \(0.0481525\pi\)
0.448811 + 0.893627i \(0.351848\pi\)
\(702\) 0 0
\(703\) 6.34322 + 2.06104i 0.239239 + 0.0777335i
\(704\) 0 0
\(705\) 7.64368 5.55346i 0.287877 0.209155i
\(706\) 0 0
\(707\) 5.31657 3.86272i 0.199950 0.145272i
\(708\) 0 0
\(709\) 15.0123 20.6627i 0.563800 0.776005i −0.428003 0.903777i \(-0.640783\pi\)
0.991803 + 0.127773i \(0.0407828\pi\)
\(710\) 0 0
\(711\) 14.9620i 0.561117i
\(712\) 0 0
\(713\) 0.116656 + 0.359030i 0.00436880 + 0.0134458i
\(714\) 0 0
\(715\) 1.91622 5.89751i 0.0716625 0.220554i
\(716\) 0 0
\(717\) 8.90780 + 27.4154i 0.332668 + 1.02385i
\(718\) 0 0
\(719\) 9.82347 3.19184i 0.366353 0.119035i −0.120054 0.992767i \(-0.538307\pi\)
0.486408 + 0.873732i \(0.338307\pi\)
\(720\) 0 0
\(721\) 11.2782 + 15.5231i 0.420022 + 0.578110i
\(722\) 0 0
\(723\) 26.8945 37.0172i 1.00022 1.37668i
\(724\) 0 0
\(725\) −6.99912 2.27415i −0.259941 0.0844598i
\(726\) 0 0
\(727\) −10.7748 14.8302i −0.399613 0.550021i 0.561034 0.827793i \(-0.310404\pi\)
−0.960647 + 0.277772i \(0.910404\pi\)
\(728\) 0 0
\(729\) −13.7749 −0.510180
\(730\) 0 0
\(731\) 72.8726 23.6777i 2.69529 0.875752i
\(732\) 0 0
\(733\) 24.4671 + 17.7764i 0.903712 + 0.656585i 0.939417 0.342777i \(-0.111368\pi\)
−0.0357047 + 0.999362i \(0.511368\pi\)
\(734\) 0 0
\(735\) 5.86093i 0.216183i
\(736\) 0 0
\(737\) −13.1602 −0.484762
\(738\) 0 0
\(739\) −41.5903 −1.52992 −0.764962 0.644076i \(-0.777242\pi\)
−0.764962 + 0.644076i \(0.777242\pi\)
\(740\) 0 0
\(741\) 29.0635i 1.06767i
\(742\) 0 0
\(743\) 25.1654 + 18.2837i 0.923229 + 0.670765i 0.944326 0.329012i \(-0.106716\pi\)
−0.0210968 + 0.999777i \(0.506716\pi\)
\(744\) 0 0
\(745\) −18.5905 + 6.04041i −0.681102 + 0.221303i
\(746\) 0 0
\(747\) 88.9855 3.25581
\(748\) 0 0
\(749\) −2.47245 3.40304i −0.0903414 0.124344i
\(750\) 0 0
\(751\) −24.4640 7.94885i −0.892706 0.290058i −0.173483 0.984837i \(-0.555502\pi\)
−0.719223 + 0.694779i \(0.755502\pi\)
\(752\) 0 0
\(753\) 32.6400 44.9251i 1.18947 1.63716i
\(754\) 0 0
\(755\) 11.7962 + 16.2361i 0.429307 + 0.590890i
\(756\) 0 0
\(757\) 14.5464 4.72641i 0.528698 0.171784i −0.0324911 0.999472i \(-0.510344\pi\)
0.561189 + 0.827688i \(0.310344\pi\)
\(758\) 0 0
\(759\) −2.66407 8.19915i −0.0966995 0.297610i
\(760\) 0 0
\(761\) −13.3501 + 41.0873i −0.483940 + 1.48941i 0.349571 + 0.936910i \(0.386327\pi\)
−0.833511 + 0.552504i \(0.813673\pi\)
\(762\) 0 0
\(763\) 15.9137 + 48.9772i 0.576113 + 1.77309i
\(764\) 0 0
\(765\) 56.1581i 2.03040i
\(766\) 0 0
\(767\) −20.7954 + 28.6224i −0.750877 + 1.03349i
\(768\) 0 0
\(769\) −9.60956 + 6.98176i −0.346530 + 0.251769i −0.747412 0.664361i \(-0.768704\pi\)
0.400882 + 0.916130i \(0.368704\pi\)
\(770\) 0 0
\(771\) −56.1994 + 40.8313i −2.02397 + 1.47050i
\(772\) 0 0
\(773\) 3.03975 + 0.987675i 0.109332 + 0.0355242i 0.363172 0.931722i \(-0.381694\pi\)
−0.253840 + 0.967246i \(0.581694\pi\)
\(774\) 0 0
\(775\) 0.245929 + 0.178678i 0.00883402 + 0.00641829i
\(776\) 0 0
\(777\) 5.97260 18.3818i 0.214266 0.659442i
\(778\) 0 0
\(779\) −2.77976 + 20.6175i −0.0995951 + 0.738697i
\(780\) 0 0
\(781\) −5.87786 + 18.0902i −0.210326 + 0.647318i
\(782\) 0 0
\(783\) 75.6334 + 54.9509i 2.70292 + 1.96378i
\(784\) 0 0
\(785\) −8.76077 2.84655i −0.312685 0.101598i
\(786\) 0 0
\(787\) 35.3175 25.6596i 1.25893 0.914667i 0.260227 0.965547i \(-0.416203\pi\)
0.998705 + 0.0508800i \(0.0162026\pi\)
\(788\) 0 0
\(789\) 0.134658 0.0978349i 0.00479396 0.00348302i
\(790\) 0 0
\(791\) 21.6157 29.7514i 0.768565 1.05784i
\(792\) 0 0
\(793\) 40.0557i 1.42242i
\(794\) 0 0
\(795\) 7.10054 + 21.8532i 0.251830 + 0.775054i
\(796\) 0 0
\(797\) −8.95729 + 27.5677i −0.317284 + 0.976498i 0.657521 + 0.753436i \(0.271605\pi\)
−0.974804 + 0.223062i \(0.928395\pi\)
\(798\) 0 0
\(799\) −7.38661 22.7337i −0.261320 0.804259i
\(800\) 0 0
\(801\) −118.148 + 38.3885i −4.17454 + 1.35639i
\(802\) 0 0
\(803\) −4.51869 6.21944i −0.159461 0.219479i
\(804\) 0 0
\(805\) −2.17177 + 2.98919i −0.0765448 + 0.105355i
\(806\) 0 0
\(807\) −53.5030 17.3842i −1.88340 0.611952i
\(808\) 0 0
\(809\) 19.4093 + 26.7147i 0.682396 + 0.939237i 0.999960 0.00899957i \(-0.00286469\pi\)
−0.317564 + 0.948237i \(0.602865\pi\)
\(810\) 0 0
\(811\) −35.2643 −1.23830 −0.619149 0.785273i \(-0.712522\pi\)
−0.619149 + 0.785273i \(0.712522\pi\)
\(812\) 0 0
\(813\) 95.4297 31.0070i 3.34687 1.08746i
\(814\) 0 0
\(815\) 5.01259 + 3.64186i 0.175583 + 0.127569i
\(816\) 0 0
\(817\) 31.0945i 1.08786i
\(818\) 0 0
\(819\) 58.9914 2.06133
\(820\) 0 0
\(821\) −22.0569 −0.769791 −0.384896 0.922960i \(-0.625763\pi\)
−0.384896 + 0.922960i \(0.625763\pi\)
\(822\) 0 0
\(823\) 0.685749i 0.0239037i −0.999929 0.0119518i \(-0.996196\pi\)
0.999929 0.0119518i \(-0.00380448\pi\)
\(824\) 0 0
\(825\) −5.61626 4.08045i −0.195533 0.142063i
\(826\) 0 0
\(827\) −40.2411 + 13.0751i −1.39932 + 0.454666i −0.908971 0.416860i \(-0.863131\pi\)
−0.490349 + 0.871526i \(0.663131\pi\)
\(828\) 0 0
\(829\) −12.7449 −0.442648 −0.221324 0.975200i \(-0.571038\pi\)
−0.221324 + 0.975200i \(0.571038\pi\)
\(830\) 0 0
\(831\) 43.4208 + 59.7636i 1.50625 + 2.07318i
\(832\) 0 0
\(833\) 14.1023 + 4.58213i 0.488617 + 0.158761i
\(834\) 0 0
\(835\) 9.53356 13.1218i 0.329922 0.454099i
\(836\) 0 0
\(837\) −2.26981 3.12412i −0.0784561 0.107985i
\(838\) 0 0
\(839\) −12.9553 + 4.20944i −0.447268 + 0.145326i −0.523986 0.851727i \(-0.675556\pi\)
0.0767185 + 0.997053i \(0.475556\pi\)
\(840\) 0 0
\(841\) −7.77468 23.9280i −0.268092 0.825103i
\(842\) 0 0
\(843\) −9.57521 + 29.4695i −0.329788 + 1.01498i
\(844\) 0 0
\(845\) −1.54807 4.76446i −0.0532552 0.163903i
\(846\) 0 0
\(847\) 18.4097i 0.632564i
\(848\) 0 0
\(849\) 46.9745 64.6548i 1.61216 2.21895i
\(850\) 0 0
\(851\) 2.06243 1.49844i 0.0706992 0.0513659i
\(852\) 0 0
\(853\) −34.7614 + 25.2556i −1.19021 + 0.864735i −0.993286 0.115684i \(-0.963094\pi\)
−0.196920 + 0.980420i \(0.563094\pi\)
\(854\) 0 0
\(855\) 21.6743 + 7.04241i 0.741246 + 0.240845i
\(856\) 0 0
\(857\) −36.0701 26.2065i −1.23213 0.895196i −0.235083 0.971975i \(-0.575536\pi\)
−0.997048 + 0.0767796i \(0.975536\pi\)
\(858\) 0 0
\(859\) −15.7800 + 48.5658i −0.538406 + 1.65704i 0.197766 + 0.980249i \(0.436631\pi\)
−0.736172 + 0.676794i \(0.763369\pi\)
\(860\) 0 0
\(861\) 59.7465 + 8.05534i 2.03616 + 0.274525i
\(862\) 0 0
\(863\) −5.05231 + 15.5494i −0.171983 + 0.529308i −0.999483 0.0321571i \(-0.989762\pi\)
0.827500 + 0.561466i \(0.189762\pi\)
\(864\) 0 0
\(865\) 15.7970 + 11.4772i 0.537114 + 0.390236i
\(866\) 0 0
\(867\) −141.754 46.0588i −4.81423 1.56424i
\(868\) 0 0
\(869\) 3.78566 2.75045i 0.128420 0.0933025i
\(870\) 0 0
\(871\) 13.7190 9.96745i 0.464851 0.337734i
\(872\) 0 0
\(873\) −31.6661 + 43.5846i −1.07173 + 1.47512i
\(874\) 0 0
\(875\) 2.97524i 0.100582i
\(876\) 0 0
\(877\) 5.81522 + 17.8974i 0.196366 + 0.604352i 0.999958 + 0.00917171i \(0.00291949\pi\)
−0.803592 + 0.595181i \(0.797081\pi\)
\(878\) 0 0
\(879\) −3.99780 + 12.3040i −0.134842 + 0.415002i
\(880\) 0 0
\(881\) −9.99386 30.7580i −0.336702 1.03626i −0.965878 0.258999i \(-0.916607\pi\)
0.629176 0.777263i \(-0.283393\pi\)
\(882\) 0 0
\(883\) 17.7169 5.75656i 0.596220 0.193724i 0.00466609 0.999989i \(-0.498515\pi\)
0.591554 + 0.806266i \(0.298515\pi\)
\(884\) 0 0
\(885\) 23.2806 + 32.0430i 0.782569 + 1.07711i
\(886\) 0 0
\(887\) −17.1712 + 23.6342i −0.576553 + 0.793557i −0.993312 0.115460i \(-0.963166\pi\)
0.416759 + 0.909017i \(0.363166\pi\)
\(888\) 0 0
\(889\) −2.12974 0.691994i −0.0714292 0.0232087i
\(890\) 0 0
\(891\) 24.7022 + 33.9996i 0.827554 + 1.13903i
\(892\) 0 0
\(893\) 9.70040 0.324612
\(894\) 0 0
\(895\) −13.9975 + 4.54805i −0.467884 + 0.152025i
\(896\) 0 0
\(897\) 8.98718 + 6.52957i 0.300073 + 0.218016i
\(898\) 0 0
\(899\) 2.23711i 0.0746119i
\(900\) 0 0
\(901\) 58.1337 1.93671
\(902\) 0 0
\(903\) 90.1076 2.99859
\(904\) 0 0
\(905\) 21.5741i 0.717148i
\(906\) 0 0
\(907\) 38.8020 + 28.1913i 1.28840 + 0.936076i 0.999772 0.0213656i \(-0.00680141\pi\)
0.288627 + 0.957442i \(0.406801\pi\)
\(908\) 0 0
\(909\) −14.7347 + 4.78760i −0.488720 + 0.158795i
\(910\) 0 0
\(911\) −31.4179 −1.04092 −0.520460 0.853886i \(-0.674239\pi\)
−0.520460 + 0.853886i \(0.674239\pi\)
\(912\) 0 0
\(913\) −16.3581 22.5150i −0.541375 0.745139i
\(914\) 0 0
\(915\) −42.6479 13.8571i −1.40990 0.458103i
\(916\) 0 0
\(917\) 20.9806 28.8773i 0.692841 0.953614i
\(918\) 0 0
\(919\) −3.38412 4.65784i −0.111632 0.153648i 0.749545 0.661953i \(-0.230272\pi\)
−0.861177 + 0.508305i \(0.830272\pi\)
\(920\) 0 0
\(921\) 20.5686 6.68314i 0.677758 0.220217i
\(922\) 0 0
\(923\) −7.57395 23.3102i −0.249299 0.767265i
\(924\) 0 0
\(925\) 0.634353 1.95234i 0.0208574 0.0641924i
\(926\) 0 0
\(927\) −13.9786 43.0218i −0.459119 1.41302i
\(928\) 0 0
\(929\) 27.2914i 0.895402i −0.894183 0.447701i \(-0.852243\pi\)
0.894183 0.447701i \(-0.147757\pi\)
\(930\) 0 0
\(931\) −3.53696 + 4.86820i −0.115919 + 0.159549i
\(932\) 0 0
\(933\) 24.3236 17.6721i 0.796319 0.578560i
\(934\) 0 0
\(935\) −14.2091 + 10.3235i −0.464687 + 0.337615i
\(936\) 0 0
\(937\) 35.7966 + 11.6310i 1.16942 + 0.379969i 0.828428 0.560096i \(-0.189236\pi\)
0.340996 + 0.940065i \(0.389236\pi\)
\(938\) 0 0
\(939\) −3.44583 2.50354i −0.112451 0.0817001i
\(940\) 0 0
\(941\) 8.39656 25.8420i 0.273720 0.842424i −0.715835 0.698269i \(-0.753954\pi\)
0.989555 0.144154i \(-0.0460462\pi\)
\(942\) 0 0
\(943\) 5.75093 + 5.49161i 0.187276 + 0.178831i
\(944\) 0 0
\(945\) 11.6795 35.9458i 0.379934 1.16932i
\(946\) 0 0
\(947\) −12.7537 9.26614i −0.414441 0.301109i 0.360956 0.932583i \(-0.382450\pi\)
−0.775397 + 0.631474i \(0.782450\pi\)
\(948\) 0 0
\(949\) 9.42113 + 3.06111i 0.305823 + 0.0993678i
\(950\) 0 0
\(951\) 36.4096 26.4531i 1.18066 0.857801i
\(952\) 0 0
\(953\) −9.45357 + 6.86842i −0.306231 + 0.222490i −0.730278 0.683150i \(-0.760609\pi\)
0.424047 + 0.905640i \(0.360609\pi\)
\(954\) 0 0
\(955\) 6.51902 8.97265i 0.210950 0.290348i
\(956\) 0 0
\(957\) 51.0889i 1.65147i
\(958\) 0 0
\(959\) −1.49394 4.59787i −0.0482418 0.148473i
\(960\) 0 0
\(961\) −9.55097 + 29.3949i −0.308096 + 0.948222i
\(962\) 0 0
\(963\) 3.06445 + 9.43141i 0.0987506 + 0.303923i
\(964\) 0 0
\(965\) 7.91396 2.57140i 0.254759 0.0827763i
\(966\) 0 0
\(967\) −6.61976 9.11132i −0.212877 0.293000i 0.689203 0.724568i \(-0.257961\pi\)
−0.902081 + 0.431568i \(0.857961\pi\)
\(968\) 0 0
\(969\) 48.3852 66.5965i 1.55436 2.13939i
\(970\) 0 0
\(971\) −29.9278 9.72413i −0.960429 0.312062i −0.213483 0.976947i \(-0.568481\pi\)
−0.746946 + 0.664884i \(0.768481\pi\)
\(972\) 0 0
\(973\) −12.2918 16.9182i −0.394056 0.542372i
\(974\) 0 0
\(975\) 8.94526 0.286478
\(976\) 0 0
\(977\) −30.9923 + 10.0700i −0.991530 + 0.322168i −0.759476 0.650535i \(-0.774545\pi\)
−0.232054 + 0.972703i \(0.574545\pi\)
\(978\) 0 0
\(979\) 31.4320 + 22.8367i 1.00457 + 0.729864i
\(980\) 0 0
\(981\) 121.409i 3.87628i
\(982\) 0 0
\(983\) 5.38234 0.171670 0.0858350 0.996309i \(-0.472644\pi\)
0.0858350 + 0.996309i \(0.472644\pi\)
\(984\) 0 0
\(985\) −11.5131 −0.366837
\(986\) 0 0
\(987\) 28.1104i 0.894764i
\(988\) 0 0
\(989\) 9.61523 + 6.98587i 0.305747 + 0.222138i
\(990\) 0 0
\(991\) −5.15949 + 1.67642i −0.163897 + 0.0532533i −0.389816 0.920893i \(-0.627461\pi\)
0.225919 + 0.974146i \(0.427461\pi\)
\(992\) 0 0
\(993\) −29.4003 −0.932989
\(994\) 0 0
\(995\) −3.84729 5.29534i −0.121967 0.167874i
\(996\) 0 0
\(997\) 8.50629 + 2.76386i 0.269397 + 0.0875324i 0.440600 0.897703i \(-0.354766\pi\)
−0.171204 + 0.985236i \(0.554766\pi\)
\(998\) 0 0
\(999\) −15.3280 + 21.0972i −0.484957 + 0.667487i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bg.a.681.6 24
41.23 even 10 inner 820.2.bg.a.761.1 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bg.a.681.6 24 1.1 even 1 trivial
820.2.bg.a.761.1 yes 24 41.23 even 10 inner